
1 / 38

Efficient Query Processing Algebraic Operators

Algebraic Operators

2 / 38

Efficient Query Processing Algebraic Operators

Algebraic Operators

Queries are translated into relational algebra
• therefore a DBMS must offer implementations for all algebraic

operators
• often more than one implementations
• different implementations are tuned for different usage scenarios

Complexity varies
• a few operators are very simple
• but most are quite complex
• pipelining operators tend to be simple
• pipeline breakers tend to be complex

3 / 38

Efficient Query Processing Algebraic Operators

Table Scan
The most basic operator

• produces all tuples contained in a relation
• conceptually very simple
• implementation complexity varies from simple to complex
• has to navigate the physical representation of the relation
• additional complexity from deferred updates, snapshot isolation, etc.

TableScan::produce()
for each page extent e

for each page p in e
fix p
for each tuple t in p

consumer.consume(t)
unfix p

4 / 38

Efficient Query Processing Algebraic Operators

Selection
A selection σp

• filters out all tuples that do not satisfy p
• a very simple operator
• many systems do not even implement it as separate operator
• instead, piggybacked onto other operators

Select::produce()
input.produce()

Select::consumer(t)
if p(t)

consumer.consume(t)

5 / 38

Efficient Query Processing Algebraic Operators

Map

A map χa:f

• computes a new column by evaluating f
• another very simple operator
• like selections, often piggybacked

Map::produce()
input.produce()

Map::consumer(t)
t ′ = t ◦ [a : f (t)]
consumer.consume(t ′)

6 / 38

Efficient Query Processing Algebraic Operators

Join

A join e1 pe2

• a very complex operator
• one of the most important operators
• several different implementations exist

Candidate implementations depend on the join itself:
1. if e2 depends upon e1, nested loop join must be used

(i.e. dependent join e1 e2)
2. otherwise, if p has the form e1.a = e2.b, any join algorithm can be

used (equi-join)
3. otherwise, either nest loop or blockwise nested loop can be used

7 / 38

Efficient Query Processing Algebraic Operators

Nested-Loop Join
The nested loop join NL

p is the most flexible, but also most simple and
inefficient join

• evaluates the right hand side for every tuple of the left side
• pairwise comparison, suitable for any kind of predicate
• the right hand side is evaluated very frequently

NLJoin::produce()
left.produce()

NLJoin::consumeFromLeft(t)
tL = t
right.produce()

NLJoin::consumeFromRight(t)
t ′ = tL ◦ t
if p(t ′)

consumer.consume(t ′)

8 / 38

Efficient Query Processing Algebraic Operators

Blockwise-Nested-Loop Join

The blockwise nested loop join BNL
p

• loads as many tuples from the left side as possible
• evaluates the right side and joins
• and repeats this with additional chunks from the left side
• like a NL join, suitable for any predicate (but not for)
• greatly reduces the number of passes over the right hand side
• potentially speeds up execution by orders of magnitude

BNLJoin::produce()
clear the tuple buffer
left.produce()
if tuple buffer is not empty

right.produce()

9 / 38

Efficient Query Processing Algebraic Operators

Blockwise-Nested-Loop Join (2)

BNLJoin::consumeFromLeft(t)
if not can materialize t

right.produce()
clear the tuple buffer

materialize t in tuple buffer

BNLJoin::consumeFromRight(t)
for each tL in the tuple buffer

t ′ = tL ◦ t
if p(t ′)

consumer.consumer(t ′)

10 / 38

Efficient Query Processing Algebraic Operators

Sort-Merge Join

The sort-merge join e1
SM
p e2

• assumes that p has the form e1.a = e2.b, that e1 is sorted on a, and
that e2 is sorted on b

• some implementations actually perform the sort, too, but we consider
it as separate operator

• performs a linear pass over the input to find matching entries
• very fast and efficient (after sorting)
• but: only simple for the 1 : N case!

Note: a SM join is simple in the iterator model, but not in the push model
(control flow). We materialize the left hand side here to simplify the code,
which is usually not needed.

11 / 38

Efficient Query Processing Algebraic Operators

Sort-Merge Join (2)

SMJoin::produce()
prepare a temp segment for spooling
left.produce()
IL =first spooled tuple
right.produce()

SMJoin::consumeFromLeft(t)
spool t to temp segment

12 / 38

Efficient Query Processing Algebraic Operators

Sort-Merge Join (3)

SMJoin::consumeFromRight(t)
while (∗IL).a < t.b

advance IL
IB = IL
while (∗IB).a = t.b

consumer.consume((∗IB) ◦ t)
advance IB

• non-standard, as the left hand side is already materialized
• one usually tries to avoid this
• better: parallel scans through both sides
• materialization only if an n : m match is found

13 / 38

Efficient Query Processing Algebraic Operators

Hash-Join

The hash join e1
HJ
p e2

• assumes that p has the form e1.a = e2.b
• builds a hash table from e1, and probes the hash table with e2

• in-memory case and external memory case
• real implementations offer both in one (first in-memory, external

memory when needed)
• we split both cases to simplify the code

HJJoinInMem::produce()
prepare an in-memory hash table
left.produce()
right.produce()

14 / 38

Efficient Query Processing Algebraic Operators

Hash-Join (2)

HJJoinInMem::consumeFromLeft(t)
store t in hash table[t.a]

HJJoinInMem::consumeFromRight(t)
for each tL in hash table[t.b]

if p(tL ◦ t)
consumer.consume(tL ◦ t)

• for the combined case consumeFromLeft would check for overflows
• switch to external memory hash join when memory is full

15 / 38

Efficient Query Processing Algebraic Operators

Hash-Join (3)

HJJoinExternal::produce()
prepare an in-memory spool buffer
prepare a temp segment for spooling
define initial partition boundaries
left.produce()
flush the buffer if needed
repartitionLeft()
right.produce()
flush the buffer if needed
joinPartitions()

• left side and right side are partitioned
• recursive re-partition might be needed
• once partitions fit, partitions can be join in-memory

16 / 38

Efficient Query Processing Algebraic Operators

Hash-Join (4)

HJJoinExternal::consumeFromLeft(t)
if not can spool t to the buffer

sort the buffer by hash values
write entries in corresponding partitions
update partition statistics
empty the buffer

spool t into buffer

• left side is materialized in memory
• when memory is full, data is written to corresponding partitions on disk
• here: sort to produce sequential I/O

17 / 38

Efficient Query Processing Algebraic Operators

Hash-Join (5)

HJJoinExternal::repartitionLeft()
for each partition larger than main memory

if number of different hash values>1
derive finer partition bounds within the partition
load partition piecewise into memory
write out each piece into finer partitions
replace large partition with finer partitions

else
mark the partition as overflow

• breaks large partitions into finer partitions
• until the partition fits into main memory
• overflow partitions are a special case

18 / 38

Efficient Query Processing Algebraic Operators

Hash-Join (6)

HJJoinExternal::consumeFromRight(t)
if not can spool t to the buffer

sort the buffer by hash values
write entries in corresponding partitions
empty the buffer

spool t into buffer

• materializes, just like the left side
• but can use the proper partition boundaries now

19 / 38

Efficient Query Processing Algebraic Operators

Hash-Join (7)

HJJoinExternal::joinPartitions()
for each partition P

if P is an overflow partition
joinPartitionOverflow(P)

else
joinPartition(P)

• partitions are joined pair-wise
• due to the equal join, join partners can only be found in corresponding

partitions
• the overflow case needs some special care

20 / 38

Efficient Query Processing Algebraic Operators

Hash-Join (8)

HJJoinExternal::joinPartition(P)
load P for the left side into a hash table
for each t in the right partition P

for each tL in hash table[t.b]
if p(tL ◦ t)

consumer.consume(tL ◦ t)

• P is known to fit for the left side
• brings it to the in-memory case

21 / 38

Efficient Query Processing Algebraic Operators

Hash-Join (9)

HJJoinExternal::joinPartitionOverflow(P)
for each memory sized chunk of P from left

load the chunk into a hash table
for each t in the right partition P

for each tL in hash table[t.b]
if p(tL ◦ t)

consumer.consume(tL ◦ t)

• partition did not fit (identical values)
• similar to a blockwise-nested-loop join
• but uses a hash-table to speed up finding matches

22 / 38

Efficient Query Processing Algebraic Operators

Singleton Join
A singleton-join is a join e1

1Je2
• where |e1| is guaranteed to be ≤ 1
• relatively common, e.g., after group-by, scalar subqueries, etc.
• nested loop join would work, of course
• but singleton is even simpler (see following slides)

SingletonJoin::produce()
left.produce()
right.produce()

SingletonJoin::consumeFromLeft(t)
tL = t

SingletonJoin::consumeFromRight(t)
if p(tL ◦ t ′)

consumer.consume(tL ◦ t)

23 / 38

Efficient Query Processing Algebraic Operators

Non-Inner Joins

So far we have only consider inner joins. But:

• , , have to produce non-matching tuples, too
• , have to to produce only matching tuples, without multiplicity
• , have to to produce only matching tuples, without multiplicity

Similar mechanism, but requires additional bookkeeping.

24 / 38

Efficient Query Processing Algebraic Operators

Non-Inner Joins (2)

Idea: non-inner joins mark tuples with a join partner

• outer joins: additional pass, produce non-marker tuples with NULL
values

• semi joins: produce only if not marked yet
• anti joins: additional pass, produce only non-marked tuples

Problem: where to store the marker bit?

25 / 38

Efficient Query Processing Algebraic Operators

Non-Inner Joins (3)

Marking the left side is usually simple:
• left tuples in-memory for potential join partners
• reserve a bit in the memory block/hash table/...
• bit can be examined before flushing the memory

Marking the right side is more problematic:
• ok if a right hand tuple is only considered once
• then, store the marker in a register
• but nested loop joins etc. are difficult
• maintain extra data structure (interval compression)

26 / 38

Efficient Query Processing Algebraic Operators

Sort

Sorting is useful for a number of other operations (sm-join, aggregation,
duplicate elimination, etc.)

Basic strategy:
1. load chunks of tuples into memory
2. sort in-memory, write out sorted runs
3. merge sorted runs
4. recurse if needed to handle merge fanout

Implementation varies a bit.

27 / 38

Efficient Query Processing Algebraic Operators

Sort (2)

Sort::produce()
input.produce()
flush memory
merge partitions
for each t in merged partitions

consumer.consume(t)

Sort::consume(t)
if not enough memory to store t

flush memory
materialize t in memory

How to implement flush and merge?

28 / 38

Efficient Query Processing Algebraic Operators

Sort (3)

Easy solution for flushing:
• sort the in-memory tuples using quick sort
• write out all of them, release all memory
• fast sort algorithm, simple

More complex solution:
• use heap sort with replacement selection
• write out only when needed
• produces longer runs
• for sorted input: one run
• variable-sized records are difficult to handle

29 / 38

Efficient Query Processing Algebraic Operators

Sort (4)

Merging is usually performed on the fly:
• read all runs in parallel
• retrieve always the smallest element
• tree of losers, or some other priority queue

Problem: what if the number of runs is too large?
• perform a partial merge
• reduces the number of runs
• repeat until merge is feasible

30 / 38

Efficient Query Processing Algebraic Operators

Group By

Aggregation can be implemented in two ways:

Sort based
• input is sorted by group-by attributes
• all tuples within one group are neighboring
• aggregation is largely trivial

Hash based
• aggregate into hash table
• spill to disk if needed
• merge spilled partitions, similar to hash join partitioning

31 / 38

Efficient Query Processing Algebraic Operators

Group By (2)

InMemoryGroupBy::produce()
initialize an empty hash table
input.produce()
for each group t hash table

consumer.consume(t)

InMemoryGroupBy::consume(t)
if hash table[t|A] exists

update the group hash table[t|A]
else

create a new group in hash table[t|A]

Variable-length aggregates require some care.

32 / 38

Efficient Query Processing Algebraic Operators

Set Operations

The DBMS also has to offer set operations
• union / union all
• intersect / intersect all
• except / except all

Somewhat similar to joins, but have a very specific behavior.

33 / 38

Efficient Query Processing Algebraic Operators

Set Operations (2)

union all

The only trivial set operations
• concatenates both tuple streams
• attribute rename required
• but otherwise nearly no code

34 / 38

Efficient Query Processing Algebraic Operators

Set Operations (3)

union

Like a union, but without duplicates
• can be implemented as union all followed by duplicate elimination
• e1 ∪ e2 ≡ ΓA(e1∪̄e2)

• or: directly write into one hash table
(slightly more efficient, but nearly identical)

35 / 38

Efficient Query Processing Algebraic Operators

Set Operations (4)

interesect

Similar to a semi-join
• e1 ∩ e2 ≈ e1 e2

• only true if e1 is duplicate free
• can be checked during the build phase
• or: use a strategy like for intersect all

36 / 38

Efficient Query Processing Algebraic Operators

Set Operations (5)

interesect all

Intersection with bag semantics
• defined via characteristics functions
• group by sides into one hash table
• count occurrences on left and right side
• intersect result is minimum of both
• standard group-by algorithm (including external memory etc.)
• for in-memory case can prune right side

37 / 38

Efficient Query Processing Algebraic Operators

Set Operations (6)

except

Similar to a anti-join
• e1 \ e2 ≈ e1 e2

• only true if e1 is duplicate free
• can be checked during the build phase
• or: use a strategy like for except all

38 / 38

Efficient Query Processing Algebraic Operators

Set Operations (7)

except all

Set difference with bag semantics
• defined via characteristics functions
• group by sides into one hash table
• count occurrences on left and right side
• except result is max(0, lc − rc)

• standard group-by algorithm (including external memory etc.)
• for in-memory case can prune right side

	The Classical Architecture
	Efficient Query Processing
	Algebraic Operators

