
1 / 36

Transactional Information Systems:

Theory, Algorithms, and

the

Practice of

Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

“

Teamwork is essential. It allows you to blame someone else.

”

(Anonymous)

© 2002 Morgan Kaufmann

ISBN 1

-

55860

-

508

-

8

2 / 36

Part II: Concurrency Control

•

3 Concurrency Control: Notions of Correctness for the Page Model

•

4 Concurrency Control Algorithms

•

5 Multiversion Concurrency Control

•

6 Concurrency Control on Objects: Notions of Correctness

•

7 Concurrency Control Algorithms on Objects

•

8 Concurrency Control on Relational Databases

•

9 Concurrency Control on Search Structures

•

10 Implementation and Pragmatic Issues

3 / 36

6 Concurrency Control on Objects:

Notions of Correctness

•

6.2 Histories and Schedules

•

6.3 CSR for Flat Object Transactions

•

6.4 Tree Reducibility

•

6.5 Sufficient Conditions for Tree Reducibility

•

6.6 Exploiting State

-

Based Commutativity

•

6.7 Lessons Learned

“

No matter how complicated a problem is, it usually can be reduced

to a simple comprehensible form which is often the best solution

”

(An Wang)

“

Every problem has a simple, easy

-

to

-

understand, wrong answer.

”

(Anonymous)

4 / 36

Definition 2.3 (Object Model Transaction):

A transaction t is a (finite) tree of labeled nodes with

•

the transaction identifier as the label of the root node,

•

the names and parameters of invoked operations as labels of

inner nodes, and

•

page

-

model read/write operations as labels of leaf nodes,

along with a partial order < on the leaf nodes such that

for all leaf

-

node operations p and q with p of the form w(x)

and q of the form r(x) or w(x) or vice versa, we have p<q

∨

q<p

Object Model

Special case:

layered transactions

(all leaves have same distance from root)

Derived inner

-

node ordering: a < b if

all leaf

-

node descendants of a precede all leaf

-

node descendants of b

5 / 36

Example: DBS Internal Layers

t

1

Search („Austin“)

Fetch(x)

Fetch(y)

Store(z)

r (r)

r (l)

r (p)

r (q)

r (f)

r (p)

w (p)

r (r)

r (l)

w (l)

6 / 36

Example: Business Objects

^

^

^

^

t

2

Withdraw (x, 1000)

Deposit (y, 1000)

r (r)

r (l)

r (p)

w (p)

r (s)

r (t)

Append (h, ...)

Search (...)

r (p)

Fetch (x)

Modify (x)

Fetch (a)

Fetch (d)

Store (e)

Modify (d)

Modify (a)

r (t)

w (t)

r (t)

w (t)

r (s)

w (s)

r (r)

r (l)

r (q)

w (q)

Search (...)

r (q)

Fetch (y)

Modify (y)

7 / 36

Object

-

Model Schedules

Definition 6.1 (Object Model History):

For transaction trees {t

1

, ..., t

n

} a

history

s is a

partially ordered forest

(op(s), <

s

) with node set op(s) and partial order <

s

of leaves such that

•

op(s)

⊆

∪

i=1..n

op

i

∪

∪

i=1..n

{c

i

, a

i

} and

∪

i=1..n

op

i

⊆

op(s)

•

for all t

i

: c

i

∈

op(s)

⇔

a

i

∉

op(s)

•

a

i

or c

i

is a leaf node with t

i

as parent

•

∪

i=1..n

<i

⊆

<

s

•

for all t

i

and for all p

∈

op

i

: p <

s

a

i

or p <

s

c

i

•

for all leaves p, q that access the same data item with p or q being a write:

either p <

s

q or q <

s

p

7 / 36

Object

-

Model Schedules

Definition 6.1 (Object Model History):

For transaction trees {t

1

, ..., t

n

} a

history

s is a

partially ordered forest

(op(s), <

s

) with node set op(s) and partial order <

s

of leaves such that

•

op(s)

⊆

∪

i=1..n

op

i

∪

∪

i=1..n

{c

i

, a

i

} and

∪

i=1..n

op

i

⊆

op(s)

•

for all t

i

: c

i

∈

op(s)

⇔

a

i

∉

op(s)

•

a

i

or c

i

is a leaf node with t

i

as parent

•

∪

i=1..n

<i

⊆

<

s

•

for all t

i

and for all p

∈

op

i

: p <

s

a

i

or p <

s

c

i

•

for all leaves p, q that access the same data item with p or q being a write:

either p <

s

q or q <

s

p

Definition 6.2 (Tree Consistent Node Ordering):

In history s = (op(s), <

s

) the leaf ordering <

s

is extended to arbitrary nodes:

p <

s

q if for all leaf

-

level descendants p‘ of p and q‘ of q: p‘ <

s

q‘.

7 / 36

Object

-

Model Schedules

Definition 6.1 (Object Model History):

For transaction trees {t

1

, ..., t

n

} a

history

s is a

partially ordered forest

(op(s), <

s

) with node set op(s) and partial order <

s

of leaves such that

•

op(s)

⊆

∪

i=1..n

op

i

∪

∪

i=1..n

{c

i

, a

i

} and

∪

i=1..n

op

i

⊆

op(s)

•

for all t

i

: c

i

∈

op(s)

⇔

a

i

∉

op(s)

•

a

i

or c

i

is a leaf node with t

i

as parent

•

∪

i=1..n

<i

⊆

<

s

•

for all t

i

and for all p

∈

op

i

: p <

s

a

i

or p <

s

c

i

•

for all leaves p, q that access the same data item with p or q being a write:

either p <

s

q or q <

s

p

Definition 6.2 (Tree Consistent Node Ordering):

In history s = (op(s), <

s

) the leaf ordering <

s

is extended to arbitrary nodes:

p <

s

q if for all leaf

-

level descendants p‘ of p and q‘ of q: p‘ <

s

q‘.

Definition 6.3 (Object Model Schedule):

A

prefix

of history s = (op(s), <

s

) is a forest s‘ (op(s‘), <

s

‘) with op(s‘)

⊆

op(s)

and <

s

‘

⊆

<

s

s.t. for each p

∈

op(s‘) all ancestors of p and all nodes q with q <

s

p

are in op(s‘) and <

s

‘ equals <

s

when restricted to op(s‘).

An

object model schedule

is a prefix of an object model history.

8 / 36

Example: Object

-

Model Schedule

Notation:

withdraw

11

(a)

withdraw

21

(b) deposit

22

(c)

...

r

111

(p)

r

211

(q)

w

112

(p) w

113

(t)

w

212

(q) w

213

(t) r

221

(r) w

222

(r)

...

8 / 36

Example: Object

-

Model Schedule

Notation:

withdraw

11

(a)

withdraw

21

(b) deposit

22

(c)

...

r

111

(p)

r

211

(q)

w

112

(p) w

113

(t)

w

212

(q) w

213

(t) r

221

(r) w

222

(r)

...

t

1

withdraw(a)

r(p)

8 / 36

Example: Object

-

Model Schedule

Notation:

withdraw

11

(a)

withdraw

21

(b) deposit

22

(c)

...

r

111

(p)

r

211

(q)

w

112

(p) w

113

(t)

w

212

(q) w

213

(t) r

221

(r) w

222

(r)

...

t

1

withdraw(a)

r(p)

t

2

withdraw(b)

r(q)

8 / 36

Example: Object

-

Model Schedule

Notation:

withdraw

11

(a)

withdraw

21

(b) deposit

22

(c)

...

r

111

(p)

r

211

(q)

w

112

(p) w

113

(t)

w

212

(q) w

213

(t) r

221

(r) w

222

(r)

...

t

1

withdraw(a)

r(p)

t

2

withdraw(b)

r(q)

w(p)

w(t)

8 / 36

Example: Object

-

Model Schedule

Notation:

withdraw

11

(a)

withdraw

21

(b) deposit

22

(c)

...

r

111

(p)

r

211

(q)

w

112

(p) w

113

(t)

w

212

(q) w

213

(t) r

221

(r) w

222

(r)

...

t

1

withdraw(a)

r(p)

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

8 / 36

Example: Object

-

Model Schedule

Notation:

withdraw

11

(a)

withdraw

21

(b) deposit

22

(c)

...

r

111

(p)

r

211

(q)

w

112

(p) w

113

(t)

w

212

(q) w

213

(t) r

221

(r) w

222

(r)

...

t

1

withdraw(a)

r(p)

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

deposit(c)

r(r)

w(r)

8 / 36

Example: Object

-

Model Schedule

Notation:

withdraw

11

(a)

withdraw

21

(b) deposit

22

(c)

...

r

111

(p)

r

211

(q)

w

112

(p) w

113

(t)

w

212

(q) w

213

(t) r

221

(r) w

222

(r)

...

t

1

withdraw(a)

r(p)

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

deposit(c)

r(r)

w(r)

deposit(c)

r(r)

w(r)

8 / 36

Example: Object

-

Model Schedule

Notation:

withdraw

11

(a)

withdraw

21

(b) deposit

22

(c)

...

r

111

(p)

r

211

(q)

w

112

(p) w

113

(t)

w

212

(q) w

213

(t) r

221

(r) w

222

(r)

...

t

1

withdraw(a)

r(p)

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

deposit(c)

r(r)

w(r)

deposit(c)

r(r)

w(r)

c

8 / 36

Example: Object

-

Model Schedule

Notation:

withdraw

11

(a)

withdraw

21

(b) deposit

22

(c)

...

r

111

(p)

r

211

(q)

w

112

(p) w

113

(t)

w

212

(q) w

213

(t) r

221

(r) w

222

(r)

...

t

1

withdraw(a)

r(p)

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

deposit(c)

r(r)

w(r)

deposit(c)

r(r)

w(r)

c

c

9 / 36

Layered Schedules

Definition 6.4 (Serial Object Model Schedule):

An object model schedule is

serial

if its roots t

1

, ..., t

n

are totally ordered and for

 each t

j

and each i > 0 the descendants with distance i from t

j

are totally ordered.

9 / 36

Layered Schedules

Definition 6.4 (Serial Object Model Schedule):

An object model schedule is

serial

if its roots t

1

, ..., t

n

are totally ordered and for

 each t

j

and each i > 0 the descendants with distance i from t

j

are totally ordered.

Definition 6.5 (Isolated Subtree):

A node p and the corresponding subtree in a schedule are called

isolated

if

•

for all nodes q other than ancestors or descendants of p the property holds that

for all leaves w of q either w < p or p < w

•

for each i > 0 the descendants of p with distance i from p are totally ordered

9 / 36

Layered Schedules

Definition 6.4 (Serial Object Model Schedule):

An object model schedule is

serial

if its roots t

1

, ..., t

n

are totally ordered and for

 each t

j

and each i > 0 the descendants with distance i from t

j

are totally ordered.

Definition 6.5 (Isolated Subtree):

A node p and the corresponding subtree in a schedule are called

isolated

if

•

for all nodes q other than ancestors or descendants of p the property holds that

for all leaves w of q either w < p or p < w

•

for each i > 0 the descendants of p with distance i from p are totally ordered

Definition 6.6 (Layered History and Schedule):

An object model history is

layered

if all leaves other than c or a have identical

distance from their roots; for leaf

-

to

-

root distance n this is called an

n

-

level history

.

Operations with distance i from the leaves are called

level

-

i (L

i

) operations

.

A

layered schedule

is a prefix of a layered history.

10 / 36

Examples of Non

-

layered Schedules

10 / 36

Examples of Non

-

layered Schedules

t

withdraw(a)

r(p)

1

10 / 36

Examples of Non

-

layered Schedules

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

10 / 36

Examples of Non

-

layered Schedules

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

w(p)

10 / 36

Examples of Non

-

layered Schedules

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

w(p)

w(t)

10 / 36

Examples of Non

-

layered Schedules

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

10 / 36

Examples of Non

-

layered Schedules

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

10 / 36

Examples of Non

-

layered Schedules

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

deposit(c)

r(r)

w(r)

10 / 36

Examples of Non

-

layered Schedules

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

deposit(c)

r(r)

w(r)

deposit(c)

r(r)

w(r)

10 / 36

Examples of Non

-

layered Schedules

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

deposit(c)

r(r)

w(r)

deposit(c)

r(r)

w(r)

t

withdraw(a)

r(p)

1

10 / 36

Examples of Non

-

layered Schedules

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

deposit(c)

r(r)

w(r)

deposit(c)

r(r)

w(r)

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

10 / 36

Examples of Non

-

layered Schedules

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

deposit(c)

r(r)

w(r)

deposit(c)

r(r)

w(r)

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

w(p)

w(t)

10 / 36

Examples of Non

-

layered Schedules

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

deposit(c)

r(r)

w(r)

deposit(c)

r(r)

w(r)

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

10 / 36

Examples of Non

-

layered Schedules

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

deposit(c)

r(r)

w(r)

deposit(c)

r(r)

w(r)

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

r(r)

w(r)

10 / 36

Examples of Non

-

layered Schedules

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

deposit(c)

r(r)

w(r)

deposit(c)

r(r)

w(r)

t

withdraw(a)

r(p)

1

t

2

withdraw(b)

r(q)

w(p)

w(t)

w(q)

w(t)

r(r)

w(r)

r(r)

w(r)

11 / 36

6 Concurrency Control on Objects:

Notions of Correctness

•

6.2 Histories and Schedules

•

6.3 CSR for Flat Object Transactions

•

6.4 Tree Reducibility

•

6.5 Sufficient Conditions for Tree Reducibility

•

6.6 Exploiting State

-

Based Commutativity

•

6.7 Lessons Learned

12 / 36

Flat Object Schedules

Definition 6.7 (Flat Object Schedule):

A 2

-

level schedule s is called

flat

if for each p, q of L

1

operations:

•

for all p‘

∈

child(p) and all q‘

∈

child(q): p‘ <

s

q‘ or

for all

p‘

∈

child(p) and all q‘

∈

child(q): q‘ <

s

p‘, and

•

for all p‘, p‘‘

∈

child(p): p‘ <

s

p‘‘ or p‘‘ <

s

p‘

Definition 6.8 ((State

-

independent) Commutative Operations):

Operations p and q are

commutative

if for all possible sequences of

operations

α

and

ω

the return parameters in the sequence

α

p q

ω

are identical to those in

α

q p

ω

.

13 / 36

Example: Flat Object Schedule

t

1

t

2

withdraw(a)

withdraw(b)

r(p)

r(q)

w(p)

w(t)

w(q)

w(t)

deposit(c)

deposit(c)

r(r)

w(r)

r(r)

w(r)

withdraw (x,

Δ

2

)

deposit (x,

Δ

2

)

getbalance (x

)

withdraw (x,

Δ

1

)

deposit (x,

Δ

1

)

getbalance (x

)

_

_

_

_

+

_

_

_

+

(State

-

independent)

Commutativity table:

14 / 36

Commutativity

-

based Reducibility

Definition 6.9 (Commutativity Based Reducibility):

A flat object schedule s is

commutativity based reducible

if it can be

transformed into a serial schedule by apply the following rules:

•

Commutativity rule:

the order of ordered operations p, q, say p <

s

q, can be reversed if

•

both are isolated, adjacent, and commutative and

•

the operations belong to different transactions.

•

Ordering rule:

Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.

14 / 36

Commutativity

-

based Reducibility

Definition 6.9 (Commutativity Based Reducibility):

A flat object schedule s is

commutativity based reducible

if it can be

transformed into a serial schedule by apply the following rules:

•

Commutativity rule:

the order of ordered operations p, q, say p <

s

q, can be reversed if

•

both are isolated, adjacent, and commutative and

•

the operations belong to different transactions.

•

Ordering rule:

Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.

Definition 6.10 (Conflict Equivalence and Conflict Serializability):

Two flat object schedules s and s‘ are

conflict equivalent

if they

consist of the same operations and have the same ordering for all

non

-

commutative pairs of L

1

operations.

s is

conflict serializable

if it is conflict equivalent to a serial schedule.

14 / 36

Commutativity

-

based Reducibility

Definition 6.9 (Commutativity Based Reducibility):

A flat object schedule s is

commutativity based reducible

if it can be

transformed into a serial schedule by apply the following rules:

•

Commutativity rule:

the order of ordered operations p, q, say p <

s

q, can be reversed if

•

both are isolated, adjacent, and commutative and

•

the operations belong to different transactions.

•

Ordering rule:

Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.

Definition 6.10 (Conflict Equivalence and Conflict Serializability):

Two flat object schedules s and s‘ are

conflict equivalent

if they

consist of the same operations and have the same ordering for all

non

-

commutative pairs of L

1

operations.

s is

conflict serializable

if it is conflict equivalent to a serial schedule.

Theorem 6.1:

For a flat object schedule s the following three conditions are equivalent:

s is conflict serializable, s has an acyclic conflict graph,

s is commutativity

-

based reducible.

15 / 36

6 Concurrency Control on Objects:

Notions of Correctness

•

6.2 Histories and Schedules

•

6.3 CSR for Flat Object Transactions

•

6.4 Tree Reducibility

•

6.5 Sufficient Conditions for Tree Reducibility

•

6.6 Exploiting State

-

Based Commutativity

•

6.7 Lessons Learned

16 / 36

Example: Layered Object Schedule

with Non

-

isolated Subtrees

16 / 36

Example: Layered Object Schedule

with Non

-

isolated Subtrees

t

1

store(z)

r(t)

r(p)

r(q)

16 / 36

Example: Layered Object Schedule

with Non

-

isolated Subtrees

t

1

store(z)

r(t)

r(p)

r(q)

t

2

fetch(x)

r(t)

r(p)

16 / 36

Example: Layered Object Schedule

with Non

-

isolated Subtrees

t

1

store(z)

r(t)

r(p)

r(q)

t

2

fetch(x)

r(t)

r(p)

w(q)

w(p)

w(t)

16 / 36

Example: Layered Object Schedule

with Non

-

isolated Subtrees

t

1

store(z)

r(t)

r(p)

r(q)

t

2

fetch(x)

r(t)

r(p)

w(q)

w(p)

w(t)

modify(y)

r(t)

r(p)

w(p)

16 / 36

Example: Layered Object Schedule

with Non

-

isolated Subtrees

t

1

store(z)

r(t)

r(p)

r(q)

t

2

fetch(x)

r(t)

r(p)

w(q)

w(p)

w(t)

modify(y)

r(t)

r(p)

w(p)

modify(y)

r(t)

16 / 36

Example: Layered Object Schedule

with Non

-

isolated Subtrees

t

1

store(z)

r(t)

r(p)

r(q)

t

2

fetch(x)

r(t)

r(p)

w(q)

w(p)

w(t)

modify(y)

r(t)

r(p)

w(p)

modify(y)

r(t)

modify(w)

r(t)

r(p)

w(p)

16 / 36

Example: Layered Object Schedule

with Non

-

isolated Subtrees

t

1

store(z)

r(t)

r(p)

r(q)

t

2

fetch(x)

r(t)

r(p)

w(q)

w(p)

w(t)

modify(y)

r(t)

r(p)

w(p)

modify(y)

r(t)

modify(w)

r(t)

r(p)

w(p)

r(p)

w(p)

17 / 36

Definition 6.11 (Tree Reducibility):

Object

-

model history s = (op(s), <

s

) is

tree reducible

if it can be

transformed into a total order of its roots by apply the following rules:

•

Commutativity rule:

the order of ordered leaf operations p, q, say p <

s

q, can be reversed if

•

both are isolated, adjacent, and commutative, and

•

the operations belong to different transactions, and

•

p and q do not have ancestors, p‘ and q‘, that are non

-

commutative

and totally ordered in the order p‘ <

s

q‘.

•

Ordering rule:

Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.

•

Tree pruning rule:

An isolated subtree can be replaced by its root.

An object

-

model schedule is tree reducible if its committed projection

is tree reducible.

Tree Reducibility

18 / 36

Example: Reducible Layered Object

Schedule with Non

-

isolated Subtrees

t

1

t

2

store(z)

fetch(x)

r(t)

r(t)

r(p)

r(p)

modify(y)

modify(y)

r(t)

r(p)

r(t)

r(p)

r(q)

w(q)

w(p)

w(t)

w(p)

w(p)

modify(w)

r(t)

r(p)

w(p)

18 / 36

Example: Reducible Layered Object

Schedule with Non

-

isolated Subtrees

t

1

t

2

store(z)

fetch(x)

r(t)

r(t)

r(p)

r(p)

modify(y)

modify(y)

r(t)

r(p)

r(t)

r(p)

r(q)

w(q)

w(p)

w(t)

w(p)

w(p)

modify(w)

r(t)

r(p)

w(p)

t

1

t

2

store(z)

fetch(x)

modify(y)

modify(w)

modify(y)

18 / 36

Example: Reducible Layered Object

Schedule with Non

-

isolated Subtrees

t

1

t

2

store(z)

fetch(x)

r(t)

r(t)

r(p)

r(p)

modify(y)

modify(y)

r(t)

r(p)

r(t)

r(p)

r(q)

w(q)

w(p)

w(t)

w(p)

w(p)

modify(w)

r(t)

r(p)

w(p)

t

1

t

2

store(z)

fetch(x)

modify(y)

modify(w)

modify(y)

t

1

t

2

<

19 / 36

Example: Non

-

reducible

Layered Object Schedule

t

1

t

2

store(z)

fetch(x)

r(t)

r(t)

r(p)

r(p)

r(q)

w(q)

w(p)

w(t)

20 / 36

Example: Reducible Non

-

layered

Object Schedule

Conflicting operation pairs:

<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

20 / 36

Example: Reducible Non

-

layered

Object Schedule

Conflicting operation pairs:

<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

t

1

CheckItem

r(p)

w(p)

20 / 36

Example: Reducible Non

-

layered

Object Schedule

Conflicting operation pairs:

<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

t

1

CheckItem

r(p)

w(p)

t

2

CheckItem

r(p)

w(p)

20 / 36

Example: Reducible Non

-

layered

Object Schedule

Conflicting operation pairs:

<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

t

1

CheckItem

r(p)

w(p)

t

2

CheckItem

r(p)

w(p)

Append

r(q)

w(q)

20 / 36

Example: Reducible Non

-

layered

Object Schedule

Conflicting operation pairs:

<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

t

1

CheckItem

r(p)

w(p)

t

2

CheckItem

r(p)

w(p)

Append

r(q)

w(q)

Append

r(q)

20 / 36

Example: Reducible Non

-

layered

Object Schedule

Conflicting operation pairs:

<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

t

1

CheckItem

r(p)

w(p)

t

2

CheckItem

r(p)

w(p)

Append

r(q)

w(q)

Append

r(q)

Shipment

r(r)

w(r)

20 / 36

Example: Reducible Non

-

layered

Object Schedule

Conflicting operation pairs:

<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

t

1

CheckItem

r(p)

w(p)

t

2

CheckItem

r(p)

w(p)

Append

r(q)

w(q)

Append

r(q)

Shipment

r(r)

w(r)

Payment

CheckCard

r(s)

w(s)

20 / 36

Example: Reducible Non

-

layered

Object Schedule

Conflicting operation pairs:

<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

t

1

CheckItem

r(p)

w(p)

t

2

CheckItem

r(p)

w(p)

Append

r(q)

w(q)

Append

r(q)

Shipment

r(r)

w(r)

Payment

CheckCard

r(s)

w(s)

Payment

CheckCash

r(s)

20 / 36

Example: Reducible Non

-

layered

Object Schedule

Conflicting operation pairs:

<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

t

1

CheckItem

r(p)

w(p)

t

2

CheckItem

r(p)

w(p)

Append

r(q)

w(q)

Append

r(q)

Shipment

r(r)

w(r)

Payment

CheckCard

r(s)

w(s)

Payment

CheckCash

r(s)

r(t)

w(t)

20 / 36

Example: Reducible Non

-

layered

Object Schedule

Conflicting operation pairs:

<Payment, Payment>, <Append, Append>, <r, w>, <w, r>, <w, w>

t

1

CheckItem

r(p)

w(p)

t

2

CheckItem

r(p)

w(p)

Append

r(q)

w(q)

Append

r(q)

Shipment

r(r)

w(r)

Payment

CheckCard

r(s)

w(s)

Payment

CheckCash

r(s)

r(t)

w(t)

w(s)

r(t)

w(t)

21 / 36

6 Concurrency Control on Objects:

Notions of Correctness

•

6.2 Histories and Schedules

•

6.3 CSR for Flat Object Transactions

•

6.4 Tree Reducibility

•

6.5 Sufficient Conditions for Tree Reducibility

•

6.6 Exploiting State

-

Based Commutativity

•

6.7 Lessons Learned

22 / 36

Sufficient Conditions for Tree Reducibility

Definition 6.13 (Level

-

to

-

Level Schedule):

For an n

-

level schedule s = (op(s), <

s

) with layers L0, ..., Ln, the

level

-

to

-

level schedule from L

i

to L

(i

-

1)

, or

L

i

-

to

-

L

(i

-

1)

schedule

, is a

conventional 2

-

level schedule s‘ = (op(s‘), <

s

‘) with

•

op(s‘) consisting of the L

(i

-

1)

operations of s,

•

<

s

‘ being the restriction of the extended order <

s

to the L

(i

-

1)

operations,

•

L

i

operations of s as roots, and

•

the same parent

-

child relationship as in s.

Theorem 6.2:

Let s be an n

-

level schedule. If for each i, 0 < i

≤

n, the L

i

-

to

-

L

(i

-

1)

schedule

derived from s is in OCSR, then s is tree

-

reducible.

23 / 36

Proof Sketch for Theorem 6.2

Consider adjacent levels L

i

, L

(i

-

1)

:

•

CSR of the L

i

-

to

-

L

(i

-

1)

schedules

allows isolating the L

i

ops

•

Conflicting L

i

ops f, g are not reordered:

•

Because of the L

i

conflict and

the L

(i+1)

-

to

-

L

i

schedule being CSR,

f and g must be ordered

•

Because of the L

i

-

to

-

L

(i

-

1)

schedule being

OCSR

this order is not reversed

by the L

i

-

to

-

L

(i

-

1)

serialization

induction

on i

24 / 36

Sufficient Conditions for Tree Reducibility

Definition 6.13 (Conflict Faithfulness):

A layered schedule s = (op(s), <

s

) is

conflict

-

faithful

if for each pair p, q

∈

op(s)

s.t. p, q are non

-

commutative and for each i>0 there is at least one operation pair

p‘, q‘ s.t. p‘ and q‘ are descendants of p and q with distance i and are in conflict.

24 / 36

Sufficient Conditions for Tree Reducibility

Definition 6.13 (Conflict Faithfulness):

A layered schedule s = (op(s), <

s

) is

conflict

-

faithful

if for each pair p, q

∈

op(s)

s.t. p, q are non

-

commutative and for each i>0 there is at least one operation pair

p‘, q‘ s.t. p‘ and q‘ are descendants of p and q with distance i and are in conflict.

Theorem 6.3:

Let s be an n

-

level schedule. If s is conflict

-

faithful and for each i, 0 < i

≤

n,

the L

i

-

to

-

L

(i

-

1)

schedule derived from s is in CSR, then s is tree

-

reducible.

25 / 36

Proof Sketch for Theorem 6.3

Consider adjacent levels L

i

, L

(i

-

1)

:

•

CSR of the L

i

-

to

-

L

(i

-

1)

schedules

allows isolating the L

i

ops

•

Conflicting L

i

ops f, g are not reordered:

•

Because of the L

i

conflict and

the L

(i+1)

-

to

-

L

i

schedule being CSR,

f and g must be ordered, say f < g

•

Because of

conflict

-

faithfulness

f must and g

must have conflicting children f‘, g‘ with f‘ < g‘

•

CSR cannot reverse the order of f‘ and g‘,

so the L

i

-

to

-

L

(i

-

1)

serialization must be

compatible with the L

i

order f < g

induction

on i

26 / 36

Example: Level

-

to

-

level Schedules

t

1

t

2

withdraw(a)

withdraw(b)

r(p)

r(q)

w(p)

w(t)

w(q)

w(t)

deposit(c)

deposit(c)

r(r)

w(r)

r(r)

w(r)

c

c

has L

2

-

to

-

L

1

and L

1

-

to

-

L

0

schedules:

26 / 36

Example: Level

-

to

-

level Schedules

t

1

t

2

withdraw(a)

withdraw(b)

r(p)

r(q)

w(p)

w(t)

w(q)

w(t)

deposit(c)

deposit(c)

r(r)

w(r)

r(r)

w(r)

c

c

has L

2

-

to

-

L

1

and L

1

-

to

-

L

0

schedules:

t

1

t

2

withdraw

11

(a)

withdraw

21

(b)

deposit

22

(c)

deposit

12

(c)

c

13

c

23

L

2

L

1

26 / 36

Example: Level

-

to

-

level Schedules

t

1

t

2

withdraw(a)

withdraw(b)

r(p)

r(q)

w(p)

w(t)

w(q)

w(t)

deposit(c)

deposit(c)

r(r)

w(r)

r(r)

w(r)

c

c

has L

2

-

to

-

L

1

and L

1

-

to

-

L

0

schedules:

t

1

t

2

withdraw

11

(a)

withdraw

21

(b)

deposit

22

(c)

deposit

12

(c)

c

13

c

23

L

2

L

1

t

11

t

21

r

111

(p)

r

211

(q)

w

112

(p)

w

113

(t)

w

212

(q)

w

213

(t)

t

22

t

12

r

221

(r)

w

222

(r)

r

121

(r)

w

122

(r)

L

1

L

0

27 / 36

Example: Non

-

reducible Layered Schedule

with CSR Level

-

to

-

level Schedules

t

1

f

11

(x)

r

111

(p)

w

112

(p)

t

3

h

31

(z)

w

311

(q)

f

12

(y)

r

121

(q)

g

22

(y)

r

221

(p)

r

222

(t)

w

312

(t)

t

2

g

21

(x)

r

211

(p)

w

212

(p)

w

213

(t)

L

2

L

1

L

0

with f and g in conflict,

and h commuting with f, g, and h

28 / 36

Example: Reducible Layered Schedule

with Non

-

OCSR Level

-

to

-

level Schedules

with f and g in conflict,

and h commuting with f, g, and h

t

1

t

2

f

11

(x)

g

21

(x)

h

12

(y)

h

22

(y)

r

121

(q)

r

221

(p)

t

3

h

31

(z)

r

222

(t)

w

311

(q)

w

312

(t)

r

111

(p)

r

211

(p)

w

112

(p)

w

212

(p)

w

213

(t)

L

2

L

1

L

0

29 / 36

Example: Reducible Layered Schedule

with Conflicting, Concurrent Operations

t

1

t

2

modify

11

(x)

fetch

21

(x)

r

112

(p)

r

211

(t)

w

113

(p)

r

212

(p)

L

2

L

1

L

0

r

111

(t)

fetch

22

(y)

r

222

(p)

r

221

(t)

modify

12

(y)

r

122

(p)

r

121

(t)

w

123

(p)

30 / 36

6 Concurrency Control on Objects:

Notions of Correctness

•

6.2 Histories and Schedules

•

6.3 CSR for Flat Object Transactions

•

6.4 Tree Reducibility

•

6.5 Sufficient Conditions for Tree Reducibility

•

6.6 Exploiting State

-

Based Commutativity

•

6.7 Lessons Learned

31 / 36

State

-

dependent Commutativity

Definition 6.14 (State

-

Dependent Commutativity):

Operations p and q on the same object are

commutative in object state

σ

if

for all operation sequences

ω

the return parameters in the sequence pq

ω

applied to

σ

are identical to those in qp

ω

applied to

σ

.

Example:

•

σ

: x.balance = 40

s: withdraw

1

(x, 30) deposit

2

(x,50) deposit

2

(y,50) withdraw

1

(y,30)

→

would allow commuting the first step with both steps of t

2

•

σ

: x.balance = 20

s: withdraw

1

(x, 30) deposit

2

(x,50) deposit

2

(y,50) withdraw

1

(y,30)

→

would not allow commuting the first two steps

32 / 36

Return

-

value Commutativity

Definition 6.18 (Return Value Commutativity):

An operation execution p (

↓

x

1

, ...,

↓

x

m

,

↑

y

1

, ...,

↑

y

n

) is

return

-

value

commutative

with an immediately following operation execution

q (

↓

x

1

‘, ...,

↓

x

m‘

‘,

↑

y

1

‘, ...,

↑

y

n‘

‘) if for every possible sequences

α

and

ω

s.t.

p and q have indeed yielded the given return values in

α

pq

ω

, all operations

in the sequence

α

qp

ω

yield identical return values.

Example:

•

σ

: x.balance = 40

s: withdraw

1

(x, 30)

↑

ok deposit

2

(x,50)

↑

ok ...

→

withdraw

↑

ok is return

-

value

commutative with deposit

•

σ

: x.balance = 20

s: withdraw

1

(x, 30)

↑

no deposit

2

(x,50)

↑

ok ...

→

withdraw

↑

no is not return

-

value

commutative with deposit

33 / 36

Examples: Return

-

value Commutativity Tables

withdraw

(x,

Δ

2

)

↑

ok

withdraw

(x,

Δ

2

)

↑

no

deposit

(x,

Δ

2

)

↑

ok

withdraw

(x,

Δ

1

)

↑

ok

deposit

(x,

Δ

1

)

↑

ok

+

_

_

withdraw

(x,

Δ

1

)

↑

no

+

+

+

+

+

_

bank

accounts

(counters):

enq

↑

ok

enq

↑

one

deq

↑

ok

_

+

queues:

deq

↑

empty

enq

↑

ok

enq

↑

one

deq

↑

ok

deq

↑

empty

impossible

impossible

_

impossible

impossible

_

+

_

_

_

_

_

impossible

+

p

q

q

p

34 / 36

Example: Schedule on Counter Objects

t

1

t

2

decr(x,20)

↑

no

x=15

incr(x,30)

↑

ok

decr(y,20)

↑

ok

y=45

incr(y,30)

↑

no

x=15

y=45

x=45

y=45

x=15

y=25

x=15

y=25

r(p)

r(p)

r(p)

r(p)

w(p)

w(p)

with constraints 0

≤

x

≤

50,

0

≤

y

≤

50

equivalent to

serial order

t

1

< t

2

35 / 36

6 Concurrency Control on Objects:

Notions of Correctness

•

6.2 Histories and Schedules

•

6.3 CSR for Flat Object Transactions

•

6.4 Tree Reducibility

•

6.5 Sufficient Conditions for Tree Reducibility

•

6.6 Exploiting State

-

Based Commutativity

•

6.7 Lessons Learned

36 / 36

Lessons Learned

•

Commutativity and abstraction arguments lead to the

fundamental criterion of tree reducibility

•

For layered schedules, CSR can be iterated from level to level

•

Compared to page

-

model CSR, concurrency can be improved,

potentially by orders of magnitude

•

State

-

based commutativity can further enhance concurrency,

but is more complex to manage

	Chapter 6
	Histories and Schedules
	CSR for Flat Object Transactions
	Tree Reducibility
	Sufficient Condition for Tree Reducibility
	Exploiting State-Based Commutativity
	Lessons Learned

