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Requirements

There are different classes of requirements:
• Data Independence

I application is shielded from physical storage
I physical storage can be reorganized
I hardware can be changed

• Scalability
I must scale to (nearly) arbitrary data sizes
I fast retrieval
I efficient access to individual data items
I updating arbitrary data

• Reliability
I data must never be lost
I must cope with hardware and software failures

• ...
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Layer Architecture

• implementing all these requirements on the “bare metal” is hard
• and not desirable
• a DBMS must be maintainable and extensible

Instead: use a layer architecture
• the DBMS logic is split into levels of functionality
• each level is implemented by a specific layer
• each layer interacts only with the next lower layer
• simplifies and modularizes the code
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A Simple Layer Architecture
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A Simple Layer Architecture (2)

• layers can be characterized by the data items they manipulate
• lower layer offers functionality for the next higher level
• keeps the complexity of individual layers reasonable
• rough structure: physical → low level → high level

This is a reasonable architecture, but simplified.
A more detailed architecture is needed for a complete DBMS.
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A More Detailed Architecture
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A More Detailed Architecture (2)

A few pieces are still missing:
• transaction isolation
• recovery

but otherwise it is a reasonable architecture.

Some system deviate slightly from this classical architecture
• most DBMSs nowadays delegate drive access to the OS
• some DBMSs delegate buffer management to the OS (tricky, though)
• a few DBMSs allow for direct logical record access
• ...
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Influence of Hardware
Must take hardware into account when designing a storage system.

For a long time dominated by Moore’s Law:
The number of transistors on a chip doubles every 18 month.

Indirectly drove a number of other parameters:
• main memory size
• CPU speed

I no longer true!
• HD capacity

I start getting problematic, too. density is very high
I only capacity, not access time

Later we will look at these again.
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Memory Hierarchy
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Memory Hierarchy (2)

There are huge gaps between hierarchy levels
• traditionally, main memory vs. disk is most important
• but memory vs. cache etc. also relevant

The DBMS must aim to maximize locality.
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Hard Disk Access

Hard Disks are still the dominant external storage:
• rotating platters, mechanical effects
• transfer rate: ca. 150MB/s
• seek time ca. 3ms
• huge imbalance in random vs. sequential I/O!

The DBMS must take these effects into account
• sequential access is much more efficient
• gap is growing instead of shrinking
• even SSDs are slightly asymmetric (and have other problems)
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Hard Disk Access (2)
Techniques to speed up disk access:

• do not move the head for every single tuple
• instead, load larger chunks
• typical granularity: one page
• page size varies. traditionally 4KB, nowadays often 16K and more
• page size is a trade-off

1 2 3 4

5 6 7 8

9 10 11 ...
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Hard Disk Access (3)

The page structure is very prominent within the DBMS
• granularity of I/O
• granularity of buffering/memory management
• granularity of recovery

Page is still too small to hide random I/O though
• sequential page access is important
• DBMSs use read-ahead techniques
• asynchronous write-back
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Buffer Management

Some pages are accessed very frequently
• reduce I/O by buffering/caching
• buffer manager keeps active pages in memory
• limited size, discards/write back when needed
• coupled with recovery, in particular logging

Basic interface:
1. FIX(pageNo,shared)
2. UNFIX(pageNo,dirty)

Pages can only be accessed (or modified) when they are fixed.
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Buffer Managment
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The buffer manager itself is protected by one or more latches.
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Buffer Frame

Maintains the state of a certain page within the buffer

pageNo the page number
latch a read/writer lock to protect the page

(note: must not block unrelated pages!)
LSN LSN of the last change, for recovery

(buffer manager must force the log before writing)
state clean/dirty/newly created etc.
data the actual data contained on the page

(will usually contain extra information for buffer replacement)

Usually kept in a hash table.
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Buffer Replacement
When memory is full, some buffer pages have to be replaced

• clean pages can be simply discarded
• dirty pages have to be written back first
• discarded pages are replaced with new pages
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Buffer Replacement - FIFO

First In - First Out

• simple replacement strategy
• buffer frames are kept in a linked list
• inserted at the end, remove from the head
• “old” pages are removed first

Does not take locality into account.



20 / 36

The Classical Architecture Storage

Buffer Replacement - LRU

Least Recently Used

• similar to FIFO, buffer frames are kept in a double-linked list
• remove from the head
• when a frame is unfixed, move it to the end of the list
• “hot” pages are kept in the buffer

A very popular strategy. Latching requires some care.
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Buffer Replacement - LFU

Least Frequently Used

• remembers the number of access per page
• in-frequently used pages are remove first
• maintains a priority queue of pages

Sounds plausible, but too expensive in practice.
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Buffer Replacement - Second Chance

LRU is nice, but the LRU list is a hot spot.

Idea: use a simpler mechanism to simulate LRU
• one bit per page
• bit is set when page is unfixed
• when replacing, replace pages with unset bit
• set bits are cleared during the process
• strategy is called “second chance” or “clock”

Easy to implement, but a bit crude.
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Buffer Replacement - 2Q

Maintain not one queue but two

• many pages are referenced only once
• some pages are hot and reference frequently
• maintain a separate list for those

1. maintain all pages in FIFO queue
2. when a page is references again that is currently in FIFO, move it into

an LRU queue
3. prefer evicting from FIFO

Hot pages are in LRU, read-once pages in FIFO. Good strategy for common
DBMS operations.
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Buffer Replacement - Hints

Application knowledge can help buffer replacement
• 2Q tries to recognize read-once pages
• these occur when scanning over data
• but the DBMS knows this anyway!
• it could therefore give hints when unfixing
• e.g., will-need, or will-not-need (changes placement in queue)
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Segments

While page granularity is fine for I/O, it is somewhat unwieldy
• most structures within a DBMS span multiple pages
• relations, indexes, free space management, etc.
• convenient to treat these as one entity
• all DBMS pages are partitioned into sets of pages

Such a set of pages is called a segment.

Conceptually similar to a file or virtual memory.
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Segments (2)

A segment offers a virtual address space within the DBMS
• can allocate and release new pages
• can iterate over all pages
• can drop the whole segment
• optionally offers a linear address space

Greatly simplifies the logic of higher layers.
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Block Allocation

Catalog Catalog

static file-mapping dynamic extent-mapping dynamic block-mapping

Catalog
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Block Allocation

All approaches have pros and cons:
• static file-mapping

I very simple, low overhead
I resizing is difficult

• dynamic block-mapping
I maximum flexibility
I administrative overhead, additional indirection

• dynamic extent-mapping
I can handle growth
I slight overhead

In most cases extent-based mapping is preferable.



29 / 36

The Classical Architecture Storage

Block Allocation (5)

Dynamic extent-mapping:
• grows by adding a new extent
• should grow exponentially (e.g., factor 1.25)
• bounds the number of extents
• reduces both complexity and space consumption
• and helps with sequential I/O!
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Segment Types

Segments can be classified into types
• private vs. public
• permanent vs. temporary
• automatic vs. manual
• with recovery vs. without recovery

Differ in complexity and required effort.
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Standard Segments
Most DBMS will need at least two low-level segments:

• segment inventory
I keeps track of all pages allocated to segments
I keeps extent lists or page tables or ...

• free space inventory
I keeps track of free pages
I maintains bitmaps or free extents or ...

High-level segments built upon these.

Common high-level segments:
• schema
• relations
• temp segments (created and discard on demand)
• ...



32 / 36

The Classical Architecture Storage

Update Strategies

DBMSs have different update behavior

steal ¬ steal
force
¬ force

• usually one prefers steal, ¬ force
• but then pages contain dirty data
• when using update-in-place, dirty data is on on disk
• complicates recovery
• transactions could see dirty data
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Shadow Paging

1 2 3 4

5 6 7 8

9 10 11 ...

1 2 8 4 5 7 1 2 3 4 5 6

shadow copy

uses a page table, dirty pages are stored in a shadow copy.
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Shadow Paging (2)

Advantages:
• the clean data is always available on disk
• greatly simplified recovery
• can be used for transaction isolation, too

Disadvantages:
• complicates the page access logic
• destroys data locality

Nowadays rarely used in disk-based systems.
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Delta Files

Similar idea to shadow paging:
• on change pages are copied to a separate file
• a copied page can be changed in-place
• on commit discard the file, on abort copy back

Can be implemented in two flavors:
• store a clean copy in the delta
• store the dirty data in the delta

Both have pros and cons.
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Delta Files (2)

Delta files have some advantages over shadow paging:
• preserve data locality
• no mixture of clean and dirty pages

Disadvantages:
• cause more I/O
• abort (or commit) becomes expensive
• keeping track of delta pages is non-trivial

Still, often preferable over shadow paging.
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