
1 / 36

The Classical Architecture Storage

Storage



2 / 36

The Classical Architecture Storage

The Problem

Application

Data

?
Filesystem

Logical Drive

Physical Drive



3 / 36

The Classical Architecture Storage

Requirements

There are different classes of requirements:
• Data Independence

I application is shielded from physical storage
I physical storage can be reorganized
I hardware can be changed

• Scalability
I must scale to (nearly) arbitrary data sizes
I fast retrieval
I efficient access to individual data items
I updating arbitrary data

• Reliability
I data must never be lost
I must cope with hardware and software failures

• ...



4 / 36

The Classical Architecture Storage

Layer Architecture

• implementing all these requirements on the “bare metal” is hard
• and not desirable
• a DBMS must be maintainable and extensible

Instead: use a layer architecture
• the DBMS logic is split into levels of functionality
• each level is implemented by a specific layer
• each layer interacts only with the next lower layer
• simplifies and modularizes the code



5 / 36

The Classical Architecture Storage

A Simple Layer Architecture

DB

access layer

query layer

storage layer

query translation
and optimization

managing records
and access paths

DB buffer and
hardware interface

Purpose

declarative queries
sets of records

records

page

Access Granularity



6 / 36

The Classical Architecture Storage

A Simple Layer Architecture (2)

• layers can be characterized by the data items they manipulate
• lower layer offers functionality for the next higher level
• keeps the complexity of individual layers reasonable
• rough structure: physical → low level → high level

This is a reasonable architecture, but simplified.
A more detailed architecture is needed for a complete DBMS.



7 / 36

The Classical Architecture Storage

A More Detailed Architecture

DB

granularity:
data structures:

granularity:

block, file
free space inventory,
extent table ...
track, cylinder, ...

granularity:
data structures:

granularity:

page, segment
page table,
block map ...
block, file

granularity:
data structures:

granularity:

physical record,...
free space inventory,
page indexes ...
page, segment

granularity:
data structures:

granularity:

logical record, key,...
access path,
physical schema ...
physical record, ...

granularity:
data structures:

granularity:

relation, view, ...
logical schema,
integrity constraints
logical record, key, ...

granularity: relation, view, ...

Device Interface

File Interface

DB Buffer

Record Access

Record Interface

Query Interface

SQL,...

FIND NEXT record,
STORE record

write record,
insert in B-tree,...

access page j,
release page j

read block k,
write block k

application

logical data

access paths

physical data

page structure

storage allocation

external storage



8 / 36

The Classical Architecture Storage

A More Detailed Architecture (2)

A few pieces are still missing:
• transaction isolation
• recovery

but otherwise it is a reasonable architecture.

Some system deviate slightly from this classical architecture
• most DBMSs nowadays delegate drive access to the OS
• some DBMSs delegate buffer management to the OS (tricky, though)
• a few DBMSs allow for direct logical record access
• ...



9 / 36

The Classical Architecture Storage

Influence of Hardware
Must take hardware into account when designing a storage system.

For a long time dominated by Moore’s Law:
The number of transistors on a chip doubles every 18 month.

Indirectly drove a number of other parameters:
• main memory size
• CPU speed

I no longer true!
• HD capacity

I start getting problematic, too. density is very high
I only capacity, not access time

Later we will look at these again.



10 / 36

The Classical Architecture Storage

Memory Hierarchy

archive storage (offline)

archive storage (nearline)

external storage (online)

main memory

cache

register

capacity
latency

bytes
1ns

K-M bytes
<10ns

G bytes
<100ns

T bytes
ms

T bytes
sec

T-P bytes
sec-min



11 / 36

The Classical Architecture Storage

Memory Hierarchy (2)

There are huge gaps between hierarchy levels
• traditionally, main memory vs. disk is most important
• but memory vs. cache etc. also relevant

The DBMS must aim to maximize locality.



12 / 36

The Classical Architecture Storage

Hard Disk Access

Hard Disks are still the dominant external storage:
• rotating platters, mechanical effects
• transfer rate: ca. 150MB/s
• seek time ca. 3ms
• huge imbalance in random vs. sequential I/O!

The DBMS must take these effects into account
• sequential access is much more efficient
• gap is growing instead of shrinking
• even SSDs are slightly asymmetric (and have other problems)



13 / 36

The Classical Architecture Storage

Hard Disk Access (2)
Techniques to speed up disk access:

• do not move the head for every single tuple
• instead, load larger chunks
• typical granularity: one page
• page size varies. traditionally 4KB, nowadays often 16K and more
• page size is a trade-off

1 2 3 4

5 6 7 8

9 10 11 ...



14 / 36

The Classical Architecture Storage

Hard Disk Access (3)

The page structure is very prominent within the DBMS
• granularity of I/O
• granularity of buffering/memory management
• granularity of recovery

Page is still too small to hide random I/O though
• sequential page access is important
• DBMSs use read-ahead techniques
• asynchronous write-back



15 / 36

The Classical Architecture Storage

Buffer Management

Some pages are accessed very frequently
• reduce I/O by buffering/caching
• buffer manager keeps active pages in memory
• limited size, discards/write back when needed
• coupled with recovery, in particular logging

Basic interface:
1. FIX(pageNo,shared)
2. UNFIX(pageNo,dirty)

Pages can only be accessed (or modified) when they are fixed.



16 / 36

The Classical Architecture Storage

Buffer Managment

Hash

Table

PageNo Latch LSN State Data

Buffer

Frames

The buffer manager itself is protected by one or more latches.



17 / 36

The Classical Architecture Storage

Buffer Frame

Maintains the state of a certain page within the buffer

pageNo the page number
latch a read/writer lock to protect the page

(note: must not block unrelated pages!)
LSN LSN of the last change, for recovery

(buffer manager must force the log before writing)
state clean/dirty/newly created etc.
data the actual data contained on the page

(will usually contain extra information for buffer replacement)

Usually kept in a hash table.



18 / 36

The Classical Architecture Storage

Buffer Replacement
When memory is full, some buffer pages have to be replaced

• clean pages can be simply discarded
• dirty pages have to be written back first
• discarded pages are replaced with new pages

buffer size

p
a
g
e 

fa
u
lt
 r

a
te

OPT

RANDOM
replacement

strategies



19 / 36

The Classical Architecture Storage

Buffer Replacement - FIFO

First In - First Out

• simple replacement strategy
• buffer frames are kept in a linked list
• inserted at the end, remove from the head
• “old” pages are removed first

Does not take locality into account.



20 / 36

The Classical Architecture Storage

Buffer Replacement - LRU

Least Recently Used

• similar to FIFO, buffer frames are kept in a double-linked list
• remove from the head
• when a frame is unfixed, move it to the end of the list
• “hot” pages are kept in the buffer

A very popular strategy. Latching requires some care.



21 / 36

The Classical Architecture Storage

Buffer Replacement - LFU

Least Frequently Used

• remembers the number of access per page
• in-frequently used pages are remove first
• maintains a priority queue of pages

Sounds plausible, but too expensive in practice.



22 / 36

The Classical Architecture Storage

Buffer Replacement - Second Chance

LRU is nice, but the LRU list is a hot spot.

Idea: use a simpler mechanism to simulate LRU
• one bit per page
• bit is set when page is unfixed
• when replacing, replace pages with unset bit
• set bits are cleared during the process
• strategy is called “second chance” or “clock”

Easy to implement, but a bit crude.



23 / 36

The Classical Architecture Storage

Buffer Replacement - 2Q

Maintain not one queue but two

• many pages are referenced only once
• some pages are hot and reference frequently
• maintain a separate list for those

1. maintain all pages in FIFO queue
2. when a page is references again that is currently in FIFO, move it into

an LRU queue
3. prefer evicting from FIFO

Hot pages are in LRU, read-once pages in FIFO. Good strategy for common
DBMS operations.



24 / 36

The Classical Architecture Storage

Buffer Replacement - Hints

Application knowledge can help buffer replacement
• 2Q tries to recognize read-once pages
• these occur when scanning over data
• but the DBMS knows this anyway!
• it could therefore give hints when unfixing
• e.g., will-need, or will-not-need (changes placement in queue)



25 / 36

The Classical Architecture Storage

Segments

While page granularity is fine for I/O, it is somewhat unwieldy
• most structures within a DBMS span multiple pages
• relations, indexes, free space management, etc.
• convenient to treat these as one entity
• all DBMS pages are partitioned into sets of pages

Such a set of pages is called a segment.

Conceptually similar to a file or virtual memory.



26 / 36

The Classical Architecture Storage

Segments (2)

A segment offers a virtual address space within the DBMS
• can allocate and release new pages
• can iterate over all pages
• can drop the whole segment
• optionally offers a linear address space

Greatly simplifies the logic of higher layers.



27 / 36

The Classical Architecture Storage

Block Allocation

Catalog Catalog

static file-mapping dynamic extent-mapping dynamic block-mapping

Catalog



28 / 36

The Classical Architecture Storage

Block Allocation

All approaches have pros and cons:
• static file-mapping

I very simple, low overhead
I resizing is difficult

• dynamic block-mapping
I maximum flexibility
I administrative overhead, additional indirection

• dynamic extent-mapping
I can handle growth
I slight overhead

In most cases extent-based mapping is preferable.



29 / 36

The Classical Architecture Storage

Block Allocation (5)

Dynamic extent-mapping:
• grows by adding a new extent
• should grow exponentially (e.g., factor 1.25)
• bounds the number of extents
• reduces both complexity and space consumption
• and helps with sequential I/O!



30 / 36

The Classical Architecture Storage

Segment Types

Segments can be classified into types
• private vs. public
• permanent vs. temporary
• automatic vs. manual
• with recovery vs. without recovery

Differ in complexity and required effort.



31 / 36

The Classical Architecture Storage

Standard Segments
Most DBMS will need at least two low-level segments:

• segment inventory
I keeps track of all pages allocated to segments
I keeps extent lists or page tables or ...

• free space inventory
I keeps track of free pages
I maintains bitmaps or free extents or ...

High-level segments built upon these.

Common high-level segments:
• schema
• relations
• temp segments (created and discard on demand)
• ...



32 / 36

The Classical Architecture Storage

Update Strategies

DBMSs have different update behavior

steal ¬ steal
force
¬ force

• usually one prefers steal, ¬ force
• but then pages contain dirty data
• when using update-in-place, dirty data is on on disk
• complicates recovery
• transactions could see dirty data



33 / 36

The Classical Architecture Storage

Shadow Paging

1 2 3 4

5 6 7 8

9 10 11 ...

1 2 8 4 5 7 1 2 3 4 5 6

shadow copy

uses a page table, dirty pages are stored in a shadow copy.



34 / 36

The Classical Architecture Storage

Shadow Paging (2)

Advantages:
• the clean data is always available on disk
• greatly simplified recovery
• can be used for transaction isolation, too

Disadvantages:
• complicates the page access logic
• destroys data locality

Nowadays rarely used in disk-based systems.



35 / 36

The Classical Architecture Storage

Delta Files

Similar idea to shadow paging:
• on change pages are copied to a separate file
• a copied page can be changed in-place
• on commit discard the file, on abort copy back

Can be implemented in two flavors:
• store a clean copy in the delta
• store the dirty data in the delta

Both have pros and cons.



36 / 36

The Classical Architecture Storage

Delta Files (2)

Delta files have some advantages over shadow paging:
• preserve data locality
• no mixture of clean and dirty pages

Disadvantages:
• cause more I/O
• abort (or commit) becomes expensive
• keeping track of delta pages is non-trivial

Still, often preferable over shadow paging.


	The Classical Architecture
	Storage


