
1 / 119

The Classical Architecture Transactions and Recovery

Transactions and Recovery

2 / 119

The Classical Architecture Transactions and Recovery

Transactions and Recovery

DBMSs offer two important concepts:
1. transaction support

I a sequence of operations is combined into one compound operation
I transactions can be execution concurrently with well defined semantics

2. recovery
I the machine/DBMS/user code can crash at an arbitrary point in time,

errors can occur, etc.
I the recovery component ensures that no (committed) data is lost,

instance is consistent

Implementation of both is intermingled, therefore we consider them
together.

3 / 119

The Classical Architecture Transactions and Recovery

Why Transactions?

Transfer money from account A to account B

• read the account balance of A into the variable a: read(A,a);
• reduce the balance by EURO 50,–: a := a − 50;
• write back the new account balance: write(A,a);
• read the account balance of B into the variable b: read(B,b);
• increase the balance by EURO 50,–: b := b + 50;
• write back the new account balance: write(B,b);

Many issues here: crashes, correctness, concurrency, ...

4 / 119

The Classical Architecture Transactions and Recovery

Operations

• begin of transaction (BOT):
I marks the begin of transaction
I in SQL: begin transaction
I often implicit

• commit:
I terminates a successful transaction
I in SQL: commit [transaction]
I all changes are permanent now

• abort:
I terminates an unsuccessful transaction
I in SQL: rollback [transaction]
I undoes all changes performed by the transaction
I might be triggered externally

All transactions either commit or abort.

5 / 119

The Classical Architecture Transactions and Recovery

ACID

Transactions should offer ACID properties:
• Atomicity

I the operations are either executed completely or not at all
• Consistency

I a transaction brings a database instance from one consistent state into
another one

• Isolation
I currently running transactions are not aware of each other

• Durability
I once a transaction commits successfully, its changes are never lost

6 / 119

The Classical Architecture Transactions and Recovery

Transactions and Recovery
The concept of recovery is related to the transaction concept:

• the DBMS must handle a crash at an arbitrary point in time
• first, the DBMS data structures must survive this
• second, transaction guarantees must still hold
• Atomicity

I in-flight transactions must be rolled back at restart
• Consistency

I consistency guarantees must still hold
• Durability

I committed transactions must not be lost, even though data might still
be in transient memory

Sometimes the dependency is mutual
• Isolation

I some DBMS use the recovery component for transaction isolation

7 / 119

The Classical Architecture Transactions and Recovery

Technical Aspects

The logical concept transactions and recovery can be seen under (largely
orthogonal) technical aspects:

• concurrency control
• logging

As we will see, both are relevant for both logical concepts.

8 / 119

The Classical Architecture Transactions and Recovery

Multi User Synchronization

• executing transactions (TA) serialized is safe, but slow
• transactions are frequently delayed (wait for disk, user input, ...)
• in serial execution, would block all other TAs
• concurrent execution is desirable for performance reasons

But: simple concurrent execution causes a number of problems.

9 / 119

The Classical Architecture Transactions and Recovery

Lost Update

T1 T2
bot

r1(x)
↪→ bot

r2(x)
w1(x) ←↩

↪→ w2(x)
commit ←↩

↪→ commit

The result of transaction T1 is lost.

10 / 119

The Classical Architecture Transactions and Recovery

Dirty Read

T1 T2
bot
↪→ bot

r2(x)
w2(x)

r1(x) ←↩
w1(y)

commit
↪→ abort

T1 reads an invalid value x .

11 / 119

The Classical Architecture Transactions and Recovery

Non-Repeatable Read

T1 T2
bot

r1(x)
↪→ bot

w2(x)
commit

r1(x) ←↩
. . .

T1 reads the value x twice, with different results.

12 / 119

The Classical Architecture Transactions and Recovery

Phantom Problem

T1 T2
bot

select count(*)
from R;

↪→ bot
insert into R . . . ;

commit
select count(*) ←↩

from R;
. . .

T1 sees a new tuple during hit second access.

13 / 119

The Classical Architecture Transactions and Recovery

Serial Execution

These problems vanish with serial execution
• a transaction always controls the whole DBMS
• no conflicts possible
• but poor performance

Instead: execute transaction as if they were serial
• if they behave as if they were serial they cause no problems
• concept is called serializable
• requires some careful bookkeeping

14 / 119

The Classical Architecture Transactions and Recovery

Formal Definition of a Transaction

• Possible operations of a TA Ti
I ri(A): read the data item A
I wi(A): write the data item A
I ai : abort
I ci : commit successfully

I bot: begin of transaction (implicit)

15 / 119

The Classical Architecture Transactions and Recovery

Formal Definition of a Transaction (2)

• A TA Ti is a partial order of operations with the order relation <i such
that

I Ti ⊆ {ri [x], wi [x] | x is a data item} ∪{ai , ci}
I ai ∈ Ti , iff ci 6∈ Ti
I Let t be ai or ci . Then for all other operations pi : pi <i ti
I If ri [x] ∈ Ti and wi [x] ∈ Ti , then either ri [x] <i wi [x] or wi [x] <i ri [x]

16 / 119

The Classical Architecture Transactions and Recovery

Example

• transactions are often drawn as directed acyclic graphs (DAGs)

r

r2

2[x]

w2 c2

[y]

[z]

• r2[x] <2 w2[z], w2[z] <2 c2, r2[x] <2 c2, r2[y] <2 w2[z], r2[y] <2 c2

• transitive relationships are contained implicitly

17 / 119

The Classical Architecture Transactions and Recovery

Schedules

• multiple transactions can be executed concurrently
• this is captured by a schedule
• a schedules orders the operations of the TAs relative to each other
• due to the concurrent execution of operations the schedule defines only

partial ordering

18 / 119

The Classical Architecture Transactions and Recovery

Conflicting Operations

• operations that are conflicting must not be executed in parallel
• two operations are in conflict if both operate on the same data item

and at least one of the two is a write operation

Ti
Tj ri [x] wi [x]

rj [x] ¬
wj [x] ¬ ¬

19 / 119

The Classical Architecture Transactions and Recovery

Definition of a Schedule

• Let T = {T1, T2, . . . , Tn} be a set of transaction
• A schedule H over T is a partial order with order relation <H , such

that
I H =

⋃n
i=1 Ti

I <H⊇
⋃n

i=1 <i
I For all conflicting operations p, q ∈ H the following holds: either

p <H q or q <H p

20 / 119

The Classical Architecture Transactions and Recovery

Example

r2[x]→ w2[y]→ w2[z]→ c2
↑ ↑ ↑

H = r3[y]→ w3[x]→ w3[y]→ w3[z]→ c3
↑

r1[x]→ w1[x]→ c1

21 / 119

The Classical Architecture Transactions and Recovery

(Conflict-)Equivalence

• The schedules H and H ′ are (conflict-)equivalent (H ≡ H ′), if:
I both contain the same set of TAs (including the corresponding

operations)
I both order conflicting operations of non-aborted TAs in the same way

• the general idea is that executing conflicting operations in the same
order will produce the same result

22 / 119

The Classical Architecture Transactions and Recovery

Example

r1[x]→ w1[y]→ r2[z]→ c1 → w2[y]→ c2

≡ r1[x]→ r2[z]→ w1[y]→ c1 → w2[y]→ c2

≡ r2[z]→ r1[x]→ w1[y]→ w2[y]→ c2 → c1

6≡ r2[z]→ r1[x]→ w2[y]→ w1[y]→ c2 → c1

23 / 119

The Classical Architecture Transactions and Recovery

Serializability

• serial schedules are safe, therefore we are interested in schedules with
similar properties

• in particular we want schedules that are equivalent to a serial schedule
• such schedules are called serializable

24 / 119

The Classical Architecture Transactions and Recovery

Serializability (2)

• Definition
I The committed projections C(H) of a schedule H contains only the

committed TAs
I A schedule H is serializable, if ∃Hs such that Hs is serial and

C(H) ≡ Hs .

25 / 119

The Classical Architecture Transactions and Recovery

Serializability (3)

• How to check for serializability?
• A schedule H is serializable if and only if the serializability graph

SG(H) is acyclic.

26 / 119

The Classical Architecture Transactions and Recovery

Serializability Graph

• The serializability graph SG(H) of a schedule H = {T1, . . . , Tn} is a
directed graph with the following properties

I the nodes are formed by the committed transactions from H
I two TAs Ti and Tj are connected by an edge from Ti to Tj if there exist

two operations pi ∈ Ti , qj ∈ Th such that pi and qj are in conflict and
pi <H qj .

27 / 119

The Classical Architecture Transactions and Recovery

Example

• Schedule H

H = w1[x]→ w1[y]→ c1 → r2[x]→ r3[y]→ w2[x]→ c2 → w3[y]→ c3

• SG(H)

T2
↗

SG(H) = T1
↘

T3

28 / 119

The Classical Architecture Transactions and Recovery

Example (2)

• H is serializable
• equivalent serial schedules

H1
s = T1 | T2 | T3

H2
s = T1 | T3 | T2

H ≡ H1
s ≡ H2

s

29 / 119

The Classical Architecture Transactions and Recovery

Example (3)

r1[x] → w1[x] → w1[y] → c1
↑ ↑

H = ↙ r2[x] → w2[y] → c2
↓

r3[x] → w3[x] → c3

T3
↗

SG(H) = T2 ↑
↘

T1

30 / 119

The Classical Architecture Transactions and Recovery

Example (4)

• H is serializable
• equivalent serial schedules

H1
s = T2 | T1 | T3

H ≡ H1
s

31 / 119

The Classical Architecture Transactions and Recovery

Example (5)

w1[x] → w1[y] → c1
H = ↑ ↓

r2[x] → w2[y] → c2

SG(H) = T1 � T2

• H is not serializable

32 / 119

The Classical Architecture Transactions and Recovery

Additional Properties of a Schedule

• Besides serializability, other properties are desirable, too:
I recoverability
I avoiding cascading aborts: ACA
I strictness

Recoverability is required for correctness, the others are more nice to have
(but are crucial for some implementations).

33 / 119

The Classical Architecture Transactions and Recovery

Additional Properties of a Schedule (2)

• Before looking at more properties, we define the reads-from relationship
• A TA Ti read (data item x) from TA Tj , if

I wj [x] < ri [x]
I aj 6< ri [x]
I if ∃wk [x] such that wj [x] < wk [x] < ri [x], then ak < ri [x]

• a TA can read from itself

34 / 119

The Classical Architecture Transactions and Recovery

Recoverability

• A schedule is recoverable, if
I Whenever TA Ti reads from another TA Tj (i 6= j) and ci ∈ H, then

cj < ci

• the TAs must adhere to a certain commit order
• non-recoverable schedules may cause problems with C and/or D of the

ACID properties

35 / 119

The Classical Architecture Transactions and Recovery

Recoverability (2)

H = w1[x] r2[x] w2[y] c2 a1

• H is not recoverable
• this has some unfortunate consequences:

I if we keep the updates from T2 then the data is inconsistent (T2 has
read data from an aborted transaction)

I if we undo T2, the we change committed data

36 / 119

The Classical Architecture Transactions and Recovery

Cascading Aborts

step T1 T2 T3 T4 T5
0. · · ·
1. w1[x]
2. r2[x]
3. w2[y]
4. r3[y]
5. w3[z]
6. r4[z]
7. w4[v]
8. r5[v]
9. a1 (abort)

37 / 119

The Classical Architecture Transactions and Recovery

Cascading Aborts (2)

• A schdule avoids cascading aborts, if the following holds
I whenever a TA Ti reads from another TA Tj (i 6= j), then cj < ri [x]

• We must only read from transactions that have committed already.

38 / 119

The Classical Architecture Transactions and Recovery

Strictness

• A schedule is strict, if the following holds
I for any two operations wj [x] < oi [x] (with oi [x] = ri [x] or wi [x]) either

aj < oi [x] or cj < oi [x]

• We must only read from committed transactions, and only overwrite
changes made by committed transactions.

39 / 119

The Classical Architecture Transactions and Recovery

Strictness (2)

• Only strict schedules allow for physical logging during recovery

x = 0
w1[x , 1] before image of T1: 0
x = 1

w2[x , 2] before image of T2: 1
x = 2

a1
c2

When aborting T1 x would incorrectly be set to 0.

40 / 119

The Classical Architecture Transactions and Recovery

Classification of Schedules

serial schedules

SR

ST

ACA

RC

all schedules

H H H H H

H

H

H

H

1 2 3 4 5

6

7

8

9

SR: serializable, RC: recoverable, ACA: avoids cascading aborts, ST: strict

41 / 119

The Classical Architecture Transactions and Recovery

Scheduler

• the scheduler orders incoming operations such that the resulting
schedule is serializable and recoverable.

• options:
I execute (immediately)
I reject
I delay

• two main classes of strategies:
I pessimistic
I optimistic

42 / 119

The Classical Architecture Transactions and Recovery

Pessimistic Scheduler

• scheduler delays incoming operations
• for concurrent operations, the scheduler picks a safe execution order
• most prominent example: lock-based scheduler (very common)

43 / 119

The Classical Architecture Transactions and Recovery

Optimistic Scheduler

• scheduler executes incoming operations as quickly as possible
• might have to rollback later
• most prominent example: time-stamp based scheduler

44 / 119

The Classical Architecture Transactions and Recovery

Lock-based Scheduling

• The main idea is simple:
I each data item has an associated lock
I before a TA Ti accesses a data item, it must acquire the associated lock
I if another TA Tj holds the lock, Ti has to wait until Tj releases the lock
I only one TA may hold a lock (and access the corresponding data item)

• how to guarantee serializability?

45 / 119

The Classical Architecture Transactions and Recovery

Two-Phase Locking

• Abbreviated as 2PL
• Two lock modes:

I S (shared, read lock)
I X (exclusive, write lock)
I compatibility matrix:

held lock
acquired lock none S X

S
√ √

–
X

√
– –

46 / 119

The Classical Architecture Transactions and Recovery

Definition

• before accessing a data item a TA must acquire the corresponding lock
• a TA must not request a lock that it already holds
• if a lock cannot be granted immediately, the TA is put into a wait

queue
• a TA most not acquire new locks once it has released a lock (two

phases)
• at commit (or abort) all held locks must be released

47 / 119

The Classical Architecture Transactions and Recovery

Two Phases

#locks

shrinkinggrowing time

• growing phase: locks are acquired, but not released
• shrinking phase: locks are released, but not acquired

48 / 119

The Classical Architecture Transactions and Recovery

Concurrency with 2PL

Schritt T1 T2 remarks
1. BOT
2. lockX[x]
3. r [x]
4. w [x]
5. BOT
6. lockS[x] T2 has to wait
7. lockX[y]
8. r [y]
9. unlockX[x] T2 wakes up
10. r [x]
11. lockS[y] T2 has to wait
12. w [y]
13. unlockX[y] T2 wakes up
14. r [y]
15. commit
16. unlockS[x]
17. unlockS[y]
18. commit

49 / 119

The Classical Architecture Transactions and Recovery

Strict 2PL

• 2PL does not avoid cascading aborts
• extension to strict 2PL:

I all locks must be held until the end of transaction
I avoids cascading aborts (the schedule is even strict)

50 / 119

The Classical Architecture Transactions and Recovery

Strict 2PL (2)

EOT

growing

#locks

time

51 / 119

The Classical Architecture Transactions and Recovery

Lock Manager
locks are typically organized in a hash table

hash table T1 T2 T3

52 / 119

The Classical Architecture Transactions and Recovery

Lock Manager (2)

Traditional architecture:

• one mutex per lock chain
• within the lock, separate locking/waiting mechanism
• syncing chain mutex/lock latch needs some care to maximize

concurrency
• lock includes ownership and lock mode information

Separate per-transaction chaining
• needed for EOT
• no latching required
• but: can only be embedded easily for exclusive locks
• in general: keep the list external

53 / 119

The Classical Architecture Transactions and Recovery

Lock Manager (3)

One problem: EOT

• all locks have to be released
• lock list is available
• but puts a lot of stress on the lock manager
• chains may be scanned and locked repeatedly
• one option: lazy removal of lock entries
• allows for EOT without locking the chains

54 / 119

The Classical Architecture Transactions and Recovery

Reducing the Lock Size

Locks a relatively expensive
• typically 64-256 bytes per lock
• thousands, potentially millions of locks
• space utilization becomes a problem
• commercial DBMS limit the amounts of locks

One solution: use less locks
• space/granularity trade-off
• leads to MGL (as we will see)
• may cause unnecessary aborts

Other option: reduce the size of locks

55 / 119

The Classical Architecture Transactions and Recovery

Reducing the Lock Size (2)

• standard locks contain a wait mechanism
• but when we use strict 2PL, we wait for transactions anyway
• it is sufficient to contain the owner in the lock
• we always wait for the owner
• shared locks are a bit problematic (requires some effort)

64 bit key 32 bit owner 32 bit status

• status include lock mode, pending writes, etc.
• concurrently held require some care (linked list, spurious wakeups, etc.)
• but that is fine if the lists are short

56 / 119

The Classical Architecture Transactions and Recovery

Deadlocks

• Example:

T1 T2
bot

lockX1(a)
w1(a)

↪→ bot
lockS2(b)

r2(b)
lockX1(b) ←↩

↪→ lockS2(a)

57 / 119

The Classical Architecture Transactions and Recovery

Deadlock Detection

• no TA should have to wait “forever”
• one strategy to avoid deadlocks are time-outs

I finding the right time-out is difficult

• a precise method analyzes the waits-for graph
I TAs form node, edges are induced by waits-for relations
I if the graph is cyclic we have a deadlock

58 / 119

The Classical Architecture Transactions and Recovery

Waits-for graph

• Example

����
T4 ����

T3

T2����
T1����

�
?

-

6 ����
T5

PP
PP

PPi

��
��

��1

• the waits-for graph is cyclic, i.e., we have a deadlock
• we can break the cycle by aborting T2 or T3

59 / 119

The Classical Architecture Transactions and Recovery

Implementing Deadlock Detection

• timeouts are simple, fast, and crude
• cycle detection is precise but expensive

One alternative: use a hybrid approach
• use a short timeout
• after the timeout triggered, start the graph analysis
• build the wait-for graph on demand

Keeps the common case fast, deadlock detection is only slightly delayed.

60 / 119

The Classical Architecture Transactions and Recovery

Online Cycle Detection

How to find cycles in a directed graph?
• simple solution: depth-first-search and mark
• we have a cycle if we meet a marked node
• problem: O(n + m)

• executed at every check

Better: use an online algorithm
• remembers information from last checks
• only re-computes if needed

Observation: a graph is acyclic if and only if there exists a topological
ordering.

61 / 119

The Classical Architecture Transactions and Recovery

Online Cycle Detection (2)

• we start with an arbitrary topological ordering <T

• when trying to add a restriction B < A, we perform a check

if B <T A
return true

marker[B]=2
if ¬ dfs(A,B)

for each V ∈ [A,B]
marker[V]=0

return false
shift(A,B)

• dynamically updates the ordering

62 / 119

The Classical Architecture Transactions and Recovery

Online Cycle Detection (3)

Depth-first search for contractions. Bounded by N and L.

dsf(N,L)
marker[N]=1
for each V outgoing from N
if V ≤T L

if marker[V]=2
return false

if marker[V]=0
if ¬ dsf(V ,L)

return false
return true

63 / 119

The Classical Architecture Transactions and Recovery

Online Cycle Detection (4)
Update the ordering

shift(B,A)
marker[B]=0
shift=0
L=<>
for each V ∈ [A,B]

if marker[V]> 0
L=L◦ < V >
shift = shift + 1
marker[V]=0

else
move V shift steps to the left

place the entries in L at B − shift

64 / 119

The Classical Architecture Transactions and Recovery

Multi-Granularity Locking

• (strict) 2PL solves the mentioned isolation problems, except the
phantom problem

• the phantom-problem cannot be solved by standard locks, as we
cannot lock something that does not exist

• we can solve this by using hierarchical locks (multi-granularity locking:
MGL)

65 / 119

The Classical Architecture Transactions and Recovery

MGL

Database

Segments

Pages

Records

66 / 119

The Classical Architecture Transactions and Recovery

Additional Lock Modes for MGL

• S (shared): read only
• X (exclusive): read/write
• IS (intention share): intended reads further down
• IX (intention exclusive): intended writes further down the hierarchy

67 / 119

The Classical Architecture Transactions and Recovery

Compatibility Matrix

current lock
requested none S X IS IX

S
√ √

–
√

–
X

√
– – – –

IS
√ √

–
√ √

IX
√

– –
√ √

68 / 119

The Classical Architecture Transactions and Recovery

Protocol

• Locks are acquired top-down
I for a S or IS lock all ancestors must be locked in IS or IX mode
I for a X or IX lock all ancestors must be locked in IX mode

• locks are released bottom-up (i.e., only if no locks on descendants
remain)

69 / 119

The Classical Architecture Transactions and Recovery

Example

s6s5s4s3s2s1

p3p2p1

a2a1

D

(T3, X)

(T2, S)

(T2, IS)

(T1, X)

(T1, IX)

(T1, IX)

(T3, IX)

(T2, IS)
Database

Segments

Pages

Records

70 / 119

The Classical Architecture Transactions and Recovery

Example (2)

D

a1 a2

p1 p2 p3

s1 s2 s3 s4 s5 s6

(T5, S)

(T5, IS)

(T5, IS)

(T5, IS)

(T4, X)

(T4, IX)

(T4, IX)

(T4, IX)

Records

Pages

Segments

Database
(T2, IS)

(T3, IX)

(T1, IX)

(T1, IX)

(T1, X)

(T2, IS)

(T2, S)

(T3, X)

71 / 119

The Classical Architecture Transactions and Recovery

Example (3)

• TAs T4 and T5 are blocked
• we have no deadlock here, but deadlocks are possible with MGL, too.

72 / 119

The Classical Architecture Transactions and Recovery

Using MGL for Lock Management

Another important use for MGL: lock management
• most DBMSs cannot cope with a huge number of locks
• usually an upper bound on the number of locks
• but MGL can reduce the load
• we can reduce the locks by locking higher hierarchy levels
• and then release the descendant locks
• allows for scaling the number of locks

But: can easily lead to deadlocks/aborted transactions.

73 / 119

The Classical Architecture Transactions and Recovery

Preventing Phantom Problems without MGL

Another way to prevent the phantom problem: add a lock for the “next”
tuple

• adds a lock for the “next” pseudo-tuple
• non-PK scans lock this tuple shared
• insert operations lock it exclusive
• prevents phantoms

But: we may want concurrent inserts
• another lock mode just for inserts
• if the TA scans+inserts, we really want exclusive
• gets a bit tricky
• but can be solved

74 / 119

The Classical Architecture Transactions and Recovery

Timestamp Based Approaches

• timestamp based synchronization is an alternative to locking
• each TA is assigned a unique timestamp
• each operation of the TA is uses this timestamp

Assignment of timestamps varies (eager, lazy, ...), the simplest case is order
by BOT.

75 / 119

The Classical Architecture Transactions and Recovery

Timestamps

• the scheduler uses the timestamps to order conflicting operations
I assume that pi [x] and qj [x] are conflicting operations
I pi [x] is executed before qj [x], iif the timestamp of Ti is older than the

timestamp ofTj

76 / 119

The Classical Architecture Transactions and Recovery

Timestamps (2)

• the scheduler annotates each data item x with the timestamp of the
last operations on x

• timestamps are stored separately for each type of operation q:
max-q-scheduled(x)

• when the scheduler tries to execute an operator p, the timestamp of p
is compared to all max-q-scheduled(x) that conflict with p

• if the timestamp of p is older than any max-q-scheduled(x) the
operations is rejected (and the TA aborted)

• otherwise p is executed and max-p-scheduled(x) is updated

77 / 119

The Classical Architecture Transactions and Recovery

Commit Order

• using the basic timestamp approach might produce non-recoverable
schedles

• we can guarantee recoverability by commiting TAs in timestamp order
• the commit of a TA Ti is delayed as long as transaction from which Ti

has read are still active.

Ideally, timestamps are given out in commit order
• hard to know beforehand
• one alternative: transaction reordering

78 / 119

The Classical Architecture Transactions and Recovery

Limitations

Timestamps are used only relatively rarely

• does not avoid the phantom problem
• aborts TAs if there is any indication of problems
• every read operations is implicitly a write (updating the timestamps)

But it also has some strength
• can synchronize an arbitrary number of items (unlike locks)
• easy to distribute/parallelize

Might become more attractive considering current hardware trends.

79 / 119

The Classical Architecture Transactions and Recovery

Snapshot Isolation

• the DBMS has to keep track of all updates performed by a TA
• needed to undo a TA
• this information is usually available even after a TA committed
• therefore the DBMS can (conceptually) remove the effect of any TA

This can be used to isolate transaction:
• at BOT, the TA is assigned a timepoint T
• all committed changes before are visible
• all changes after T are removed from the data view
• conceptually produces a snapshot of the data

80 / 119

The Classical Architecture Transactions and Recovery

Snapshot Isolation (2)

How to implement SI?
• makes use of the transaction log
• every page contains the LSN
• indicates the last change
• pages with old LSN can be read safely
• for pages with newer LSN the log is checked to eliminate recent

changes

81 / 119

The Classical Architecture Transactions and Recovery

Snapshot Isolation (3)

Snapshot isolation has some very nice properties:
• no need for read locks (which could be millions)
• read operations never wait
• serializability (but see below)

Limitations:
• only safe for read-only transactions!
• a read-write transaction must not use snapshot isolation if the schedule

has to be serializable
• still, many systems use snapshot isolation even for r/w TAs

82 / 119

The Classical Architecture Transactions and Recovery

Recovery

• a DBMS must not lose any data in case of a system crash
• main mechanisms of recovery:

I database snapshots (backups)
I log files

83 / 119

The Classical Architecture Transactions and Recovery

Recovery (2)

• a database snapshot is a copy of the database at a certain point in time
• the log file is a protocol of all changes performed in the database

instance
• obviously the main data, the database snapshots, and the log-files

should not be kept on the same machine...

84 / 119

The Classical Architecture Transactions and Recovery

System Failure

{T i ,T j ,T k}

backup

restore

rollforward

State 1

Snapshot

State 1

State 2

State 2

Log File

(lost)

85 / 119

The Classical Architecture Transactions and Recovery

Main Memory Loss

i{T } }{T j

restart

State 1 State 2 State ?

Log File State 2+

• problem: some TAs in {Tj} where still active, some committed already
• restart reconstructs state 2 + all changes by comitted TAs in {Tj}

86 / 119

The Classical Architecture Transactions and Recovery

Aborting a Transaction

• log files can also be used to undo the changes performed by an aborted
TA

• the functionality is needed anyway (system crash)
• can be used for “normal” aborts, too

We now look more closely at the implementation.

87 / 119

The Classical Architecture Transactions and Recovery

Classification of Failures

• local failure within a non-committed transaction
I effect of TA must undone
I R1 recovery

• failure with loss of main memory
I all committed TAs must be preserved (R2 recovery)
I all non-committed TAs must be rolled back (R3 recovery)

• failure with loss of external memory
I R4 recovery

88 / 119

The Classical Architecture Transactions and Recovery

Storage Hierarchy

DBMS Buffer

C'

D
A'

.

.

.

write

read

C

B

PB

PC

D
A'

PA

External Memory

89 / 119

The Classical Architecture Transactions and Recovery

Storage Hierarchy (2)

• Replacement strategies for buffer pages
I ¬steal : pages that have been modified by active transactions must not

be replaces
I steal : any non-fixed pages can be replaced if new pages have to be read

in

90 / 119

The Classical Architecture Transactions and Recovery

Storage Hierarchy (3)

• write strategies for committed TAs
I force strategy: changes are written to disk when a TA commits
I ¬force strategy: changed pages may remain in the buffer and are written

back at some later point in time

91 / 119

The Classical Architecture Transactions and Recovery

Effects on Recovery

force ¬force
• no redo • redo¬steal • no undo • no undo
• no redo • redosteal • undo • undo

92 / 119

The Classical Architecture Transactions and Recovery

Update Strategies

• Update in Place
I each page corresponds to one fixed position on disk
I the old state is overwritten

• twin-block approach
P0

A P1
A P0

B P1
B P0

C P1
C
· · ·

• shadow pages
I only changed pages are replicated
I less redundancy than with the twin-block approach

93 / 119

The Classical Architecture Transactions and Recovery

System Configuration

In the following we assume a system with the following configuration

• steal
• ¬force
• update-in-place
• fine-grained locking

94 / 119

The Classical Architecture Transactions and Recovery

ARIES

• The ARIES protocol is a very popular recovery protocol for DBMSs
• The log file contains:

I Redo Information: contains all information necessary to re-apply changes
I Undo Information: contains all information necessary to undo changes

95 / 119

The Classical Architecture Transactions and Recovery

Writing the Log

Log-

Archive

Log-File

DB-

ArchivDatabase

...

.

.

.

APnAP1

DBMS

Buffer
Database-

Buffer
Log-

Code
DBMS-

• The log information stored written two times
I log file for fast access: R1, R2, and R3 recovery
I log archive: R4 recovery

96 / 119

The Classical Architecture Transactions and Recovery

Writing the Log (2)

• organization of the log ring-buffer:

Log-File

Archive

Log-
write backinsert #41

#40

#30

#10

#20

97 / 119

The Classical Architecture Transactions and Recovery

Writing the Log (3)

• Write Ahead Log Principle
I before a transaction is committed, all corresponding log entries must

have been written to disk
I before a modified page is written back to disk, all log entries involving

this page must have been written to disk

• this is called forcing the log

Required for Durability.

98 / 119

The Classical Architecture Transactions and Recovery

Writing the Log (4)

Some care is needed when writing the log to disk
• disks are not byte addressable
• larger chunks, usually 512 bytes
• remember, the system may crash at any time
• partial writes to the last block are dangerous
• might require additional padding when forcing the log
• related problem: partial page writes

Some of these issues can be solved by hardware.

99 / 119

The Classical Architecture Transactions and Recovery

Restart after Failure

T2

T1

t3t1 t2 time

crash

• TAs like T1 are winner transactions: they must be replayed completely
• TAs like T2 are loser transactions: they must be undone

100 / 119

The Classical Architecture Transactions and Recovery

Restart Phases

• Analysis:
I determine the winner set of transactions of type T1
I determine the loser set of transactions of type T2.

• Repeating History :
I all operations contained in the log are applied to the database instance

in the original order
• Undo of Loser Transactions:

I the operations of loser transactions are undone in the database instance
in reverse order

101 / 119

The Classical Architecture Transactions and Recovery

Restart Phases (2)

3. Undo of all changes from Loser transactions

1. Analysis

2. Redo of all changes (Winner and Loser)

102 / 119

The Classical Architecture Transactions and Recovery

Structure of Log Entries

[LSN,TA,PageID,Redo,Undo,PrevLSN]

• Redo:
I physical logging: after image
I logical logging: code that constructs the after image from the before

image

• Undo:
I physical logging: before image
I logical logging: code that constructs the before image from the after

image

103 / 119

The Classical Architecture Transactions and Recovery

Structure of Log Entries (2)

• LSN (Log Sequence Number),
I a unique number identifying a log entry
I LSNs must grow monotonically
I allows for determining the chronological order of log entries
I typical choice: offset within log file (i.e., implicit)

• TA
I transaction ID of the transaction that performed the change

104 / 119

The Classical Architecture Transactions and Recovery

Structure of Log Entries (3)

• PageID
I the ID of the page where the update was performed
I if a change affects multiple pages, multiple log records must be

generated
• PrevLSN,

I pointer to the previous log entry of the corresponding transactions
I needed for performance reasons

Note: often there is a certain asymmetry: physical redo (one page), logical
undo (multiple pages)

105 / 119

The Classical Architecture Transactions and Recovery

Example

T1 T2 Log
[LSN,TA,PageID,Redo,Undo,PrevLSN]

1. BOT [#1, T1,BOT, 0]
2. r(A, a1)
3. BOT [#2, T2, BOT, 0]
4. r(C , c2)
5. a1 := a1 − 50
6. w(A, a1) [#3, T1, PA, A–=50, A+=50,#1]
7. c2 := c2 + 100
8. w(C , c2) [#4, T2, PC , C+=100, C–=100,#2]
9. r(B, b1)
10. b1 := b1 + 50
11. w(B, b1) [#5, T1, PB , B+=50, B–=50,#3]
12. commit [#6, T1, commit, #5]
13. r(A, a2)
14. a2 := a2 − 100
15. w(A, a2) [#7, T2, PA, A–=100, A+=100,#4]
16. commit [#8, T2, commit, #7]

106 / 119

The Classical Architecture Transactions and Recovery

The Phases - Analysis

• the log contains BOT, commit, and abort entries
• the log is scanned sequentially to identify all TAs
• when a commit is seen, the TA is a winner
• when a abort is seen, the TA is a loser
• TAs that neither commit nor abort are implicitly loser

Winner have to be preserved, loser have to be undone

107 / 119

The Classical Architecture Transactions and Recovery

The Phases - Redo
Redo brings the DB into a consistent state

• some changes might still be in main memory at the crash (6 force)
• changes can be incomplete (e.g., B-tree split)
• but the log contains everything

Redo is done by one forward pass
• all log entries contain the affected page
• the pages contain LSN entries
• if the LSN of the page is less than the LSN of the entry, the operation

must be applied
• the LSN is updated afterwards!
• allows for identifying the current state

Afterwards the DB has a known state.

108 / 119

The Classical Architecture Transactions and Recovery

The Phases - Undo

Eliminates all changes by loser transactions.
• during analysis, DBMS remembers last LSN of each transaction
• transactions that aborted on their own can be ignored

(no “last operation”, all undone)
• active TAs have to be rolled back

Log is read backwards
• lastLSN pointers are used for skipping
• all encountered operations are undone
• produces new log entries (redo the undo)

109 / 119

The Classical Architecture Transactions and Recovery

Idempotent Restart

undo(undo(· · · (undo(a))· · ·)) = undo(a)
redo(redo(· · · (redo(a))· · ·)) = redo(a)

T2

T1

#7#6#5#4#3#2#1

110 / 119

The Classical Architecture Transactions and Recovery

Idempotent Restart (2)

#2

UndoRedo

UndoNextLSN

#2'#4'#7'#7#6#5#4#3#1

• CLRs (compensating log records) for undone changes
• #7’ is a CLR for #7
• #4’ is a CLR for #4

111 / 119

The Classical Architecture Transactions and Recovery

Log Entries after Restart

[#1, T1, BOT, 0]
[#2, T2, BOT, 0]

[#3, T1, PA, A–=50, A+=50,#1]
[#4, T2, PC , C+=100, C–=100,#2]
[#5, T1, PB, B+=50, B–=50,#3]

[#6, T1, commit,#5]
[#7, T2, PA, A–=100, A+=100,#4]
〈#7′, T2, PA, A+=100,#7,#4〉
〈#4′, T2, PC , C–=100,#7′,#2〉

〈#2′, T2,−,−,#4′, 0〉

• CLRs are marked by 〈. . .〉

112 / 119

The Classical Architecture Transactions and Recovery

CLR

• a CLR is structured as follows
I LSN
I TA
I PageID
I Redo information
I PrevLSN
I UndoNxtLSN (pointer to the next operation to undo)

• no undo information (redo only)
• prevLSN/undoNxtLSN could be combined into one

(prevLSN is not really needed)

113 / 119

The Classical Architecture Transactions and Recovery

Partial Rollback

#2 #3 #4#1 #4' #3' #5
...

5

4321
...

Log

Schedule

• Steps 3 and 4 are rolled back
• necessary to implement save points within a TA

114 / 119

The Classical Architecture Transactions and Recovery

Checkpoints

checkpoint Si

finished

checkpoint Si

startetSi-1

checkpoint

T1

T2

T3

T4

crash

time

• used to speed up restart

115 / 119

The Classical Architecture Transactions and Recovery

Checkpoints (2)

• transaction consistent:

Undo

Redo

Analysis

checkpoint

Log

116 / 119

The Classical Architecture Transactions and Recovery

Checkpoints (3)

• action consistent:

MinLSN
Undo

Redo

Analysis

checkpoint

Log

117 / 119

The Classical Architecture Transactions and Recovery

Checkpoints (4)

T3

checkpoint

T1

T2

T3

T4

crash

time

118 / 119

The Classical Architecture Transactions and Recovery

Checkpoints (5)

• fuzzy checkpoints:

MinDirtyPageLSN

MinLSN
Undo

Redo

Analysis

checkpoint

Log

119 / 119

The Classical Architecture Transactions and Recovery

Fuzzy Checkpoints

• modified pages are not forced to disk
• only the page ids are recorded
• Dirty Pages=set of all modified pages
• MinDirtyPageLSN: the minimum LSN whose changes have not been

written to disk yet

	The Classical Architecture
	Transactions and Recovery

