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Definition 2.3 (Object Model Transaction):

  

   
A transaction t is a (finite) tree of labeled nodes with

  

   
•

     
the transaction identifier as the label of the root node,

  

   
•

     
the names and parameters of invoked operations as labels of

  

   
inner nodes, and

  

   
•

     
page

     
-

     
model read/write operations as labels of leaf nodes,

  

   
along with a partial order < on the leaf nodes such that

  

   
for all leaf

     
-

     
node operations p and q with p of the form w(x)

  

   
and q of the form r(x) or w(x) or vice versa, we have p<q 

     
∨

     
q<p

  

   
Object Model

  

   
Special case:

     
layered transactions

  

   
(all leaves have same distance from root)

  

   
Derived inner

     
-

     
node ordering: a < b if 

  

   
all leaf

     
-

     
node descendants of a precede all leaf

     
-

     
node descendants of b
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Example: DBS Internal Layers

   
  

t

   
  

1

   
  

Search („Austin“)
   
  

Fetch(x)
   
  

Fetch(y)
   
  

Store(z)

   
  

r (r)
   
  

r (l)
   
  

r (p)
   
  

r (q)
   
  

r (f)
   
  

r (p)
   
  

w (p)
   
  

r (r)
   
  

r (l)
   
  

w (l)
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Example: Business Objects

   
  

^
   
  

^
   
  

^
   
  

^

   
  

t

   
  

2

   
  

Withdraw (x, 1000)
   
  

Deposit (y, 1000)

   
  

r (r)
   
  

r (l)
   
  

r (p)
   
  

w (p)
   
  

r (s)
   
  

r (t)

   
  

Append (h, ...)

   
  

Search (...)

   
  

r (p)

   
  

Fetch (x)
   
  

Modify (x)
   
  

Fetch (a)
   
  

Fetch (d)
   
  

Store (e)
   
  

Modify (d)
   
  

Modify (a)

   
  

r (t)
   
  

w (t)
   
  

r (t)
   
  

w (t)
   
  

r (s)
   
  

w (s)
   
  

r (r)
   
  

r (l)
   
  

r (q)
   
  

w (q)

   
  

Search (...)
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Object

     
-

     
Model Schedules

  

   
Definition 6.1 (Object Model History):

  

   
For transaction trees {t

     
1

     
, ..., t

     
n

     
} a 

     
history

     
s is a 

     
partially ordered forest

  

   
(op(s), <

     
s
     
) with node set op(s) and partial order <

     
s
     
of leaves such that

  

   
•

     
op(s) 

     
⊆

     
∪

     
i=1..n 

     
op

     
i
     
∪

     
∪

     
i=1..n 

     
{c

     
i
     
, a

     
i
     
} and 

     
∪

     
i=1..n 

     
op

     
i
     
⊆

     
op(s)

  

   
•

     
for all t

     
i
     
: c

     
i
     
∈

     
op(s) 

     
⇔

     
a

     
i
     
∉

     
op(s)

  

   
•

     
a

     
i
     
or c

     
i
     
is a leaf node with t

     
i
     
as parent

  

   
•

     
∪

     
i=1..n 

     
<i 

     
⊆

     
<

     
s
  

   
•

     
for all t

     
i
     
and for all p 

     
∈

     
op

     
i
     
: p <

     
s
     
a

     
i
     
or p <

     
s
     
c

     
i
  

   
•

     
for all leaves p, q that access the same data item with p or q being a write:

  

   
either p <

     
s
     
q or q <

     
s
     
p
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q or q <

     
s
     
p

  

    
Definition 6.2 (Tree Consistent Node Ordering):

   

    
In history s = (op(s), <

       
s
       
) the leaf ordering <

       
s
       
is extended to arbitrary nodes:

   

    
p <

       
s
       
q if for all leaf

       
-

       
level descendants p‘ of p and q‘ of q: p‘ <

       
s
       
q‘.
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Definition 6.3 (Object Model Schedule):

   

    
A 

       
prefix 

       
of history s = (op(s), <

       
s
       
) is a forest s‘ (op(s‘), <

       
s
       
‘) with op(s‘) 

       
⊆

       
op(s)

   

    
and <

       
s
       
‘

       
⊆

       
<

       
s
       
s.t. for each p 

       
∈

       
op(s‘) all ancestors of p and all nodes q with q <

       
s
       
p

   

    
are in op(s‘) and <

       
s
       
‘ equals <

       
s
       
when restricted to op(s‘).

   

    
An 

       
object model schedule

       
is a prefix of an object model history. 
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Example: Object

     
-

     
Model Schedule

  

   
Notation: 

  

   
withdraw

     
11

     
(a)

     
withdraw

     
21

     
(b) deposit

     
22

     
(c)

     
...

  

   
r

     
111

     
(p)

     
r

     
211

     
(q)

     
w

     
112

     
(p) w

     
113

     
(t)

     
w

     
212

     
(q) w

     
213

     
(t) r

     
221

     
(r) w

     
222

     
(r)

     
...
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Layered Schedules

  

   
Definition 6.4 (Serial Object Model Schedule):

  

   
An object model schedule is 

     
serial

     
if its roots t

     
1

     
, ..., t

     
n

     
are totally ordered and for 

  each t
   
j
  

and each i > 0 the descendants with distance i from t
   
j
  

are totally ordered.
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distance from their roots; for leaf

       
-

       
to

       
-

       
root distance n this is called an 

       
n

       
-

       
level history

       
.
   

    
Operations with distance i from the leaves are called 

       
level

       
-
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i
       
) operations

       
.
   

    
A 

       
layered schedule

       
is a prefix of a layered history.
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Examples of Non

     
-

     
layered Schedules
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Flat Object Schedules

  

   
Definition 6.7 (Flat Object Schedule):

  

   
A 2

     
-

     
level schedule s is called 

     
flat

     
if for each p, q of L

     
1

     
operations:

  

   
•

     
for all p‘

     
∈

     
child(p) and all q‘

     
∈

     
child(q): p‘ <

     
s 

     
q‘ or 

  

   
for all 

     
p‘

     
∈

     
child(p) and all q‘

     
∈

     
child(q): q‘ <

     
s
     
p‘, and

  

   
•

     
for all p‘, p‘‘ 

     
∈

     
child(p): p‘ <

     
s
     
p‘‘ or p‘‘ <

     
s
     
p‘

  

   
Definition 6.8 ((State

     
-

     
independent) Commutative Operations):

  

   
Operations p and q are 

     
commutative

     
if for all possible sequences of

  

   
operations 

     
α

     
and 

     
ω

     
the return parameters in the sequence 

     
α

     
p q 

     
ω

  

   
are identical to those in 

     
α

     
q p 

     
ω

     
.
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Δ
   
  

2
   
  

)
   
  

deposit (x,
   
  

Δ
   
  

2
   
  

)
   
  

getbalance (x
   
  

)

   
  

withdraw (x,
   
  

Δ
   
  

1
   
  

)

   
  

deposit (x,
   
  

Δ
   
  

1
   
  

)

   
  

getbalance (x
   
  

)

   
  

_
   
  

_
   
  

_

   
  

_
   
  

+    
  

_

   
  

_
   
  

_
   
  

+

   
  

(State
   
  

-
   
  

independent) 

   
  

Commutativity table:
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-
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Definition 6.9 (Commutativity Based Reducibility):

  

   
A flat object schedule s is 

     
commutativity based reducible

     
if it can be

  

   
transformed into a serial schedule by apply the following rules:

  

   
•

     
Commutativity rule:

  

   
the order of ordered operations p, q, say p <

     
s
     
q, can be reversed if

  

   
•

     
both are isolated, adjacent, and commutative and

  

   
•

     
the operations belong to different transactions.

  

   
•

     
Ordering rule:

  

   
Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.
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-

       
commutative pairs of L
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operations.

   

    
s is 
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Theorem 6.1:

   

    
For a flat object schedule s the following three conditions are equivalent:

   

    
s is conflict serializable, s has an acyclic conflict graph, 

   

    
s is commutativity

       
-

       
based reducible.
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Definition 6.11 (Tree Reducibility):

  

   
Object

     
-

     
model history s = (op(s), <

     
s
     
) is 

     
tree reducible

     
if it can be

  

   
transformed into a total order of its roots by apply the following rules:

  

   
•

     
Commutativity rule: 

  

   
the order of ordered leaf operations p, q, say p <

     
s
     
q, can be reversed if

  

   
•

     
both are isolated, adjacent, and commutative, and

  

   
•

     
the operations belong to different transactions, and

  

   
•

     
p and q do not have ancestors, p‘ and q‘, that are non

     
-

     
commutative

  

   
and totally ordered in the order p‘ <

     
s
     
q‘.

  

   
•

     
Ordering rule:

  

   
Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.

  

   
•

     
Tree pruning rule:

  

   
An isolated subtree can be replaced by its root.

  

   
An object

     
-

     
model schedule is tree reducible if its committed projection

  

   
is tree reducible.

  

   
Tree Reducibility
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Sufficient Conditions for Tree Reducibility

  

   
Definition 6.13 (Level

     
-

     
to

     
-

     
Level Schedule):

  

   
For an n

     
-

     
level schedule s = (op(s), <

     
s
     
) with layers L0, ..., Ln, the

  

   
level

     
-

     
to

     
-

     
level schedule from L

     
i
     
to L

     
(i

     
-
     
1)

     
, or 

     
L

     
i
     
-

     
to

     
-

     
L

     
(i

     
-
     
1)

     
schedule

     
, is a 

  

   
conventional 2

     
-

     
level schedule s‘ = (op(s‘), <

     
s
     
‘) with

  

   
•

     
op(s‘) consisting of the L

     
(i

     
-
     
1)

     
operations of s,

  

   
•

     
<

     
s
     
‘ being the restriction of the extended order <

     
s
     
to the L

     
(i

     
-
     
1)

     
operations,

  

   
•

     
L

     
i
     
operations of s as roots, and

  

   
•

     
the same parent

     
-

     
child relationship as in s.

  

   
Theorem 6.2:

  

   
Let s be an n

     
-

     
level schedule. If for each i, 0 < i 

     
≤

     
n, the L

     
i
     
-

     
to

     
-

     
L

     
(i

     
-
     
1)

     
schedule

  

   
derived from s is in OCSR, then s is tree

     
-

     
reducible.
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Proof Sketch for Theorem 6.2

   
  

Consider adjacent levels L
   
  

i
   
  

, L
   
  

(i
   
  

-
   
  

1)
   
  

:

   
  

•
   
  

CSR of the L
   
  

i
   
  

-
   
  

to
   
  

-
   
  

L
   
  

(i
   
  

-
   
  

1)
   
  

schedules 

   
  

allows isolating the L
   
  

i
   
  

ops

   
  

•
   
  

Conflicting L
   
  

i
   
  

ops f, g are not reordered:

   
  

•
   
  

Because of the L
   
  

i
   
  

conflict and 

   
  

the L
   
  

(i+1)
   
  

-
   
  

to
   
  

-
   
  

L
   
  

i 
   
  

schedule being CSR,

   
  

f and g must be ordered

   
  

•
   
  

Because of the L
   
  

i
   
  

-
   
  

to
   
  

-
   
  

L
   
  

(i
   
  

-
   
  

1)
   
  

schedule being 
   
  

OCSR

   
  

this order is not reversed 

   
  

by the L
   
  

i
   
  

-
   
  

to
   
  

-
   
  

L
   
  

(i
   
  

-
   
  

1)
   
  

serialization

   
  

induction

   
  

on i
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Sufficient Conditions for Tree Reducibility

  

   
Definition 6.13 (Conflict Faithfulness):

  

   
A layered schedule s = (op(s), <

     
s
     
) is 

     
conflict

     
-

     
faithful

     
if for each pair p, q 

     
∈

     
op(s)

  

   
s.t. p, q are non

     
-

     
commutative and for each i>0 there is at least one operation pair

  

   
p‘, q‘ s.t. p‘ and q‘ are descendants of p and q with distance i and are in conflict.
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Sufficient Conditions for Tree Reducibility

  

   
Definition 6.13 (Conflict Faithfulness):

  

   
A layered schedule s = (op(s), <

     
s
     
) is 

     
conflict

     
-

     
faithful

     
if for each pair p, q 

     
∈

     
op(s)

  

   
s.t. p, q are non

     
-

     
commutative and for each i>0 there is at least one operation pair

  

   
p‘, q‘ s.t. p‘ and q‘ are descendants of p and q with distance i and are in conflict.

  

    
Theorem 6.3:

   

    
Let s be an n

       
-

       
level schedule. If s is conflict

       
-

       
faithful and for each i, 0 < i 

       
≤

       
n, 

   

    
the L

       
i
       
-

       
to

       
-

       
L

       
(i

       
-
       
1)

       
schedule derived from s is in CSR, then s is tree

       
-

       
reducible.
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Proof Sketch for Theorem 6.3

   
  

Consider adjacent levels L
   
  

i
   
  

, L
   
  

(i
   
  

-
   
  

1)
   
  

:

   
  

•
   
  

CSR of the L
   
  

i
   
  

-
   
  

to
   
  

-
   
  

L
   
  

(i
   
  

-
   
  

1)
   
  

schedules 

   
  

allows isolating the L
   
  

i
   
  

ops

   
  

•
   
  

Conflicting L
   
  

i 
   
  

ops f, g are not reordered:

   
  

•
   
  

Because of the L
   
  

i
   
  

conflict and

   
  

the L
   
  

(i+1)
   
  

-
   
  

to
   
  

-
   
  

L
   
  

i
   
  

schedule being CSR, 

   
  

f and g must be ordered, say f < g

   
  

•
   
  

Because of 
   
  

conflict
   
  

-
   
  

faithfulness
   
  

f must and g

   
  

must have conflicting children f‘, g‘ with f‘ < g‘ 

   
  

•
   
  

CSR cannot reverse the order of f‘ and g‘,

   
  

so the L
   
  

i
   
  

-
   
  

to
   
  

-
   
  

L
   
  

(i
   
  

-
   
  

1)
   
  

serialization must be 

   
  

compatible with the L
   
  

i 
   
  

order f < g 

   
  

induction

   
  

on i
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Example: Level

     
-

     
to

     
-

     
level Schedules

  

   
t
     
1
     

t
     
2
  

   
withdraw(a)

     
withdraw(b)

  

   
r(p)

     
r(q)

     
w(p)

     
w(t)

     
w(q)

     
w(t)

  

   
deposit(c)

     
deposit(c)

  

   
r(r)

     
w(r)

     
r(r)

     
w(r)

  

   
c

     
c

  

   
has L

     
2

     
-

     
to

     
-

     
L

     
1

     
and L

     
1

     
-

     
to

     
-

     
L

     
0

     
schedules:
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Example: Level

     
-

     
to

     
-

     
level Schedules

  

   
t
     
1
     

t
     
2
  

   
withdraw(a)

     
withdraw(b)

  

   
r(p)

     
r(q)

     
w(p)

     
w(t)

     
w(q)

     
w(t)

  

   
deposit(c)

     
deposit(c)

  

   
r(r)

     
w(r)

     
r(r)

     
w(r)

  

   
c

     
c

  

   
has L

     
2

     
-

     
to

     
-

     
L

     
1

     
and L

     
1

     
-

     
to

     
-

     
L

     
0

     
schedules:

  

    
t
       
1

       
t
       
2

   

    
withdraw

       
11

       
(a)

       
withdraw

       
21

       
(b)

       
deposit

       
22

       
(c)

       
deposit

       
12

       
(c)

       
c

       
13

       
c

       
23

   

    
L

       
2

   

    
L

       
1
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Example: Level

     
-

     
to

     
-

     
level Schedules

  

   
t
     
1
     

t
     
2
  

   
withdraw(a)

     
withdraw(b)

  

   
r(p)

     
r(q)

     
w(p)

     
w(t)

     
w(q)

     
w(t)

  

   
deposit(c)

     
deposit(c)

  

   
r(r)

     
w(r)

     
r(r)

     
w(r)

  

   
c

     
c

  

   
has L

     
2

     
-

     
to

     
-

     
L

     
1

     
and L

     
1

     
-

     
to

     
-

     
L

     
0

     
schedules:

  

    
t
       
1

       
t
       
2

   

    
withdraw

       
11

       
(a)

       
withdraw

       
21

       
(b)

       
deposit

       
22

       
(c)

       
deposit

       
12

       
(c)

       
c

       
13

       
c

       
23

   

    
L

       
2

   

    
L

       
1

   

    
t
       
11

       
t
       
21

   

    
r
       
111

       
(p)

       
r
       
211

       
(q)

       
w

       
112

       
(p)

       
w

       
113

       
(t)

       
w

       
212

       
(q)

       
w

       
213

       
(t)

   

    
t
       
22

       
t
       
12

   

    
r
       
221

       
(r)

       
w

       
222

       
(r)

       
r
       
121

       
(r)

       
w

       
122

       
(r)

   

    
L

       
1

   

    
L

       
0
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Example: Non
   
  

-
   
  

reducible Layered Schedule

   
  

with CSR Level
   
  

-
   
  

to
   
  

-
   
  

level Schedules

   
  

t
   
  

1

   
  

f
   
  

11
   
  

(x)

   
  

r
   
  

111
   
  

(p)
   
  

w
   
  

112
   
  

(p)

   
  

t
   
  

3

   
  

h
   
  

31
   
  

(z)

   
  

w
   
  

311
   
  

(q)

   
  

f
   
  

12
   
  

(y)

   
  

r
   
  

121
   
  

(q)

   
  

g
   
  

22
   
  

(y)

   
  

r
   
  

221
   
  

(p)
   
  

r
   
  

222
   
  

(t)
   
  

w
   
  

312
   
  

(t)

   
  

t
   
  

2

   
  

g
   
  

21
   
  

(x)

   
  

r
   
  

211
   
  

(p)
   
  

w
   
  

212
   
  

(p)
   
  

w
   
  

213
   
  

(t)

   
  

L
   
  

2

   
  

L
   
  

1

   
  

L
   
  

0

   
  

with f and g in conflict,

   
  

and h commuting with f, g, and h
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Example: Reducible Layered Schedule

   
  

with Non
   
  

-
   
  

OCSR Level
   
  

-
   
  

to
   
  

-
   
  

level Schedules

   
  

with f and g in conflict,

   
  

and h commuting with f, g, and h

   
  

t
   
  

1
   
  

t
   
  

2

   
  

f
   
  

11
   
  

(x)
   
  

g
   
  

21
   
  

(x)
   
  

h
   
  

12
   
  

(y)
   
  

h
   
  

22
   
  

(y)

   
  

r
   
  

121
   
  

(q)
   
  

r
   
  

221
   
  

(p)

   
  

t
   
  

3

   
  

h
   
  

31
   
  

(z)

   
  

r
   
  

222
   
  

(t)
   
  

w
   
  

311
   
  

(q)
   
  

w
   
  

312
   
  

(t)
   
  

r
   
  

111
   
  

(p)
   
  

r
   
  

211
   
  

(p)
   
  

w
   
  

112
   
  

(p)
   
  

w
   
  

212
   
  

(p)
   
  

w
   
  

213
   
  

(t)

   
  

L
   
  

2

   
  

L
   
  

1

   
  

L
   
  

0
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Example: Reducible Layered Schedule

   
  

with Conflicting, Concurrent Operations

   
  

t
   
  

1
   
  

t
   
  

2

   
  

modify
   
  

11
   
  

(x)
   
  

fetch
   
  

21
   
  

(x)

   
  

r
   
  

112
   
  

(p)
   
  

r
   
  

211
   
  

(t)
   
  

w
   
  

113
   
  

(p)
   
  

r
   
  

212
   
  

(p)

   
  

L
   
  

2

   
  

L
   
  

1

   
  

L
   
  

0
   
  

r
   
  

111
   
  

(t)

   
  

fetch
   
  

22
   
  

(y)

   
  

r
   
  

222
   
  

(p)
   
  

r
   
  

221
   
  

(t)

   
  

modify
   
  

12
   
  

(y)

   
  

r
   
  

122
   
  

(p)
   
  

r
   
  

121
   
  

(t)
   
  

w
   
  

123
   
  

(p)
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6 Concurrency Control on Objects:

   
  

Notions of Correctness

   
  

•
   
  

6.2 Histories and Schedules

   
  

•
   
  

6.3 CSR for Flat Object Transactions

   
  

•
   
  

6.4 Tree Reducibility

   
  

•
   
  

6.5 Sufficient Conditions for Tree Reducibility

   
  

•
   
  

6.6 Exploiting State
   
  

-
   
  

Based Commutativity

   
  

•
   
  

6.7 Lessons Learned
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State

     
-

     
dependent Commutativity

  

   
Definition 6.14 (State

     
-

     
Dependent Commutativity):

  

   
Operations p and q on the same object are 

     
commutative in object state

      
σ

      
if

  

   
for all operation sequences 

     
ω

  

   
the return parameters in the sequence pq

     
ω

     
applied to 

     
σ

  

   
are identical to those in qp

     
ω

     
applied to 

     
σ

     
.
  

   
Example:

  

   
•

     
σ

     
: x.balance = 40

  

   
s: withdraw

     
1

     
(x, 30) deposit

     
2

     
(x,50) deposit

     
2

     
(y,50) withdraw

     
1

     
(y,30) 

  

   
→

     
would allow commuting the first step with both steps of t

     
2

  

   
•

     
σ

     
: x.balance = 20

  

   
s: withdraw

     
1

     
(x, 30) deposit

     
2

     
(x,50) deposit

     
2

     
(y,50) withdraw

     
1

     
(y,30) 

  

   
→

     
would not allow commuting the first two steps
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Return

     
-

     
value Commutativity

  

   
Definition 6.18 (Return Value Commutativity):

  

   
An operation execution p (

     
↓

     
x

     
1

     
, ..., 

     
↓

     
x

     
m

     
, 

     
↑

     
y

     
1

     
, ..., 

     
↑

     
y

     
n

     
) is 

     
return

     
-

     
value

  

   
commutative

     
with an immediately following operation execution

  

   
q (

     
↓

     
x

     
1

     
‘, ..., 

     
↓

     
x

     
m‘

     
‘, 

     
↑

     
y

     
1

     
‘, ..., 

     
↑

     
y

     
n‘

     
‘) if for every possible sequences 

     
α

     
and 

     
ω

     
s.t.

  

   
p and q have indeed yielded the given return values in 

     
α

     
pq

     
ω

     
, all operations

  

   
in the sequence 

     
α

     
qp

     
ω

     
yield identical return values.

  

   
Example:

  

   
•

     
σ

     
: x.balance = 40 

  

   
s: withdraw

     
1

     
(x, 30)

     
↑

     
ok deposit

     
2

     
(x,50)

     
↑

     
ok ... 

  

   
→

     
withdraw

     
↑

     
ok is return

     
-

     
value 

  

   
commutative with deposit

  

   
•

     
σ

     
: x.balance = 20

  

   
s: withdraw

     
1

     
(x, 30)

     
↑

     
no deposit

     
2

     
(x,50) 

     
↑

     
ok ...

  

   
→

     
withdraw

     
↑

     
no is not return

     
-

     
value 

  

   
commutative with deposit
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Examples: Return
   
  

-
   
  

value Commutativity Tables

   
  

withdraw 

   
  

(x,
   
  

Δ
   
  

2
   
  

)
   
  

↑
   
  

ok    
  

withdraw

   
  

(x,
   
  

Δ
   
  

2
   
  

)
   
  

↑
   
  

no    
  

deposit

   
  

(x,
   
  

Δ
   
  

2
   
  

)
   
  

↑
   
  

ok

   
  

withdraw 

   
  

(x,
   
  

Δ
   
  

1
   
  

)
   
  

↑
   
  

ok 

   
  

deposit 

   
  

(x,
   
  

Δ
   
  

1
   
  

)
   
  

↑
   
  

ok 

   
  

+

   
  

_

   
  

_

   
  

withdraw 

   
  

(x,
   
  

Δ
   
  

1
   
  

)
   
  

↑
   
  

no 

   
  

+

   
  

+

   
  

+

   
  

+

   
  

+

   
  

_

   
  

bank

   
  

accounts

   
  

(counters):

   
  

enq
   
  

↑
   
  

ok 
   
  

enq
   
  

↑
   
  

one 
   
  

deq
   
  

↑
   
  

ok

   
  

_
   
  

+

   
  

queues:
   
  

deq
   
  

↑
   
  

empty

   
  

enq
   
  

↑
   
  

ok 

   
  

enq
   
  

↑
   
  

one 

   
  

deq
   
  

↑
   
  

ok

   
  

deq
   
  

↑
   
  

empty

   
  

impossible
   
  

impossible

   
  

_
   
  

impossible
   
  

impossible
   
  

_

   
  

+    
  

_
   
  

_
   
  

_

   
  

_
   
  

_
   
  

impossible
   
  

+

   
  

p    
  

q

   
  

q

   
  

p
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Example: Schedule on Counter Objects

   
  

t
   
  

1
   
  

t
   
  

2

   
  

decr(x,20)
   
  

↑
   
  

no

   
  

x=15

   
  

incr(x,30)
   
  

↑
   
  

ok
   
  

decr(y,20)
   
  

↑
   
  

ok

   
  

y=45

   
  

incr(y,30)
   
  

↑
   
  

no

   
  

x=15

   
  

y=45    
  

x=45

   
  

y=45    
  

x=15

   
  

y=25    
  

x=15

   
  

y=25

   
  

r(p)
   
  

r(p)
   
  

r(p)
   
  

r(p)
   
  

w(p)
   
  

w(p)

   
  

with constraints 0 
   
  

≤
   
  

x 
   
  

≤
   
  

50, 
   
  

0 
   
  

≤
   
  

y 
   
  

≤
   
  

50

   
  

equivalent to

   
  

serial order

   
  

t
   
  

1
   
  

< t
   
  

2
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6 Concurrency Control on Objects:
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•
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•
   
  

6.7 Lessons Learned
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Lessons Learned

   
  

•
   
  

Commutativity and abstraction arguments lead to the

   
  

fundamental criterion of tree reducibility

   
  

•
   
  

For layered schedules, CSR can be iterated from level to level

   
  

•
   
  

Compared to page
   
  

-
   
  

model CSR, concurrency can be improved,

   
  

potentially by orders of magnitude

   
  

•
   
  

State
   
  

-
   
  

based commutativity can further enhance concurrency,

   
  

but is more complex to manage
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