Exercises for
 Database Implementation
 Elite Graduate Program Software Engineering
 Florian Funke (florian.funke@in.tum.de)

Assignment 4

Excercise 1

Implement a B^{+}-Tree index for your database system on top of the segments. Your tree should ...
...support different (opaque) key ${ }^{1}$ types. Parameterize the B^{+}-Tree with a key type and a comparator. You can assume that all key types have fixed length.
... offer the following reentrant operations

- insert Inserts a new key/TID pair into the tree.
- erase Deletes a specified key. You may simplify the logic by accepting underfull pages.
- lookup Returns a TID or indicates that the key was not found.
- lookupRange Returns an iterator that allows to iterate over the result set.
...support graphical output method visualize, e.g. via Graphviz/dot ${ }^{2}$ (see note below).

Use the concurrency control techniques from the slides "Concurrent Access (2)" and "Concurrent Access (3)".

Note

The following example Graphviz/dot code could be the output of a visualize method. It can then be rendered using the command dot -Tpng tree.dot -o tree.png (your program does not need to invoke the rendering automatically). You can either produce the output yourself, or employ a library.
digraph myBTree \{
node [shape=record]
node0 [shape=record, label=
"<count> 2 | <isLeaf> false | <key0> NL | <key1> US | <key2> | <key3> | <ptr0> * | <ptr1> * | <ptr2> * | <ptr3> | <ptr4>"];
leaf1 [shape=record, label=
"<count> 3 | <isLeaf> true
leaf2 [shape=record, label=
"<count> 3 | <isLef
leaf3 [shape=record, true
leaf3 [shape=record, label=
node0:ptr0 \rightarrow leaf1:count;
node0:ptr1 \rightarrow leaf2:count
node0:ptr2 \rightarrow leaf3:count
leaf1:next \rightarrow leaf2:count
leaf2: next \rightarrow leaf3:count;
\}

[^0]

In this example, the inner node (root) consists of the count (the number of entries), a flag indicating if it is a leaf or not (false), 4 key slots (two of which are used) and then 5 child-pointer slots (three of which are used). The leaves consist of the count, the flag, 4 key slots, 4 TID slots and a next pointer slot.

[^0]: ${ }^{1}$ Your tree does not need to support non-unique entries.
 ${ }^{2}$ www.graphviz.org

