
1 / 25

Transactional Information Systems:

Theory, Algorithms, and

the

Practice of

Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

“

Teamwork is essential. It allows you to blame someone else.

”

(Anonymous)

© 2002 Morgan Kaufmann

ISBN 1

-

55860

-

508

-

8

2 / 25

Part II: Concurrency Control

•

3 Concurrency Control: Notions of Correctness for the Page Model

•

4 Concurrency Control Algorithms

•

5 Multiversion Concurrency Control

•

6 Concurrency Control on Objects: Notions of Correctness

•

7 Concurrency Control Algorithms on Objects

•

8 Concurrency Control on Relational Databases

•

9 Concurrency Control on Search Structures

•

10 Implementation and Pragmatic Issues

3 / 25

Chapter 10: Implementation and

Pragmatic Issues

•

10.2 Data Structures of a Lock Manager

•

10.3 Multi

-

Granularity Locking and Lock Escalation

•

10.4 Transient Versioning

•

10.5 Nested Transactions for Intra

-

transaction parallelism

•

10.6 Tuning Options

•

10.7 Overload Control

•

10.8 Lessons Learned

“

All theory, my friend, is grey;

but the precious tree of life.

”

(Johann Wolfgang von Goethe)

4 / 25

Organization of Lock Control Blocks

...
...

Hash Table

indexed by

Resource Id

...

Transaction Id

Update Flag

Transaction Status

Number of Locks

LCB Chain

Transaction Control Blocks (TCBs)

...

...

Resource Id

Hash Chain

FirstInQueue

Resource Control Blocks (RCBs)

...

Transaction Id

Resource Id

Lock Mode

Lock Control Blocks (LCBs)

Lock Status

NextInQueue

LCB Chain

...

5 / 25

Chapter 10: Implementation and

Pragmatic Issues

•

10.2 Data Structures of a Lock Manager

•

10.3 Multi

-

Granularity Locking and Lock Escalation

•

10.4 Transient Versioning

•

10.5 Nested Transactions for Intra

-

transaction parallelism

•

10.6 Tuning Options

•

10.7 Overload Control

•

10.8 Lessons Learned

6 / 25

Reconciling Coarse

-

and Fine

-

grained Locking

Problem

:

For reduced overhead, table scans should use coarse locks

Detect conflict of page lock with tablespace lock

Approach:

Set

“

intention locks

”

on coarser granules

Multi

-

granularity locking protocol:

•

A transaction can lock any granule in S or X mode.

•

Before a granule p can be locked in S or X mode, the transaction

needs to hold an IS or IX lock on all coarser granules that contain p.

S X IS IX SIX

S

X

IS

IX

SIX

+

-

+

-

-

-

-

-

-

-

+

-

+ + +

-

-

+ +

-

-

-

+

-

-

Typical policy:

•

use coarse locks for table scans

•

use fine locks otherwise

•

escalate dynamically to coarse locks

when memory usage for LCBs

becomes critical

7 / 25

Chapter 10: Implementation and

Pragmatic Issues

•

10.2 Data Structures of a Lock Manager

•

10.3 Multi

-

Granularity Locking and Lock Escalation

•

10.4 Transient Versioning

•

10.5 Nested Transactions for Intra

-

transaction parallelism

•

10.6 Tuning Options

•

10.7 Overload Control

•

10.8 Lessons Learned

8 / 25

Storage Organization for Transient Versioning

•

update on current data moves old version to version pool

•

read

-

only transactions follow version chains

•

old versions are kept sorted by their successor timestamps

→

garbage collection simply advances begin pointer

Current data

...
...

page 113

page 114

1132 9:37 ...

1135 9:29 ...

1141 9:33

✞

1143 9:34 ...

RID

creation

timestamp

data

fields

pointer to

prior version

Version pool

1132 9:27 ...

deleted

flag

1143 9:20 ...

1141 9:28 ...

1141 9:22 ...

1132 9:25 ...

...

9 / 25

•

10.2 Data Structures of a Lock Manager

•

10.3 Multi

-

Granularity Locking and Lock Escalation

•

10.4 Transient Versioning

•

10.5 Nested Transactions for Intra

-

transaction parallelism

•

10.6 Tuning Options

•

10.7 Overload Control

•

10.8 Lessons Learned

Chapter 10: Implementation and

Pragmatic Issues

10 / 25

Multi

-

threaded Transactions

Example:

t

1

:

t

11

t

12

t

13

t

14

with t

12

and t

13

as parallel threads

t

11

: r(t) r(p) w(p)

/* store new incoming e

-

mail */

t

12

: t

121

t

122

t

123

t

124

with t

122

, t

123

, t

124

as parallel threads

t

121

: r(t) r(s) w(s) /* update folder by subject */

t

122

: r(r) r(n) r(l) w(l) /* update text index for descriptor

1

*/

t

123

: r(r) r(n) r(m) w(m) w(n) /* update text index for descriptor

2

*/

t

124

: r(r) r(n) r(l) w(l) /* update text index for descriptor

3

*/

t

13

: r(t) r(f) w(f) w(g) w(t)

/* update folder by sender */

t

14

: r(t) r(p) w(p) r(g) w(g)

/* assign priority */

r(t)r(p)w(p)

r(t)r(p)w(p)r(g)w(g)

r(t)r(s)w(s)

r(r)r(n)r(l)w(l)

r(r)r(n)r(m)w(m)w(n)

r(r)r(n)r(l)w(l)

r(t)r(f)w(f)w(g)w(t)

11 / 25

Locking for Nested Transactions

2PL protocol for nested transactions:

•

Leaves of a transaction tree acquire locks as needed,

based on 2PL for the duration of the transaction.

•

Upon terminating a thread, all locks held by the thread

are inherited by its parent.

•

A lock request by a thread is granted if no conflicting lock

on the same data item is currently held or

the only conflicting locks are held by ancestors of the thread.

Theorem 10.1:

2PL for nested transactions generates only schedules that

are equivalent to a serial execution of the transactions

where each transaction executes all its sibling sets serially.

12 / 25

Layered Locking with

Intra

-

transaction Parallelism

L

0

L

1

modify(x)

delete

(CityIndex,

"Austin", @x)

insert

(CityIndex,

“Dallas”, @x)

r(p)

w(p)

t

1

t

13

r(r)

r(n)

t

14

r(l)

w(l)

r(r)

r(n)

r(l)

w(l)

search

(CityIndex,

“Austin”)

fetch(x)

r(p)

w(p)

t

12

r(r)

r(n)

t

11

r(l)

t

15

search

(CityIndex,

“Boston")

fetch(y)

t

2

r(r)

r(n)

t

21

r(l)

r(p)

w(p)

t

22

13 / 25

Chapter 10: Implementation and

Pragmatic Issues

•

10.2 Data Structures of a Lock Manager

•

10.3 Multi

-

Granularity Locking and Lock Escalation

•

10.4 Transient Versioning

•

10.5 Nested Transactions for Intra

-

transaction parallelism

•

10.6 Tuning Options

•

10.7 Overload Control

•

10.8 Lessons Learned

14 / 25

Tuning Repertoire

•

Manual locking (or manual preclaiming)

•

Choice of SQL isolation level(s)

•

Application structuring towards short transactions

•

MPL control

15 / 25

Definition 10.1 (Isolation Levels):

•

A schedule s runs under isolation level

read uncommitted

(aka. dirty read or browse mode) if write locks are subject to S2PL.

•

A schedule s runs under isolation

read committed

(aka. cursor stability) if write locks are subject to S2PL and

read locks are held for the duration of an SQL operation.

•

A schedule s runs under isolation level

serializability

if it can be generated by S2PL.

•

A schedule s runs under isolation level

repeatable read

if all anomalies other than phantoms are prevented.

SQL Isolation Levels

Observation:

read committed is susceptible to lost updates

Example:

r

1

(x)

r

2

(x)

w

2

(x) c

2

w

1

(x) c

1

Remark:

A scheduler can use different isolation levels

for different transactions.

16 / 25

Definition 10.2 (Multiversion Read Committed and Snapshot

Isolation Levels):

•

A transaction runs under isolation level

multiversion read

committed

if it reads the most recent committed versions

as of the transaction's begin and uses S2PL for writes.

•

A transaction runs under

snapshot isolation

if it reads the most

recent versions as of the transaction's begin and its write set

is disjoint with the write sets of all concurrent transactions.

Multiversion Isolation Levels

Observation:

snapshot isolation does not guarantee MVSR

Example:

r

1

(x

0

) r

1

(y

0

)

r

2

(x

0

) r

2

(y

0

)

w

1

(x

1

) c

1

w

2

(y

2

) c

2

Possible interpretation:

constraint x + y

≥

0, x

0

= y

0

= 5,

t

1

subtracts 10 from x, t

2

subtracts 10 from y

17 / 25

Application

-

level

“

Optimistic Locking

”

Idea:

strive for short transactions or short lock duration

Approach:

•

aim at two

-

phase structure of transactions:

read phase + short write phase

•

run queries under relaxed isolation level (typically read committed)

•

rewrite program to test for concurrent writes during write phase

Example:

Select Balance,

Counter

Into :b,

:c

From Accounts Where AccountNo = :x

...

compute interests and fees, set b, ...

...

Update Accounts

Set Balance = :b,

Counter = Counter + 1

Where AccountNo =:x And

Counter = :c

avoids lost updates, but cannot guarantee consistency

18 / 25

Data

-

Contention Thrashing
10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

number of active transactions

th
ro

ug
hp

ut
 [t

ra
ns

./s
ec

.]

number of active transactions

m
ea

n
re

sp
on

se
 ti

m
e

[s
ec

.]

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

Unrestricted

multiprogramming level (MPL)

can lead

to performance disaster known as

data

-

contention thrashing

:

•

additional transactions cause superlinear increase of lock waits

•

throughput drops sharply

•

response time approaches infinity

19 / 25

Benefit of MPL Limitation

MPL limit (with 100 users)

m
ea

n
re

sp
on

se
 ti

m
e

[s
ec

.]

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

avoids thrashing, but poses a tricky tuning problem:

•

overly low MPL limit causes long waits in admission queue

•

overly high MPL limit opens up the danger of thrashing

problem is even more difficult for highly heterogeneous workloads

system admin sets

MPL limit

: during load bursts

excessive transactions wait in

transaction admission queue

20 / 25

Chapter 10: Implementation and

Pragmatic Issues

•

10.2 Data Structures of a Lock Manager

•

10.3 Multi

-

Granularity Locking and Lock Escalation

•

10.4 Transient Versioning

•

10.5 Nested Transactions for Intra

-

transaction parallelism

•

10.6 Tuning Options

•

10.7 Overload Control

•

10.8 Lessons Learned

21 / 25

Conflict

-

ratio

-

driven Overload Control

transaction admission

transaction cancellation

transaction

execution

aborted

transactions

committed transactions

arriving transactions

conflict ratio

conflict ratio =

.

#

.

#

trans

running

by

held

locks

trans

all

by

held

locks

critical

conflict ratio

≈

1.3

22 / 25

Conflict

-

ratio

-

driven Overload Control

Algorithm

upon begin request of transaction t:

if conflict ratio < critical conflict ratio

then admit t else put t in admission queue fi

upon lock wait of transaction t:

update conflict ratio

while not (conflict ratio < critical conflict ratio)

among trans. that are blocked and block other trans.

choose trans. v with smallest product

#locks held * #previous restarts

abort v and put v in admission queue od

upon termination of transaction t:

if conflict ratio < critical conflict ratio then

for each transaction q in admission queue do

if (q will be started the first time) or

(q has been a rollback/cancellation victim and

all trans. that q was waiting for are terminated)

then admit q fi od fi

23 / 25

Wait

-

depth Limitation (WDL)

Wait depth of transaction

t

=

⎭

⎬

⎫

⎩

⎨

⎧

=

+

i

t

block

that

ns

transactio

of

depth

wait

if

i

running

is

t

if

}

{

max

1

0

Policy: allow only wait depths

≤

1

Case 1:

t

k1

t

kn

t

k

...

t

i1

t

in

t

i

...

Case 2:

t

k1

t

kn

t

k

...

t

i1

t

in

t

i

...

24 / 25

Chapter 10: Implementation and

Pragmatic Issues

•

10.2 Data Structures of a Lock Manager

•

10.3 Multi

-

Granularity Locking and Lock Escalation

•

10.4 Transient Versioning

•

10.5 Nested Transactions for Intra

-

transaction parallelism

•

10.6 Tuning Options

•

10.7 Overload Control

•

10.8 Lessons Learned

25 / 25

Lessons Learned

•

Locking can be efficiently implemented,

with flexible handling of memory overhead

by means of multi

-

granularity locks

•

Tuning options include

•

choice of isolation levels

•

application

-

level tricks

•

MPL limitation

•

Tuning requires extreme caution to guarantee correctness:

if in doubt, don't do it!

•

Concurrency control is susceptible to data

-

contention thrashing

and needs overload control

	Chapter 10

