
1 / 25

Transactional Information Systems:

Theory, Algorithms, and

the

Practice of

Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

“

Teamwork is essential. It allows you to blame someone else.

”

(Anonymous)

© 2002 Morgan Kaufmann

ISBN 1

-

55860

-

508

-

8

2 / 25

Part III: Recovery

•

11 Transaction Recovery

•

12 Crash Recovery: Notion of Correctness

•

13 Page

-

Model Crash Recovery Algorithms

•

14 Object

-

Model Crash Recovery Algorithms

•

15 Special Issues of Recovery

•

16 Media Recovery

•

17 Application Recovery

3 / 25

Chapter 15: Special Issues of Recovery

•

15.2 Logical Logging for Indexes and Large Objects

•

15.3 Intra

-

transaction Savepoints

•

15.4 Exploiting Parallelism During Restart

•

15.5 Main

-

Memory Data Servers

•

15.6 Data

-

Sharing Clusters

•

15.7 Lessons Learned

“

Success is a lousy teacher.

”

(Bill Gates)

4 / 25

2

-

Level Logging for Index Operations

log entries for insert

ij

(k, @x)

on B

-

tree path along pages r, n, l, with split of l into l and m:

write

ij1

(l)

write

ij2

(m)

write

ij3

(n)

insert

-

1

ij

(k, @x)

→

writes the original contents of l

twice on the log (undo/redo info for l and m)

5 / 25

Logical Logging for Redo of Index Splits

log only L

1

operation for transaction redo (to save log space) and

rely on careful flush ordering for subtransaction atomicity

possible cases after a crash

(because of arbitrary page flushing):

1) l, m, and n are in old state (none were flushed)

2) l is new, m and n are old

3) m is new, l and n are old

4) n is new, l and m are old

5) l and m are new, n is old

6) l and n are new, m is old

7) m and n are new, l is old

8) l, m, and n are in new state (all were flushed)

must avoid cases 2 and 6 (all other cases are recoverable)

by enforcing flush order m

≺

l

≺

n

in addition, posting (n) could be detached from half

-

split (l and m)

by link technique, so that m

≺

l is sufficient

6 / 25

The Need for Redo and Flush

-

Order Dependencies

time

LSN 100

copy (a, b)

readset: {a}

writeset: {b}

LSN 200

copy (c, a)

readset: {c}

writeset: {a}

redo dependency

page b

written by: 100

page a

written by: 200

flush

-

order

dependency

Problem:

if a were flushed before b and the system crashed in between,

the copy operation with LSN 100 could not be redone

7 / 25

Redo and Flush

-

Order Dependencies

Opportunity:

operations on large objects (BLOBs, stored procedure

execution state) can achieve significant

savings on log space by logical logging

Difficulty:

redo of partially surviving multi

-

page operations

Definition:

There is a

redo dependency

from logged operation f(...) to

logged operation g(...) if

•

f precedes g on the log and

•

there exists page x such that x

∈

readset(f) and x

∈

writeset(g)

Definition:

There is a

flush order dependency

from page y to page z

(i.e., page y must be flushed before page z) if

there are logged operations f and g with

•

y

∈

writeset(f) and z

∈

writeset(g)

•

and a redo dependency from f to g.

8 / 25

Cyclic Flush

-

Order Dependencies

time

LSN 100

copy (a, b)

readset: {a}

writeset: {b}

LSN 300

merge (b, c, a)

readset: {b, c}

writeset: {a}

redo dependencies

page b

written by: 100, 400

page a

written by: 200, 300

flush

-

order

dependencies

LSN 400

merge (a, c, b)

readset: {a, c}

writeset: {b}

LSN 200

copy (c, a)

readset: {c}

writeset: {a}

Need to flush all pages on the cycle atomically

or force physical, full

-

write, log entries (i.e., after

-

images) atomically

9 / 25

Intra

-

Operation Flush

-

Order Dependencies

time

LSN 500

swap (a, b)

readset: {a, b}

writeset: {a, b}

redo dependencies

(read

-

write

dependencies)

page a

written by: 500

page b

written by: 500

flush

-

order

dependencies

LSN 1000

half

-

split (l)

readset: {l}

writeset: {l, m}

page m

written by: 1000

page l

written by: 1000

10 / 25

Chapter 15: Special Issues of Recovery

•

15.2 Logical Logging for Indexes and Large Objects

•

15.3 Intra

-

transaction Savepoints

•

15.4 Exploiting Parallelism During Restart

•

15.5 Main

-

Memory Data Servers

•

15.6 Data

-

Sharing Clusters

•

15.7 Lessons Learned

11 / 25

The Case for Partial Rollbacks

Additional calls during normal operation

(for partial rollbacks to resolve deadlocks or

application

-

defined intra

-

transaction consistency points):

•

save (trans)

↑

s

•

restore (trans, s)

Approach:

savepoints are recorded on the log, and restore creates CLEs

Problem with nested rollbacks:

l

1

(x) w

1

(x) l

1

(y) w

1

(y) w

1

-

1

(y) u

1

(y) l

2

(y) w

2

(y) c

2

l

1

(y) (w

1

-

1

(y)

-

1

w

-

1

(y) w

-

1

(x)

→

not prefix reducible

Problem eliminated with NextUndoSeqNo backward chaining:

l

1

(x) w

1

(x) l

1

(y) w

1

(y) w

1

-

1

(y) u

1

(y) l

2

(y) w

2

(y) c

2

w

-

1

(x)

→

prefix reducible

12 / 25

NextUndoSeqNo Backward Chain

for Nested Rollbacks

log

during

normal

operation

10:

write

(t

i

,a)

NextUndoSeqNo

backward chain

begin

(t

i

)

30:

save

-

point

(t

i

)

20:

write

(t

i

,b)

45:

save

-

point

(t

i

)

40:

write

(t

i

,c)

65:

restore

(t

i

, 45)

50:

write

(t

i

,d)

63:

CLE

(t

i

,e,

60)

70:

write

(t

i

,f)

73:

CLE

(t

i

,f,

70)

74:

CLE

(t

i

,c,

40)

75:

restore

(t

i

, 30)

83:

CLE

(t

i

,b,

20)

crash

first restore

initiated

second restore

initiated

abort

initiated

60:

write

(t

i

,e)

64:

CLE

(t

i

,d,

50)

log

continued

during

restart

84:

CLE

(t

i

,a,

10)

85:

roll

-

back

(t

i

)

...

13 / 25

Savepoint Algorithm

savepoint (transid):

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := savepoint;

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

newlogentry.NextUndoSeqNo :=

ActiveTrans[transid].LastSeqNo;

ActiveTrans[transid].LastSeqNo := newlogentry.LogSeqNo;

LogBuffer += newlogentry;

14 / 25

Restore Algorithm

restore (transid, s):

logentry := ActiveTrans[transid].LastSeqNo;

while logentry is not equal to s do

if logentry.ActionType = write or full

-

write then

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := compensation;

newlogentry.PreviousSeqNo:=ActiveTrans[transid].LastSeqNo;

newlogentry.RedoInfo :=

inverse action of the action in logentry;

newlogentry.NextUndoSeqNo := logentry.PreviousSeqNo;

ActiveTrans[transid].LastSeqNo := newlogentry.LogSeqNo;

LogBuffer += newlogentry;

write (logentry.PageNo) according to logentry.UndoInfo;

logentry := logentry.PreviousSeqNo;

end /*if*/;

if logentry.ActionType = restore then

logentry := logentry.NextUndoSeqNo;

end /*if*/

end /*while*/

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := restore;

newlogentry.TransId := transid;

newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSeqNo;

newlogentry.NextUndoSeqNo := s.NextUndoSeqNo;

LogBuffer += newlogentry;

15 / 25

Savepoints in Nested Transactions

t

1

t

11

t

12

t

111

t

112

t

1121

t

1122

t

121

t

122

t

1221

t

1222

w(a)

w(b)

w(c)

w(d)

w(e)

w(j)

w(f)

w(g)

w(h)

0

savepoints:

1

2

3

4

5

beginnings of active subtransactions are feasible savepoints

16 / 25

Chapter 15: Special Issues of Recovery

•

15.2 Logical Logging for Indexes and Large Objects

•

15.3 Intra

-

transaction Savepoints

•

15.4 Exploiting Parallelism During Restart

•

15.5 Main

-

Memory Data Servers

•

15.6 Data

-

Sharing Clusters

•

15.7 Lessons Learned

17 / 25

Exploiting Parallelism During Restart

•

Parallelize redo

by spawning multiple threads

for different page subsets (driven by DirtyPages list),

assuming physical or physiological log entries

•

Parallelize log scans

by partitioning the stable log

across multiple disks based on hash values of page numbers

•

Parallelize undo

by spawning multiple threads

for different loser transactions

Incremental restart

with

early admission of new transactions right after redo

•

by re

-

acquiring locks of loser transactions (or coarser locks)

during redo of history, or

•

right after log analysis

by allowing access, already during redo, to all non

-

dirty pages p

with p.PageSeqNo < OldestUndoLSN (p)

18 / 25

Chapter 15: Special Issues of Recovery

•

15.2 Logical Logging for Indexes and Large Objects

•

15.3 Intra

-

transaction Savepoints

•

15.4 Exploiting Parallelism During Restart

•

15.5 Main

-

Memory Data Servers

•

15.6 Data

-

Sharing Clusters

•

15.7 Lessons Learned

19 / 25

Considerations for Main

-

Memory Data Servers

Specific opportunities:

•

crash recovery amounts to reloading the database

→

physical (after

-

image) logging attractive

•

eager page flushing in the background

amounts to

“

fuzzy checkpoint

”

•

in

-

memory versioning (with no

-

steal caching)

can eliminate writing undo information to stable log

•

log buffer forcing can be avoided by

“

safe RAM

”

•

incremental, page

-

wise, redo (and undo) on demand

may deviate from chronological order

Main

-

memory databases are particularly attractive for

telecom or financial apps with < 50 GB of data,

fairly uniform workload of short transactions,

and very stringent response time requirements

20 / 25

Chapter 15: Special Issues of Recovery

•

15.2 Logical Logging for Indexes and Large Objects

•

15.3 Intra

-

transaction Savepoints

•

15.4 Exploiting Parallelism During Restart

•

15.5 Main

-

Memory Data Servers

•

15.6 Data

-

Sharing Clusters

•

15.7 Lessons Learned

21 / 25

Architecture of Data

-

Sharing Clusters

Data

-

sharing cluster:

multiple computers (as data servers) with local memory

and shared disks via high

-

speed interconnect

for load sharing, failure isolation, and very high availability

During normal operation:

•

transactions initiated and executed locally

•

pages transferred to local caches on demand (data shipping)

•

coherency control eliminates stale page copies:

•

multiple caches can hold up

-

to

-

date copies read

-

only

•

upon update in one cache, all other caches drop their copies

•

can be combined with page

-

model or object

-

model CC

•

logging to global log on shared disk or

partitioned log with static assignment of server responsibilities or

private logs for each server for perfect scalability

Upon failure of a single server:

failover to surviving servers

22 / 25

Illustration of Data

-

Sharing Cluster

Stable Database

Stable Log

page x

page q

3155

4088

page y

4158

4309

page p

4011

Cache

page x

page q

4299

3155

page p

4215

Server 1

Cache

page q

3155

page p

4215

Server 2

Cache

page q

page y

3155

4309

Server n

...

Stable Log

4215

Stable Log

4299

Interconnect

write(p, ...)

write(x, ...)

4218

4158

write(y, ...)

write(y,

...)

write(x, ...)

4088

write(x, ...)

23 / 25

Recovery with

“

Private

”

Logs

needs page

-

wise globally monotonic sequence numbers,

e.g., upon update to page p (without any extra messages):

p.PageSeqNo := max{p.PageSeqNo, largest local seq no} + 1

surviving server performs crash recovery on behalf of the failed one,

•

with analyis pass on private log of failed seerver to identify losers,

•

scanning and

“

merging

”

all private logs for redo,

possibly with DirtyPages info from the failed server,

(merging can be avoided by flushing before

each page transfer across servers),

•

scanning private log of failed server for undo

recovery from failure of entire cluster needs

analysis passes, merged redo passes, and undo passes

over all private logs

24 / 25

Chapter 15: Special Issues of Recovery

•

15.2 Logical Logging for Indexes and Large Objects

•

15.3 Intra

-

transaction Savepoints

•

15.4 Exploiting Parallelism During Restart

•

15.5 Main

-

Memory Data Servers

•

15.6 Data

-

Sharing Clusters

•

15.7 Lessons Learned

25 / 25

Lessons Learned

•

The redo

-

history algorithms from Chapter 13 and 14

can be extended in a fairly localized and incremental manner.

•

Practically important extensions are:

•

logical log entries for multi

-

page operations

•

as an additional option

•

intra

-

transaction savepoints and partial rollbacks

•

parallelized and incremental restart for higher availability

•

special architectures like

-

main

-

memory data servers

-

for sub

-

second responsiveness and

-

data

-

sharing clusters

-

for very high availability

	Chapter 15

