
1 / 24

Transactional Information Systems:

Theory, Algorithms, and

the

Practice of

Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

“

Teamwork is essential. It allows you to blame someone else.

”

(Anonymous)

© 2002 Morgan Kaufmann

ISBN 1

-

55860

-

508

-

8

2 / 24

Part II: Concurrency Control

•

3 Concurrency Control: Notions of Correctness for the Page Model

•

4 Concurrency Control Algorithms

•

5 Multiversion Concurrency Control

•

6 Concurrency Control on Objects: Notions of Correctness

•

7 Concurrency Control Algorithms on Objects

•

8 Concurrency Control on Relational Databases

•

9 Concurrency Control on Search Structures

•

10 Implementation and Pragmatic Issues

3 / 24

Chapter 5: Multiversion

Concurrency Control

•

5.2 Multiversion Schedules

•

5.3 Multiversion Serializability

•

5.4 Limiting the Number of Versions

•

5.5 Multiversion Concurrency Control Protocols

•

5.6 Lessons Learned

“

A book is a version of the world. If you do not like it, ignore it;

or offer your own version in return.

”

(Salmon Rushdie)

4 / 24

Motivation

Example 5.1:

s =

r

1

(x) w

1

(x)

r

2

(x) w

2

(y)

r

1

(y) w

1

(z) c

1

c

2

→

∉

CSR

but: schedule would be tolerable

if r

1

(y) could read the

old version

y

0

of y

to be consistent with r

1

(x)

→

s would then be equivalent to serial s' = t

1

t

2

4 / 24

Motivation

Example 5.1:

s =

r

1

(x) w

1

(x)

r

2

(x) w

2

(y)

r

1

(y) w

1

(z) c

1

c

2

→

∉

CSR

but: schedule would be tolerable

if r

1

(y) could read the

old version

y

0

of y

to be consistent with r

1

(x)

→

s would then be equivalent to serial s' = t

1

t

2

Approach:

•

each w step creates a new version

•

each r step can choose which version it wants/needs to read

•

versions are transparent to application and

transient (i.e., subject to garbage collection)

5 / 24

Definition 5.1 (Version Function):

Let s be a history with initial transaction t

0

and final transaction t

∞

.

A

version function

for s is a function h which associates with each read step of s

a previous write step on the same data item, and the identity for writes.

Multiversion Schedules

5 / 24

Definition 5.1 (Version Function):

Let s be a history with initial transaction t

0

and final transaction t

∞

.

A

version function

for s is a function h which associates with each read step of s

a previous write step on the same data item, and the identity for writes.

Multiversion Schedules

Definition 5.2 (Multiversion Schedule):

A

multiversion (mv) history

for transactions T ={t

1

, ..., t

n

} is a pair

m=(op(m), <

m

) where <

m

is an order on op(m) and

(1)

op(m) =

∪

i=1..n

h(op(t

i

)) for some version function h,

(2)

for all t

∈

T and all p, q

∈

op(t

i

): p <

t

q

⇒

h(p) <

m

h(q),

(3)

if h(r

j

(x)) = w

j

(x

i

), i

≠

j, then c

i

is in m and c

i

<

m

c

j

.

A

multiversion (mv) schedule

is a prefix of a multiversion history.

Example 5.2:

r

1

(x

0

)

w

1

(x

1

)

r

2

(x

1

) w

2

(y

2

)

r

1

(y

0

) w

1

(z

1

) c

1

c

2

with

h(r

1

(y)) = w

0

(y

0

)

5 / 24

Definition 5.1 (Version Function):

Let s be a history with initial transaction t

0

and final transaction t

∞

.

A

version function

for s is a function h which associates with each read step of s

a previous write step on the same data item, and the identity for writes.

Multiversion Schedules

Definition 5.2 (Multiversion Schedule):

A

multiversion (mv) history

for transactions T ={t

1

, ..., t

n

} is a pair

m=(op(m), <

m

) where <

m

is an order on op(m) and

(1)

op(m) =

∪

i=1..n

h(op(t

i

)) for some version function h,

(2)

for all t

∈

T and all p, q

∈

op(t

i

): p <

t

q

⇒

h(p) <

m

h(q),

(3)

if h(r

j

(x)) = w

j

(x

i

), i

≠

j, then c

i

is in m and c

i

<

m

c

j

.

A

multiversion (mv) schedule

is a prefix of a multiversion history.

Example 5.2:

r

1

(x

0

)

w

1

(x

1

)

r

2

(x

1

) w

2

(y

2

)

r

1

(y

0

) w

1

(z

1

) c

1

c

2

with

h(r

1

(y)) = w

0

(y

0

)

Definition 5.3 (Monoversion Schedule):

A multiversion schedule is a

monoversion schedule

if its version

function maps each read to the last preceding write on the same data item.

Example:

r

1

(x

0

) w

1

(x

1

)

r

2

(x

1

) w

2

(y

2

)

r

1

(y

2

) w

1

(z

1

) c

1

c

2

6 / 24

Chapter 5: Multiversion

Concurrency Control

•

5.2 Multiversion Schedules

•

5.3 Multiversion Serializability

•

5.4 Limiting the Number of Versions

•

5.5 Multiversion Concurrency Control Protocols

•

5.6 Lessons Learned

7 / 24

Definition 5.4 (Reads

-

from Relation):

For mv schedule m the reads

-

from relation of m is

RF(m)

= {(t

i

, x, t

j

) | r

j

(x

i

)

∈

op(m)}.

Multiversion View Serializability

7 / 24

Definition 5.4 (Reads

-

from Relation):

For mv schedule m the reads

-

from relation of m is

RF(m)

= {(t

i

, x, t

j

) | r

j

(x

i

)

∈

op(m)}.

Multiversion View Serializability

Definition 5.5 (View Equivalence):

mv histories m and m' with trans(m)=trans(m') are

view equivalent

,

m

≈

v

m‘

, if RF(m) = RF(m').

7 / 24

Definition 5.4 (Reads

-

from Relation):

For mv schedule m the reads

-

from relation of m is

RF(m)

= {(t

i

, x, t

j

) | r

j

(x

i

)

∈

op(m)}.

Multiversion View Serializability

Definition 5.5 (View Equivalence):

mv histories m and m' with trans(m)=trans(m') are

view equivalent

,

m

≈

v

m‘

, if RF(m) = RF(m').

Definition 5.6 (Multiversion View Serializability):

m is multiversion view serializable if there is a serial monoversion history m'

s.t. m

≈

v

m'.

MVSR

is the class of multiversion view serializable histories.

7 / 24

Definition 5.4 (Reads

-

from Relation):

For mv schedule m the reads

-

from relation of m is

RF(m)

= {(t

i

, x, t

j

) | r

j

(x

i

)

∈

op(m)}.

Multiversion View Serializability

Definition 5.5 (View Equivalence):

mv histories m and m' with trans(m)=trans(m') are

view equivalent

,

m

≈

v

m‘

, if RF(m) = RF(m').

Definition 5.6 (Multiversion View Serializability):

m is multiversion view serializable if there is a serial monoversion history m'

s.t. m

≈

v

m'.

MVSR

is the class of multiversion view serializable histories.

Example 5.5:

m =

w

0

(x

0

) w

0

(y

0

) c

0

r

1

(x

0

)

r

1

(y

0

) w

1

(x

1

) w

1

(y

1

) c

1

r

2

(x

0

) r

2

(y

1

) c

2

Example 5.6:

m =

w

0

(x

0

) w

0

(y

0

) c

0

w

1

(x

1

) c

1

r

2

(x

1

)

r

3

(x

0

) w

3

(x

3

) c

3

w

2

(y

2

) c

2

∉

MVSR

≈

v

t

0

t

3

t

1

t

2

8 / 24

Properties of MVSR

Theorem 5.1:

VSR

⊂

MVSR

Example:

s =

r

1

(x) w

1

(x)

r

2

(x) w

2

(y)

r

1

(y) w

1

(z) c

1

c

2

8 / 24

Properties of MVSR

Theorem 5.1:

VSR

⊂

MVSR

Example:

s =

r

1

(x) w

1

(x)

r

2

(x) w

2

(y)

r

1

(y) w

1

(z) c

1

c

2

Theorem 5.2:

Deciding if a mv history is in MVSR is NP

-

complete.

8 / 24

Properties of MVSR

Theorem 5.1:

VSR

⊂

MVSR

Example:

s =

r

1

(x) w

1

(x)

r

2

(x) w

2

(y)

r

1

(y) w

1

(z) c

1

c

2

Theorem 5.2:

Deciding if a mv history is in MVSR is NP

-

complete.

Theorem 5.3:

The conflict graph of an mv schedule m is a directed graph G(m) with

transactions as nodes and an edge from t

i

to t

j

if r

j

(x

i

)

∈

op(m)

.

For all mv schedules m, m': m

≈

v

m'

⇒

G(m) = G(m').

Example:

m =

w

1

(x

1

)

r

2

(x

0

)

w

1

(y

1

)

r

2

(y

1

)

c

1

c

2

m' =

w

1

(x

1

) w

1

(y

1

) c

1

r

2

(x

1

) r

2

(y

0

) c

2

G(m) = G(m'),

but not

m

≈

v

m'

9 / 24

Testing MVSR

Definition 5.8 (Multiversion Serialization Graph (MVSG)):

A version order for data item x, denoted <<

x

, is a total order among all versions of x.

A

version order

for mv schedule m is the

union of version orders for items written in m.

The

mv serialization graph

for m and a given version order <<,

MVSG (m, <<),

is a graph with transactions as nodes and the following edges:

(i)

all edges of G(m) are in MVSG(m, <<)

(i.e., for r

k

(x

j

) in op(m) there is an edge from t

j

to t

k

)

(ii)

for r

k

(x

j

), w

i

(x

i

) in op(m): if x

i

<< x

j

then there is an edge from t

i

to t

j

(iii)

for r

k

(x

j

), w

i

(x

i

) in op(m): if x

j

<< x

i

then there is an edge from t

k

to t

i

9 / 24

Testing MVSR

Definition 5.8 (Multiversion Serialization Graph (MVSG)):

A version order for data item x, denoted <<

x

, is a total order among all versions of x.

A

version order

for mv schedule m is the

union of version orders for items written in m.

The

mv serialization graph

for m and a given version order <<,

MVSG (m, <<),

is a graph with transactions as nodes and the following edges:

(i)

all edges of G(m) are in MVSG(m, <<)

(i.e., for r

k

(x

j

) in op(m) there is an edge from t

j

to t

k

)

(ii)

for r

k

(x

j

), w

i

(x

i

) in op(m): if x

i

<< x

j

then there is an edge from t

i

to t

j

(iii)

for r

k

(x

j

), w

i

(x

i

) in op(m): if x

j

<< x

i

then there is an edge from t

k

to t

i

Theorem 5.4:

m is in MVSR iff there exists a version order << s.t. MVSG(m, <<) is acyclic.

10 / 24

MVSG Example

Examples 5.7 and 5.8:

m =

w

0

(x

0

) w

0

(y

0

) w

0

(z

0

) c

0

r

1

(x

0

)

r

2

(x

0

) r

2

(z

0

)

r

3

(z

0

)

w

1

(y

1

)

w

2

(x

2

)

w

3

(y

3

) w

3

(z

3

)

c

1

c

2

c

3

r

4

(x

2

) r

4

(y

3

) r

4

(z

3

) c

4

with version order <<:

x

0

<< x

2

y

0

<< y

1

<< y

3

z

0

<< z

3

MVSG(m, <<):

t

0

t

1

t

2

t

3

t

4

10 / 24

MVSG Example

Examples 5.7 and 5.8:

m =

w

0

(x

0

) w

0

(y

0

) w

0

(z

0

) c

0

r

1

(x

0

)

r

2

(x

0

) r

2

(z

0

)

r

3

(z

0

)

w

1

(y

1

)

w

2

(x

2

)

w

3

(y

3

) w

3

(z

3

)

c

1

c

2

c

3

r

4

(x

2

) r

4

(y

3

) r

4

(z

3

) c

4

with version order <<:

x

0

<< x

2

y

0

<< y

1

<< y

3

z

0

<< z

3

MVSG(m, <<):

t

0

t

1

t

2

t

3

t

4

Notice: Testing whether appropriate << exists for given m is

not necessarily polynomial

⇒

NP

-

completeness result remains

11 / 24

Multiversion Conflict Serializability

Definition 5.9 (Multiversion Conflict):

A

multiversion conflict

in m is a pair r

i

(x

j

) and w

k

(x

k

) such that r

i

(x

j

) <

m

w

k

(x

k

).

11 / 24

Multiversion Conflict Serializability

Definition 5.9 (Multiversion Conflict):

A

multiversion conflict

in m is a pair r

i

(x

j

) and w

k

(x

k

) such that r

i

(x

j

) <

m

w

k

(x

k

).

Definition 5.10 (Multiversion Reducibility):

An mv history is

multiversion reducible

if it can be transformed into a

serial monoversion history by exchanging the order of adjacent steps

other than multiversion conflict pairs.

11 / 24

Multiversion Conflict Serializability

Definition 5.9 (Multiversion Conflict):

A

multiversion conflict

in m is a pair r

i

(x

j

) and w

k

(x

k

) such that r

i

(x

j

) <

m

w

k

(x

k

).

Definition 5.10 (Multiversion Reducibility):

An mv history is

multiversion reducible

if it can be transformed into a

serial monoversion history by exchanging the order of adjacent steps

other than multiversion conflict pairs.

Definition 5.11 (Multiversion Conflict Serializability):

An mv history is

multiversion conflict serializable

if there is a

serial monoversion history with the same transactions and

the same (ordering of) multiversion conflict pairs.

MCSR

denotes the class of all multiversion conflict serializable histories.

11 / 24

Multiversion Conflict Serializability

Definition 5.9 (Multiversion Conflict):

A

multiversion conflict

in m is a pair r

i

(x

j

) and w

k

(x

k

) such that r

i

(x

j

) <

m

w

k

(x

k

).

Definition 5.10 (Multiversion Reducibility):

An mv history is

multiversion reducible

if it can be transformed into a

serial monoversion history by exchanging the order of adjacent steps

other than multiversion conflict pairs.

Definition 5.11 (Multiversion Conflict Serializability):

An mv history is

multiversion conflict serializable

if there is a

serial monoversion history with the same transactions and

the same (ordering of) multiversion conflict pairs.

MCSR

denotes the class of all multiversion conflict serializable histories.

Definition 5.12 (Multiversion Conflict Graph):

For an mv schedule m the

multiversion conflict graph

is a graph with

transactions as nodes and an edge from t

i

to t

k

if there are steps

r

i

(x

j

) and w

k

(x

k

) such that r

i

(x

j

) <

m

w

k

(x

k

).

12 / 24

Properties of MCSR

Theorem:

m is in MCSR

⇔

m is multiversion reducible

⇔

m's mv conflict graph is acyclic

12 / 24

Properties of MCSR

Theorem:

m is in MCSR

⇔

m is multiversion reducible

⇔

m's mv conflict graph is acyclic

Theorem 5.6:

MCSR

⊂

MVSR

Example:

m =

w

0

(x

0

) w

0

(y

0

) w

0

(z

0

) c

0

r

2

(y

0

)

r

3

(z

0

) w

3

(x

3

) c

3

r

1

(x

3

) w

1

(y

1

)

c

1

w

2

(x

2

) c

2

r

∞

(x

2

)

r

∞

(y

1

)

r

∞

(z

0

)

c

∞

→

∉

MCSR

→

∈

MVSR

m

≈

v

t

0

t

3

t

2

t

1

t

∞

13 / 24

Chapter 5: Multiversion

Concurrency Control

•

5.2 Multiversion Schedules

•

5.3 Multiversion Serializability

•

5.4 Limiting the Number of Versions

•

5.5

Multiversion Concurrency Control Protocols

•

5.6 Lessons Learned

14 / 24

MVTO Protocol

•

each transaction t

i

is assigned a unique timestamp ts(t

i

)

•

r

i

(x) is mapped to r

i

(x

k

) where x

k

is the version

that carries the largest timestamp

≤

ts(t

i

)

•

w

i

(x) is

•

rejected if there is r

j

(x

k

) with ts(t

k

) < ts(t

i

) < ts(t

j

)

•

mapped into w

i

(x

i

) otherwise

•

c

i

is delayed until c

j

of all transactions t

j

that have written versions read by t

i

Multiversion timestamp ordering (MVTO):

Correctness of MVTO

(i.e., Gen(MVTO)

⊆

MVSR):

x

i

<< x

j

⇔

ts(t

i

) < ts(t

j

)

15 / 24

MVTO Example

t

1

r

1

(x

0

)

r

1

(y

0

)

t

2

r

2

(y

0

)

w

2

(y

2

)

r

2

(x

0

)

w

2

(x

2

)

t

4

r

4

(y

2

)

w

4

(y

4

)

r

4

(x

2

)

w

4

(x

4

)

t

3

r

3

(x

2

)

r

3

(z

0

)

t

5

r

5

(y

2

)

r

5

(z

0

)

abort

15 / 24

MVTO Example

t

1

r

1

(x

0

)

r

1

(y

0

)

t

2

r

2

(y

0

)

w

2

(y

2

)

r

2

(x

0

)

w

2

(x

2

)

t

4

r

4

(y

2

)

w

4

(y

4

)

r

4

(x

2

)

w

4

(x

4

)

t

3

r

3

(x

2

)

r

3

(z

0

)

t

5

r

5

(y

2

)

r

5

(z

0

)

abort

interleaving

impossible w/o

multiple versions

15 / 24

MVTO Example

t

1

r

1

(x

0

)

r

1

(y

0

)

t

2

r

2

(y

0

)

w

2

(y

2

)

r

2

(x

0

)

w

2

(x

2

)

t

4

r

4

(y

2

)

w

4

(y

4

)

r

4

(x

2

)

w

4

(x

4

)

t

3

r

3

(x

2

)

r

3

(z

0

)

t

5

r

5

(y

2

)

r

5

(z

0

)

abort

interleaving

impossible w/o

multiple versions

needs to wait for t

2

to commit

15 / 24

MVTO Example

t

1

r

1

(x

0

)

r

1

(y

0

)

t

2

r

2

(y

0

)

w

2

(y

2

)

r

2

(x

0

)

w

2

(x

2

)

t

4

r

4

(y

2

)

w

4

(y

4

)

r

4

(x

2

)

w

4

(x

4

)

t

3

r

3

(x

2

)

r

3

(z

0

)

t

5

r

5

(y

2

)

r

5

(z

0

)

abort

interleaving

impossible w/o

multiple versions

needs to wait for t

2

to commit

since last write

is too late (in the

presence of t

5

)

16 / 24

Multiversion 2PL (MV2PL) Protocol

•

use write locking to ensure that

at each time there is at most one uncommitted version

•

for t

i

that is not yet issuing its final step:

•

r

i

(x) is mapped to

“

current version

”

(i.e., the most recent committed

version)

or an uncommitted version

•

w

i

(x) is executed only if x is not write

-

locked, otherwise it is blocked

•

t

i

's final step is delayed until after the commit of:

•

all t

j

that have read from a current version of a data item that t

i

has written

•

all t

j

from which t

i

has read

General approach:

16 / 24

Multiversion 2PL (MV2PL) Protocol

•

use write locking to ensure that

at each time there is at most one uncommitted version

•

for t

i

that is not yet issuing its final step:

•

r

i

(x) is mapped to

“

current version

”

(i.e., the most recent committed

version)

or an uncommitted version

•

w

i

(x) is executed only if x is not write

-

locked, otherwise it is blocked

•

t

i

's final step is delayed until after the commit of:

•

all t

j

that have read from a current version of a data item that t

i

has written

•

all t

j

from which t

i

has read

General approach:

Example 5.9:

for input schedule

s =

r

1

(x) w

1

(x)

r

2

(x) w

2

(y)

r

1

(y)

w

2

(x) c

2

w

1

(y) c

1

MV2PL produces the output schedule

r

1

(x

0

) w

1

(x

1

)

r

2

(x

1

) w

2

(y

2

)

r

1

(y

0

) w

1

(y

1

) c

1

w

2

(x

2

) c

2

17 / 24

Specialization: 2V2PL Protocol

•

request

write lock wl

i

(x)

for writing a new uncommitted version

and ensuring that at most one such version exists at any time

•

request

read lock rl

i

(x)

for reading the current version

(i.e., most recent committed version)

•

request

certify lock cl

i

(x)

for final step of t

i

on all data items in t

i

's write set

2

-

Version (before/after image) 2PL:

+

_

_

_

rl

i

(x)

wl

i

(x)

rl

j

(x)

wl

j

(x)

lock

holder

lock requestor

cl

i

(x)

cl

j

(x)

_

_

_

+

+

Correctness of 2V2PL

(i.e., Gen(2V2PL)

⊆

MVSR):

x

i

<< x

j

⇔

f

i

< f

j

(for final

“

certify

”

steps of t

i

, t

j

)

18 / 24

2V2PL Example

Example 5.10:

s =

r

1

(x)

w

2

(y)

r

1

(y) w

1

(x) c

1

r

3

(y) r

3

(z) w

3

(z)

w

2

(x) c

2

w

4

(z) c

4

c

3

18 / 24

2V2PL Example

Example 5.10:

s =

r

1

(x)

w

2

(y)

r

1

(y) w

1

(x) c

1

r

3

(y) r

3

(z) w

3

(z)

w

2

(x) c

2

w

4

(z) c

4

c

3

t

1

r

1

(x

0

)

r

1

(y

0

)

t

2

w

2

(y

2

)

w

1

(x

1

)

t

3

r

3

(y

0

)

w

2

(x

2

)

r

3

(z

0

)

w

3

(z

3

)

t

4

w

4

(z

4

)

c

2

18 / 24

2V2PL Example

Example 5.10:

s =

r

1

(x)

w

2

(y)

r

1

(y) w

1

(x) c

1

r

3

(y) r

3

(z) w

3

(z)

w

2

(x) c

2

w

4

(z) c

4

c

3

t

1

r

1

(x

0

)

r

1

(y

0

)

t

2

w

2

(y

2

)

w

1

(x

1

)

t

3

r

3

(y

0

)

w

2

(x

2

)

r

3

(z

0

)

w

3

(z

3

)

t

4

w

4

(z

4

)

c

2

rl

1

(x) r

1

(x

0

)

wl

2

(y) w

2

(y

2

)

rl

1

(y) r

1

(y

0

) wl

1

(x) w

1

(x

1

) cl

1

(x) u

1

c

1

rl

3

(y) r

3

(y

0

) rl

3

(z) r

3

(z

0

)

wl

2

(x) cl

2

(x)

wl

3

(y) w

3

(z

3

) cl

3

(y) u

3

c

3

cl

2

(y) u

2

c

2

wl

4

(z) w

4

(z

4

) cl

4

(z) u

4

c

4

19 / 24

Multiversion Serialization Graph Testing

(MVSGT)

•

r

i

(x) is mapped to r

i

(x

j

) such that

•

there is no path t

j

→

...

→

t

k

→

...

→

t

i

with previous w

k

(x

k

)

(eliminate

“

too old

”

transactions)

•

there is no path t

i

→

...

→

t

j

(eliminate

“

too young

”

transactions)

abort t

i

if no such t

j

exists

Idea:

build version order and MVSG simultaneously (and incrementally)

Protocol rules:

•

upon w

i

(x

i

)

add edges t

j

→

t

i

for all t

j

with previous r

j

(x

k

)

abort t

i

when detecting cycle

•

upon r

i

(x

j

)

add edge t

j

→

t

i

and

edges t

k

→

t

j

or t

i

→

t

k

for all t

k

with previous w

k

(x

k

)

20 / 24

ROMV Protocol

•

each update transactions uses 2PL on both its read and write set

but each write creates a new version and

timestamps it with the transaction's commit time

•

each read

-

only transaction t

i

is timestamped with its begin time

•

r

i

(x) is mapped to r

i

(x

k

) where x

k

is the version

that carries the largest timestamp

≤

ts(t

i

)

(i.e., the most recent committed version as of the begin of t

i

)

Read

-

only Multiversion Protocol (ROMV):

Correctness of ROMV

(i.e., Gen(ROMV)

⊆

MVSR):

x

i

<< x

j

⇔

c

i

< c

j

21 / 24

ROMV Example

t

1

r

1

(x

0

)

r

1

(y

0

)

t

2

r

2

(y

0

)

w

2

(y

2

)

r

2

(x

0

)

w

2

(x

2

)

t

3

r

3

(x

2

)

w

3

(x

3

)

t

4

r

4

(x

0

)

r

4

(z

0

)

t

5

r

5

(x

2

)

r

5

(z

0

)

22 / 24

Chapter 5: Multiversion

Concurrency Control

•

5.2 Multiversion Schedules

•

5.3 Multiversion Serializability

•

5.4 Limiting the Number of Versions

•

5.5 Multiversion Concurrency Control Protocols

•

5.6 Lessons Learned

23 / 24

Lessons Learned

•

Transient and transparent versioning adds a degree of

freedom to concurrency control protocols, making

MVSR considerably more powerful than VSR

•

The most striking benefit is for long read transactions

that execute concurrently with writers.

•

This specific benefit is achieved with relatively simple

protocols like ROMV.

24 / 24

Summary

•

Concurrency control in the page model

allows for many approaches, yet locking

dominates

•

Non

-

locking algorithms may be used in

special situations

•

Multiple versions can help making

concurrency control more flexible

	Chapter 5
	Multiversion Schedules
	Multiversion Serializability
	Multiversion Concurrency Control Protocols
	Lessons Learned

