Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann ISBN 1-55860-508-8

"Teamwork is essential. It allows you to blame someone else."(Anonymous)

Part II: Concurrency Control

- 3 Concurrency Control: Notions of Correctness for the Page Model
- 4 Concurrency Control Algorithms
- 5 Multiversion Concurrency Control
- 6 Concurrency Control on Objects: Notions of Correctness
- 7 Concurrency Control Algorithms on Objects
- 8 Concurrency Control on Relational Databases
- 9 Concurrency Control on Search Structures
- 10 Implementation and Pragmatic Issues

6 Concurrency Control on Objects: Notions of Correctness

- 6.2 Histories and Schedules
- 6.3 CSR for Flat Object Transactions
- 6.4 Tree Reducibility
- 6.5 Sufficient Conditions for Tree Reducibility
- 6.6 Exploiting State-Based Commutativity
- 6.7 Lessons Learned
"No matter how complicated a problem is, it usually can be reduced to a simple comprehensible form which is often the best solution" (An Wang)
"Every problem has a simple, easy-to-understand, wrong answer." (Anonymous)

Object Model

Definition 2.3 (Object Model Transaction):

A transaction t is a (finite) tree of labeled nodes with

- the transaction identifier as the label of the root node,
- the names and parameters of invoked operations as labels of inner nodes, and
- page-model read/write operations as labels of leaf nodes, along with a partial order < on the leaf nodes such that for all leaf-node operations p and q with p of the form $w(x)$ and q of the form $r(x)$ or $w(x)$ or vice versa, we have $p<q \vee q<p$

Special case: layered transactions
(all leaves have same distance from root)
Derived inner-node ordering: $\mathrm{a}<\mathrm{b}$ if
all leaf-node descendants of a precede all leaf-node descendants of b

Example: DBS Internal Layers

Example: Business Objects

Object-Model Schedules

Definition 6.1 (Object Model History):

For transaction trees $\left\{\mathrm{t}_{\mathrm{l}}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$ a history s is a partially ordered forest ($\mathrm{op}(\mathrm{s}),<_{\mathrm{s}}$) with node set $\mathrm{op}(\mathrm{s})$ and partial order $<_{\mathrm{s}}$ of leaves such that
$\cdot \mathrm{op}(\mathrm{s}) \subseteq \cup_{\mathrm{i}=1 . . \mathrm{n}} \mathrm{op}_{\mathrm{i}} \cup \cup_{\mathrm{i}=1 . \mathrm{n}}\left\{\mathrm{c}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}\right\}$ and $\cup_{\mathrm{i}=1 . . \mathrm{n}} \mathrm{op}_{\mathrm{i}} \subseteq \mathrm{op}(\mathrm{s})$

- for all $\mathrm{t}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \in \mathrm{op}(\mathrm{s}) \Leftrightarrow \mathrm{a}_{\mathrm{i}} \notin \mathrm{op}(\mathrm{s})$
- a_{i} or c_{i} is a leaf node with t_{i} as parent
- $\cup_{\mathrm{i}=1 . . \mathrm{n}}<\mathrm{i} \subseteq<_{\mathrm{s}}$
- for all t_{i} and for all $\mathrm{p} \in \mathrm{op}_{\mathrm{i}}: \mathrm{p}<_{\mathrm{s}} \mathrm{a}_{\mathrm{i}}$ or $\mathrm{p}<_{\mathrm{s}} \mathrm{c}_{\mathrm{i}}$
- for all leaves p, q that access the same data item with p or q being a write: either $\mathrm{p}<_{\mathrm{s}} \mathrm{q}$ or $\mathrm{q}<\mathrm{p}$

Object-Model Schedules

Definition 6.1 (Object Model History):

For transaction trees $\left\{\mathrm{t}_{\mathrm{l}}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$ a history s is a partially ordered forest ($\mathrm{op}(\mathrm{s}),<_{\mathrm{s}}$) with node set $\mathrm{op}(\mathrm{s})$ and partial order $<_{\mathrm{s}}$ of leaves such that
$\cdot \mathrm{op}(\mathrm{s}) \subseteq \cup_{\mathrm{i}=1 . . \mathrm{n}} \mathrm{op}_{\mathrm{i}} \cup \cup_{\mathrm{i}=1 . . \mathrm{n}}\left\{\mathrm{c}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}\right\}$ and $\cup_{\mathrm{i}=1 . . \mathrm{n}} \mathrm{op}_{\mathrm{i}} \subseteq \mathrm{op}(\mathrm{s})$

- for all $\mathrm{t}_{\mathrm{i}}: \mathrm{c}_{\mathrm{i}} \in \mathrm{op}(\mathrm{s}) \Leftrightarrow \mathrm{a}_{\mathrm{i}} \notin \mathrm{op}(\mathrm{s})$
- a_{i} or c_{i} is a leaf node with t_{i} as parent
- $\cup_{\mathrm{i}=1 . . \mathrm{n}}<\mathrm{i} \subseteq<_{\mathrm{s}}$
- for all t_{i} and for all $\mathrm{p} \in \mathrm{op}_{\mathrm{i}}: \mathrm{p}<_{\mathrm{s}} \mathrm{a}_{\mathrm{i}}$ or $\mathrm{p}<_{\mathrm{s}} \mathrm{c}_{\mathrm{i}}$
- for all leaves p, q that access the same data item with p or q being a write: either $\mathrm{p}<_{\mathrm{s}} \mathrm{q}$ or $\mathrm{q}<\mathrm{p}$

Definition 6.2 (Tree Consistent Node Ordering):

In history $\mathrm{s}=\left(\mathrm{op}(\mathrm{s}),<_{\mathrm{s}}\right)$ the leaf ordering $<_{\mathrm{s}}$ is extended to arbitrary nodes: $\mathrm{p}<_{\mathrm{s}} \mathrm{q}$ if for all leaf-level descendants $\mathrm{p}^{\text {c }}$ of p and $\mathrm{q}^{\text {‘ }}$ of $\mathrm{q}: \mathrm{p}^{\text {‘ }}<_{\mathrm{s}} \mathrm{q}^{\text {c }}$.

Object-Model Schedules

Definition 6.1 (Object Model History):

For transaction trees $\left\{\mathrm{t}_{\mathrm{l}}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$ a history s is a partially ordered forest ($\mathrm{op}(\mathrm{s}),<_{\mathrm{s}}$) with node set $\mathrm{op}(\mathrm{s})$ and partial order $<_{\mathrm{s}}$ of leaves such that
$\cdot \mathrm{op}(\mathrm{s}) \subseteq \cup_{\mathrm{i}=1 . . \mathrm{n}} \mathrm{op}_{\mathrm{i}} \cup \cup_{\mathrm{i}=1 . . \mathrm{n}}\left\{\mathrm{c}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}\right\}$ and $\cup_{\mathrm{i}=1 . . \mathrm{n}} \mathrm{op}_{\mathrm{i}} \subseteq \mathrm{op}(\mathrm{s})$

- for all $\mathrm{t}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \in \mathrm{op}(\mathrm{s}) \Leftrightarrow \mathrm{a}_{\mathrm{i}} \notin \mathrm{op}(\mathrm{s})$
- a_{i} or c_{i} is a leaf node with t_{i} as parent
- $\cup_{\mathrm{i}=1 . . \mathrm{n}}<\mathrm{i} \subseteq<_{\mathrm{s}}$
- for all t_{i} and for all $\mathrm{p} \in \mathrm{op}_{\mathrm{i}}: \mathrm{p}<_{\mathrm{s}} \mathrm{a}_{\mathrm{i}}$ or $\mathrm{p}<_{\mathrm{s}} \mathrm{c}_{\mathrm{i}}$
- for all leaves p, q that access the same data item with p or q being a write: either $\mathrm{p}<_{\mathrm{s}} \mathrm{q}$ or $\mathrm{q}<_{\mathrm{s}} \mathrm{p}$

Definition 6.2 (Tree Consistent Node Ordering):

In history $\mathrm{s}=\left(\mathrm{op}(\mathrm{s}),<_{\mathrm{s}}\right)$ the leaf ordering $<_{\mathrm{s}}$ is extended to arbitrary nodes: $\mathrm{p}<_{\mathrm{s}} \mathrm{q}$ if for all leaf-level descendants $\mathrm{p}^{\text {c }}$ of p and $\mathrm{q}^{\text {‘ }}$ of $\mathrm{q}: \mathrm{p}^{\text {‘ }}<_{\mathrm{s}} \mathrm{q}^{\text {c }}$.

Definition 6.3 (Object Model Schedule):

A prefix of history $\mathrm{s}=\left(\mathrm{op}(\mathrm{s}),<_{s}\right)$ is a forest $\mathrm{s}^{`}\left(\mathrm{op}\left(\mathrm{s}^{`}\right),<_{\mathrm{s}}{ }^{`}\right)$ with $\mathrm{op}\left(\mathrm{s}^{`}\right) \subseteq \mathrm{op}(\mathrm{s})$ and $<_{s}{ }^{`} \subseteq<_{s}$ s.t. for each $\mathrm{p} \in \mathrm{op}\left(\mathrm{s}^{`}\right)$ all ancestors of p and all nodes q with $\mathrm{q}<{ }_{\mathrm{s}} \mathrm{p}$ are in $\mathrm{op}\left(\mathrm{s}^{\bullet}\right)$ and $<_{\mathrm{s}}{ }^{\text {' }}$ equals $<_{\mathrm{s}}$ when restricted to $\mathrm{op}\left(\mathrm{s}^{`}\right)$. An object model schedule is a prefix of an object model history.

Example: Object-Model Schedule

Notation:

withdraw ${ }_{11}\left(\right.$ a) withdraw $_{21}(\mathrm{~b})$ deposit $_{22}(\mathrm{c})$...
$r_{111}(p) r_{211}(q) w_{112}(p) w_{113}(t) w_{212}(q) w_{213}(t) r_{221}(r) w_{222}(r) \ldots$

Example: Object-Model Schedule

```
t
|
withdraw(a)
r(p)
```


Notation:

withdraw $_{11}(\mathrm{a})$ withdraw $_{21}(\mathrm{~b})$ deposit $_{22}(\mathrm{c}) \ldots$
$\mathrm{r}_{111}(\mathrm{p}) \mathrm{r}_{211}(\mathrm{q}) \mathrm{W}_{112}(\mathrm{p}) \mathrm{W}_{113}(\mathrm{t}) \mathrm{W}_{212}(\mathrm{q}) \mathrm{W}_{213}(\mathrm{t}) \mathrm{r}_{221}(\mathrm{r}) \mathrm{W}_{222}(\mathrm{r}) \ldots$

Example: Object-Model Schedule

Notation:

withdraw $_{11}(\mathrm{a})$ withdraw $_{21}(\mathrm{~b})$ deposit $_{22}(\mathrm{c})$...
$r_{111}(p) r_{211}(q) w_{112}(p) w_{113}(t) w_{212}(q) w_{213}(t) r_{221}(r) w_{222}(r) \ldots$

Example: Object-Model Schedule

Notation:

withdraw $_{11}(\mathrm{a})$ withdraw $_{21}(\mathrm{~b})$ deposit $_{22}(\mathrm{c})$...
$r_{111}(p) r_{211}(q) w_{112}(p) w_{113}(t) w_{212}(q) w_{213}(t) r_{221}(r) w_{222}(r) \ldots$

Example: Object-Model Schedule

Notation:

withdraw $_{11}(\mathrm{a})$ withdraw $_{21}(\mathrm{~b})$ deposit $_{22}(\mathrm{c})$...
$r_{111}(p) r_{211}(q) w_{112}(p) w_{113}(t) w_{212}(q) w_{213}(t) r_{221}(r) w_{222}(r) \ldots$

Example: Object-Model Schedule

Notation:

withdraw $_{11}(\mathrm{a})$ withdraw $_{21}(\mathrm{~b}) \operatorname{deposit}_{22}(\mathrm{c}) \ldots$
$r_{111}(p) r_{211}(q) w_{112}(p) w_{113}(t) w_{212}(q) w_{213}(t) r_{221}(r) w_{222}(r) \ldots$

Example: Object-Model Schedule

Notation:

withdraw $_{11}(\mathrm{a})$ withdraw $_{21}(\mathrm{~b})$ deposit $_{22}(\mathrm{c}) \ldots$
$r_{111}(p) r_{211}(q) w_{112}(p) w_{113}(t) w_{212}(q) w_{213}(t) r_{221}(r) w_{222}(r) \ldots$

Example: Object-Model Schedule

Notation:

withdraw $_{11}$ (a) withdraw ${ }_{21}$ (b) deposit ${ }_{22}$ (c) ...
$r_{111}(p) r_{211}(q) w_{112}(p) w_{113}(t) w_{212}(q) w_{213}(t) r_{221}(r) w_{222}(r) \ldots$

Example: Object-Model Schedule

Notation:

withdraw $_{11}(\mathrm{a})$ withdraw $_{21}(\mathrm{~b}) \operatorname{deposit}_{22}(\mathrm{c}) \ldots$
$r_{111}(p) r_{211}(q) w_{112}(p) w_{113}(t) w_{212}(q) w_{213}(t) r_{221}(r) w_{222}(r) \ldots$

Layered Schedules

Definition 6.4 (Serial Object Model Schedule):

An object model schedule is serial if its roots $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}$ are totally ordered and for each t_{j} and each $\mathrm{i}>0$ the descendants with distance i from t_{j} are totally ordered.

Layered Schedules

Definition 6.4 (Serial Object Model Schedule):

An object model schedule is serial if its roots $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}$ are totally ordered and for each t_{j} and each $\mathrm{i}>0$ the descendants with distance i from t_{j} are totally ordered.

Definition 6.5 (Isolated Subtree):

A node p and the corresponding subtree in a schedule are called isolated if

- for all nodes q other than ancestors or descendants of p the property holds that for all leaves w of q either $\mathrm{w}<\mathrm{p}$ or $\mathrm{p}<\mathrm{w}$
- for each $\mathrm{i}>0$ the descendants of p with distance i from p are totally ordered

Layered Schedules

Definition 6.4 (Serial Object Model Schedule):

An object model schedule is serial if its roots $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}$ are totally ordered and for each t_{j} and each $\mathrm{i}>0$ the descendants with distance i from t_{j} are totally ordered.

Definition 6.5 (Isolated Subtree):

A node p and the corresponding subtree in a schedule are called isolated if

- for all nodes q other than ancestors or descendants of p the property holds that for all leaves w of q either $w<p$ or $p<w$
- for each $\mathrm{i}>0$ the descendants of p with distance i from p are totally ordered

Definition 6.6 (Layered History and Schedule):

An object model history is layered if all leaves other than c or a have identical distance from their roots; for leaf-to-root distance n this is called an n-level history. Operations with distance i from the leaves are called level-i $\left(\mathbf{L}_{\mathrm{i}}\right)$ operations. A layered schedule is a prefix of a layered history.

Examples of Non-layered Schedules

Examples of Non-layered Schedules

t_{1}
withdraw(a)
$r(p)$

Examples of Non-layered Schedules

6 Concurrency Control on Objects: Notions of Correctness

- 6.2 Histories and Schedules
- 6.3 CSR for Flat Object Transactions
- 6.4 Tree Reducibility
- 6.5 Sufficient Conditions for Tree Reducibility
- 6.6 Exploiting State-Based Commutativity
- 6.7 Lessons Learned

Flat Object Schedules

Definition 6.7 (Flat Object Schedule):
A 2-level schedule s is called flat if for each p, q of L_{1} operations:

- for all $\mathrm{p}^{\star} \in \operatorname{child}(\mathrm{p})$ and all $\mathrm{q}^{\star} \in \operatorname{child}(\mathrm{q}): \mathrm{p}^{\star}<\mathrm{c}_{\mathrm{s}} \mathrm{q}^{\text {o }}$ or for all $\mathrm{p}^{\text {© }} \in \operatorname{child}(\mathrm{p})$ and all $\mathrm{q}^{‘} \in \operatorname{child}(\mathrm{q}): \mathrm{q}^{\text {c }}<_{\mathrm{s}} \mathrm{p}^{\mathrm{c}}$, and

Definition 6.8 ((State-independent) Commutative Operations): Operations p and q are commutative if for all possible sequences of operations α and ω the return parameters in the sequence $\alpha \mathrm{pq} \omega$ are identical to those in $\alpha \mathrm{q} \mathrm{p} \omega$.

Example: Flat Object Schedule

(State-independent)
Commutativity table:

	withdraw $\left(\mathrm{x}, \Delta_{2}\right)$	deposit $\left(\mathrm{x}, \Delta_{2}\right)$	getbalance (x)
withdraw $\left(\mathrm{x}, \Delta_{1}\right)$	-	-	-
deposit $\left(\mathrm{x}, \Delta_{1}\right)$	-	+	-
getbalance (x)	-	-	+

Commutativity-based Reducibility

Definition 6.9 (Commutativity Based Reducibility):
A flat object schedule s is commutativity based reducible if it can be transformed into a serial schedule by apply the following rules:

- Commutativity rule:
the order of ordered operations p, q, say $p<_{s} q$, can be reversed if
- both are isolated, adjacent, and commutative and
- the operations belong to different transactions.
-Ordering rule:
Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.

Commutativity-based Reducibility

```
Definition 6.9 (Commutativity Based Reducibility):
A flat object schedule s is commutativity based reducible if it can be transformed into a serial schedule by apply the following rules:
- Commutativity rule:
the order of ordered operations \(\mathrm{p}, \mathrm{q}\), say \(\mathrm{p}<_{\mathrm{s}} \mathrm{q}\), can be reversed if
- both are isolated, adjacent, and commutative and
- the operations belong to different transactions.
-Ordering rule:
Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.
```


Definition 6.10 (Conflict Equivalence and Conflict Serializability): Two flat object schedules s and s‘ are conflict equivalent if they consist of the same operations and have the same ordering for all non-commutative pairs of L_{1} operations. s is conflict serializable if it is conflict equivalent to a serial schedule.

Commutativity-based Reducibility

Definition 6.9 (Commutativity Based Reducibility):

A flat object schedule s is commutativity based reducible if it can be transformed into a serial schedule by apply the following rules:

- Commutativity rule:
the order of ordered operations p, q, say $\mathrm{p}<_{\mathrm{s}} \mathrm{q}$, can be reversed if
- both are isolated, adjacent, and commutative and
- the operations belong to different transactions.
-Ordering rule:
Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.

Abstract

Definition 6.10 (Conflict Equivalence and Conflict Serializability): Two flat object schedules s and s‘ are conflict equivalent if they consist of the same operations and have the same ordering for all non-commutative pairs of L_{1} operations. s is conflict serializable if it is conflict equivalent to a serial schedule.

Theorem 6.1:

For a flat object schedule s the following three conditions are equivalent:
s is conflict serializable, s has an acyclic conflict graph,
s is commutativity-based reducible.

6 Concurrency Control on Objects: Notions of Correctness

- 6.2 Histories and Schedules
- 6.3 CSR for Flat Object Transactions
- 6.4 Tree Reducibility
- 6.5 Sufficient Conditions for Tree Reducibility
- 6.6 Exploiting State-Based Commutativity
- 6.7 Lessons Learned

Example: Layered Object Schedule with Non-isolated Subtrees

Example: Layered Object Schedule with Non-isolated Subtrees

```
t
store \((\mathrm{z})\)
\(r(t) r(p) r(q)\)
```


Example: Layered Object Schedule with Non-isolated Subtrees

Tree Reducibility

Definition 6.11 (Tree Reducibility):

Object-model history $\mathrm{s}=\left(\mathrm{op}(\mathrm{s}),<_{)}\right)$is tree reducible if it can be transformed into a total order of its roots by apply the following rules:

- Commutativity rule:
the order of ordered leaf operations p, q, say $\mathrm{p}<_{\mathrm{s}} \mathrm{q}$, can be reversed if
- both are isolated, adjacent, and commutative, and
- the operations belong to different transactions, and
- p and q do not have ancestors, $\mathrm{p}^{\text {‘ }}$ and $\mathrm{q}^{\text {', that are non-commutative }}$ and totally ordered in the order $\mathrm{p}^{\text {c }}<_{\mathrm{s}} \mathrm{q}^{\text {c }}$.
- Ordering rule:

Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.

- Tree pruning rule:

An isolated subtree can be replaced by its root.
An object-model schedule is tree reducible if its committed projection is tree reducible.

Example: Reducible Layered Object Schedule with Non-isolated Subtrees

Example: Reducible Layered Object Schedule with Non-isolated Subtrees

Example: Reducible Layered Object Schedule with Non-isolated Subtrees

Example: Non-reducible Layered Object Schedule

Example: Reducible Non-layered Object Schedule

Conflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

Example: Reducible Non-layered Object Schedule

Conflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

Example: Reducible Non-layered Object Schedule

Conflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

Example: Reducible Non-layered Object Schedule

Conflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

Example: Reducible Non-layered Object Schedule

Conflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

Example: Reducible Non-layered Object Schedule

Conflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

Example: Reducible Non-layered Object Schedule

Conflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

Example: Reducible Non-layered Object Schedule

Conflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

Example: Reducible Non-layered Object Schedule

Conflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

Example: Reducible Non-layered Object Schedule

Conflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

6 Concurrency Control on Objects: Notions of Correctness

- 6.2 Histories and Schedules
- 6.3 CSR for Flat Object Transactions
- 6.4 Tree Reducibility
- 6.5 Sufficient Conditions for Tree Reducibility
- 6.6 Exploiting State-Based Commutativity
- 6.7 Lessons Learned

Sufficient Conditions for Tree Reducibility

```
Definition 6.13 (Level-to-Level Schedule):
For an n-level schedule s = (op(s), < < ) with layers L0, .., Ln, the
level-to-level schedule from }\mp@subsup{L}{i}{}\mathrm{ to }\mp@subsup{L}{(i-1)}{}\mathrm{ , or }\mp@subsup{L}{i}{}\mathrm{ -to- }\mp@subsup{L}{(i-1)}{}\mathrm{ schedule, is a
conventional 2-level schedule s` = (op(s`), <'`) with
- op(s`) consisting of the L L(i-1)
- < '}\mathrm{ ' being the restriction of the extended order < 
- L
- the same parent-child relationship as in s.
```


Theorem 6.2:

Let s be an n -level schedule. If for each $\mathrm{i}, 0<\mathrm{i} \leq \mathrm{n}$, the L_{i}-to- $\mathrm{L}_{(\mathrm{i}-1)}$ schedule derived from s is in OCSR, then s is tree-reducible.

Proof Sketch for Theorem 6.2

Consider adjacent levels $\mathrm{L}_{\mathrm{i}}, \mathrm{L}_{(\mathrm{i}-1)}$:

- CSR of the L_{i}-to- $\mathrm{L}_{(\mathrm{i}-1)}$ schedules allows isolating the L_{i} ops
- Conflicting L_{i} ops f, g are not reordered:
- Because of the L_{i} conflict and the $\mathrm{L}_{(\mathrm{i}+1)}$-to- L_{i} schedule being CSR, f and g must be ordered
- Because of the L_{i}-to- $\mathrm{L}_{(\mathrm{i}-1)}$ schedule being OCSR this order is not reversed by the $\mathrm{L}_{\mathrm{i}}-$ to $^{-} \mathrm{L}_{(\mathrm{i}-1)}$ serialization
induction on i

Sufficient Conditions for Tree Reducibility

Definition 6.13 (Conflict Faithfulness):

A layered schedule $\mathrm{s}=(\mathrm{op}(\mathrm{s}),<)_{)}$is conflict-faithful if for each pair $\mathrm{p}, \mathrm{q} \in \mathrm{op}(\mathrm{s})$ s.t. p, q are non-commutative and for each $\mathrm{i}>0$ there is at least one operation pair $\mathrm{p}^{‘}, \mathrm{q}^{‘}$ s.t. $\mathrm{p}^{‘}$ and $\mathrm{q}^{‘}$ are descendants of p and q with distance i and are in conflict.

Sufficient Conditions for Tree Reducibility

Definition 6.13 (Conflict Faithfulness):

A layered schedule $\mathrm{s}=\left(\mathrm{op}(\mathrm{s}), \ll_{)}\right.$is conflict-faithful if for each pair $\mathrm{p}, \mathrm{q} \in \mathrm{op}(\mathrm{s})$ s.t. p, q are non-commutative and for each $\mathrm{i}>0$ there is at least one operation pair $\mathrm{p}^{‘}, \mathrm{q}^{\text {‘ }}$ s.t. $\mathrm{p}^{‘}$ and $\mathrm{q}^{‘}$ are descendants of p and q with distance i and are in conflict.

Theorem 6.3:
Let s be an n-level schedule. If s is conflict-faithful and for each $i, 0<i \leq n$, the $\mathrm{L}_{\mathrm{i}}-\mathrm{to}-\mathrm{L}_{(\mathrm{i}-1)}$ schedule derived from s is in CSR, then s is tree-reducible.

Proof Sketch for Theorem 6.3

Consider adjacent levels $\mathrm{L}_{\mathrm{i}}, \mathrm{L}_{(\mathrm{i}-1)}$:

- CSR of the L_{i}-to- $\mathrm{L}_{(\mathrm{i}-1)}$ schedules allows isolating the L_{i} ops
- Conflicting L_{i} ops f, g are not reordered:
- Because of the L_{i} conflict and
induction on i the $\mathrm{L}_{(\mathrm{i}+1)}$-to- L_{i} schedule being CSR, f and g must be ordered, say $f<g$
- Because of conflict-faithfulness f must and g must have conflicting children $\mathrm{f}^{‘}, \mathrm{~g}^{\text {‘ }}$ with $\mathrm{f}^{\text {‘ }}<\mathrm{g}^{\text {‘ }}$
- CSR cannot reverse the order of f^{\star} and g^{\star}, so the $\mathrm{L}_{\mathrm{i}}-$ to $-\mathrm{L}_{(\mathrm{i}-1)}$ serialization must be compatible with the L_{i} order $\mathrm{f}<\mathrm{g}$

Example: Level-to-level Schedules

has L_{2}-to- L_{1} and L_{1}-to- L_{0} schedules:

Example: Level-to-level Schedules

has L_{2}-to- L_{1} and L_{1}-to- L_{0} schedules:

Example: Level-to-level Schedules

has L_{2}-to- L_{1} and L_{1}-to- L_{0} schedules:

Example: Non-reducible Layered Schedule with CSR Level-to-level Schedules

with f and g in conflict, and h commuting with f, g, and h

Example: Reducible Layered Schedule with Non-OCSR Level-to-level Schedules

with f and g in conflict, and h commuting with f, g, and h

Example: Reducible Layered Schedule with Conflicting, Concurrent Operations

6 Concurrency Control on Objects: Notions of Correctness

- 6.2 Histories and Schedules
- 6.3 CSR for Flat Object Transactions
- 6.4 Tree Reducibility
- 6.5 Sufficient Conditions for Tree Reducibility
- 6.6 Exploiting State-Based Commutativity
- 6.7 Lessons Learned

State-dependent Commutativity

Definition 6.14 (State-Dependent Commutativity):
Operations p and q on the same object are commutative in object state $\boldsymbol{\sigma}$ if for all operation sequences ω
the return parameters in the sequence $\mathrm{pq} \omega$ applied to σ are identical to those in $\mathrm{qp} \omega$ applied to σ.

Example:

- σ : x.balance $=40$
$\mathrm{s}:$ withdraw $_{1}(\mathrm{x}, 30) \operatorname{deposit}_{2}(\mathrm{x}, 50) \operatorname{deposit}_{2}(\mathrm{y}, 50)$ withdraw $_{1}(\mathrm{y}, 30)$
\rightarrow would allow commuting the first step with both steps of t_{2}
$\bullet \sigma:$ x.balance $=20$
$s:$ withdraw $_{1}(x, 30) \operatorname{deposit}_{2}(x, 50) \operatorname{deposit}_{2}(y, 50)$ withdraw $_{1}(y, 30)$
\rightarrow would not allow commuting the first two steps

Return－value Commutativity

Definition 6.18 （Return Value Commutativity）：

An operation execution $\mathrm{p}\left(\downarrow_{x_{1}}, \ldots, \downarrow_{x_{m}}, \uparrow_{y_{1}}, \ldots, \uparrow_{y_{n}}\right)$ is return－value commutative with an immediately following operation execution $\mathrm{q}\left(\downarrow_{\mathrm{x}_{1}}{ }^{`}, \ldots, \mathrm{x}_{\mathrm{m}}{ }^{`}{ }^{`}, \uparrow_{\mathrm{y}_{1}}{ }^{`}, \ldots, \uparrow \mathrm{y}_{\mathrm{n}}{ }^{`}\right)$ if for every possible sequences α and ω s．t． p and q have indeed yielded the given return values in $\alpha p q \omega$ ，all operations in the sequence $\alpha q p \omega$ yield identical return values．

Example：

－σ ： x．balance $=40$
s：withdraw ${ }_{1}(\mathrm{x}, 30)$ 个ok $\operatorname{deposit}_{2}(\mathrm{x}, 50)$ 个ok ．．．
\rightarrow withdraw \uparrow ok is return－value commutative with deposit
－σ ： x．balance $=20$
$\mathrm{s}:$ withdraw $_{1}(\mathrm{x}, 30)$ 个no $\operatorname{deposit}_{2}(\mathrm{x}, 50)$ १ok ．．．
\rightarrow withdraw \uparrow no is not return－value commutative with deposit

Examples: Return-value Commutativity Tables

bank
accounts
(counters):
$\left.\begin{array}{l|ccc}q & \begin{array}{c}\text { withdraw } \\ \left(\mathrm{x}, \Delta_{2}\right) \uparrow \text { ok }\end{array} & \begin{array}{l}\text { withdraw } \\ p\end{array} & \begin{array}{l}\text { deposit }\end{array} \uparrow_{\text {no }} \\ \left(\mathrm{x}, \Delta_{2}\right) \uparrow \text { ok }\end{array}\right]$
queues:

q	enq \uparrow ok enq \uparrow one	deq \uparrow ok	deq \uparrow empty	
p				
enq \uparrow ok	-	impossible	+	impossible
enq \uparrow one	-	impossible	-	impossible
deq $\uparrow \mathrm{ok}$	+	-	-	-
deq $\uparrow \mathrm{empty}$	-	-	impossible	+

Example: Schedule on Counter Objects

equivalent to serial order
$\mathrm{t}_{1}<\mathrm{t}_{2}$
with constraints $0 \leq x \leq 50,0 \leq y \leq 50$

6 Concurrency Control on Objects: Notions of Correctness

- 6.2 Histories and Schedules
- 6.3 CSR for Flat Object Transactions
- 6.4 Tree Reducibility
- 6.5 Sufficient Conditions for Tree Reducibility
- 6.6 Exploiting State-Based Commutativity
- 6.7 Lessons Learned

Lessons Learned

- Commutativity and abstraction arguments lead to the fundamental criterion of tree reducibility
- For layered schedules, CSR can be iterated from level to level
- Compared to page-model CSR, concurrency can be improved, potentially by orders of magnitude
- State-based commutativity can further enhance concurrency, but is more complex to manage

