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Relational Databases

   
  

•
   
  

Database consists of tables

   
  

•
   
  

Operations on tables and databases are

   
  

–
   
  

Queries (select
   
  

-
   
  

from
   
  

-
   
  

where expressions)

   
  

–
   
  

Insertions

   
  

–
   
  

Deletions

   
  

–
   
  

Modifications

   
  

•
   
  

Queries and updates use (single or sets of) 

   
  

predicates
   
  

or 
   
  

conditions
   
  

(where clause)

   
  

•
   
  

Sets 
   
  

C 
   
  

of conditions span 
   
  

hyperplanes
   
  

H(C) 
   
  

of 

   
  

tuples

   
  

•
   
  

Hyperplanes can be subject to locking
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Phantom Problem

   
  

Emp

   
  

Jones Service Clerk 20000

   
  

Meier Service Clerk 22000

   
  

Paulus Service Manager 42000

   
  

Smyth Toys Cashier 25000

   
  

Brown Sales Clerk 28000

   
Albert Sales Manager 38000

   
  

Name Department Position Salary

   
  

Update transaction t:

   
  

(a)
   
  

Delete From Emp

   
  

Where Department = 
   
  

‘
   
  

Service
   
  

’

   
  

And Position = 
   
  

‘
   
  

Manager
   
  

’

   
  

(b)
   
  

Insert Into Emp Values

   
  

(
   
  

‘
   
  

Smith
   
  

’
   
  

, 
   
  

‘
   
  

Service
   
  

’
   
  

, 
   
  

‘
   
  

Manager
   
  

’
   
  

, 40000)

   
  

(c)
   
  

Update Emp Set Department = 
   
  

‘
   
  

Sales
   
  

’

   
  

Where Department = 
   
  

‘
   
  

Service
   
  

’

   
  

And Position <> 
   
  

‘
   
  

Manager
   
  

’

   
  

(d)
   
  

Insert Into Emp Values

   
  

(
   
  

‘
   
  

Stone
   
  

’
   
  

, 
   
  

‘
   
  

Service
   
  

’
   
  

, 
   
  

‘
   
  

Clerk
   
  

’
   
  

, 13000)

   
  

Retrieval transaction q:

   
  

Select Name, Position, Salary

   
  

From Emp

   
  

Where Department = 
   
  

‘
   
  

Service
   
  

’

   
  

Observations:

   
  

•
   
  

Interleaving q with t leads to inconsistent read known as 
   
  

“
   
  

phantom problem
   
  

”

   
  

•
   
  

Locking existing records cannot prevent this problem

   
  

Retrieval transaction p:

   
  

Select Name, Position, Salary

   
  

From Emp

   
  

Where Department = 
   
  

‘
   
  

Sales
   
  

’

   
  

Example 8.1
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Predicate Locking

   
  

•
   
  

Associate with each operation on table R(A
   
  

1
   
  

, ..., A
   
  

n
   
  

)

   
  

a set C of conditions that covers a set H(C) of 
   
  

–
   
  

existing or conceivable 
   
  

–
   
  

tuples

   
  

with H(C) = {
   
  

µ
   
  

∈
   
  

dom(A
   
  

1
   
  

) 
   
  

×
   
  

... 
   
  

×
   
  

dom(A
   
  

n
   
  

) | 
   
  

µ
   
  

satisfies C}

   
  

•
   
  

Each operation locks its H(C) 

   
  

[ Update operations need to lock pre
   
  

-
   
  

and postcondition H(C) and H(C‘) ]

   
  

Example 8.2:

   
  

C
   
  

a
   
  

: Department = 
   
  

‘
   
  

Service
   
  

’
   
  

∧
   
  

Position = 
   
  

‘
   
  

Manager
   
  

’

   
  

C
   
  

b
   
  

: Name=
   
  

‘
   
  

Smith
   
  

’
   
  

∧
   
  

Department=
   
  

‘
   
  

Service
   
  

’
   
  

∧
   
  

Position=
   
  

‘
   
  

Manager
   
  

’
   
  

∧
   
  

Salary=40000

   
  

C
   
  

c
   
  

: Department = 
   
  

‘
   
  

Service
   
  

’
   
  

∧
   
  

Position 
   
  

≠
   
  

‘
   
  

Manager
   
  

’

   
  

C
   
  

c
   
  

‘: Department = 
   
  

‘
   
  

Sales
   
  

’
   
  

∧
   
  

Position 
   
  

≠
   
  

‘
   
  

Manager
   
  

’

   
  

C
   
  

d
   
  

: Name=
   
  

‘
   
  

Stone
   
  

’
   
  

∧
   
  

Department=
   
  

‘
   
  

Service
   
  

’
   
  

∧
   
  

Position=
   
  

‘
   
  

Clerk
   
  

’
   
  

∧
   
  

Salary=13000

   
  

C
   
  

q
   
  

: Department = 
   
  

‘
   
  

Service
   
  

’

   
  

C
   
  

p
   
  

: Department = 
   
  

‘
   
  

Sales
   
  

’

   
  

H(C
   
  

a
   
  

)
   
  

∩
   
  

H(C
   
  

q
   
  

)
   
  

≠∅
   
  

, 
   
  

H(C
   
  

b
   
  

)
   
  

∩
   
  

H(C
   
  

q
   
  

)
   
  

≠∅
   
  

, 
   
  

H(C
   
  

c
   
  

)
   
  

∩
   
  

H(C
   
  

q
   
  

)
   
  

≠∅
   
  

, 
   
  

H(C
   
  

d
   
  

)
   
  

∩
   
  

H(C
   
  

q
   
  

)
   
  

≠∅

   
  

H(C
   
  

c
   
  

‘) 
   
  

∩
   
  

H(C
   
  

q
   
  

)=
   
  

∅

   
  

H(C
   
  

a
   
  

)
   
  

∩
   
  

H(C
   
  

p
   
  

)=
   
  

H(C
   
  

b
   
  

)
   
  

∩
   
  

H(C
   
  

p
   
  

)=
   
  

H(C
   
  

c
   
  

)
   
  

∩
   
  

H(C
   
  

p
   
  

)=
   
  

H(C
   
  

d
   
  

)
   
  

∩
   
  

H(C
   
  

p
   
  

)=
   
  

∅

   
  

H(C
   
c
   
  

‘)
   
  

∩
   
  

H(C
   
p

   
  

)
   
  

≠∅
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Precision Locking

   
  

•
   
  

Predicate locks on predicates C
   
  

t
   
  

and C
   
  

t
   
  

‘ 

   
  

on behalf of transactions t and t‘ in modes m
   
  

t
   
  

and m
   
  

t
   
  

‘

   
  

are compatible if

   
  

•
   
  

t = t‘ or

   
  

•
   
  

both m
   
  

t
   
  

and m
   
  

t
   
  

‘ are read (shared) mode or

   
  

•
   
  

H(C
   
  

t
   
  

) 
   
  

∩
   
  

H(C
   
  

t
   
  

‘) = 
   
  

∅

   
  

•
   
  

Testing whether H(C
   
  

t
   
  

) 
   
  

∩
   
  

H(C
   
  

t
   
  

‘) = 
   
  

∅
   
  

is NP
   
  

-
   
  

complete

   
  

•
   
  

For preventing the phantom problem it is sufficient that

   
  

•
   
  

queries lock predicates and

   
  

•
   
  

insert, update, and delete operations lock individual records, and

   
  

•
   
  

compatibility is checked by testing that an update
   
  

-
   
  

affected record

   
  

does not satisfy any of the query predicate locks
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8 Concurrency Control 
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•
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-
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•
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•
   
  

8.4 Exploiting Transaction
   
  

-
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•
   
  

8.5 Lessons Learned
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Idea

   
  

•
   
  

Transactions are sequences of insert, delete, or 

   
  

modify operations
   
  

(in the style of SQL updates)

   
  

•
   
  

Define notions of serializability along the lines of the 

   
  

classical ones

   
  

•
   
  

The 
   
  

semantic information
   
  

available on transaction 

   
  

effects can be exploited to allow 
   
  

more concurrency

   
  

•
   
  

Additional concurrency can be allowed by using 

   
  

dependency information
   
  

, in particular FDs
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Transaction Syntax and Semantics

  

   
Definition 8.

     
1

     
(IDM Transaction):

  

   
An 

     
IDM transaction

     
over a database schema D is a finite sequence of update

  

   
operations (insertions, deletions, modifications) over D.

  

   
If t

     
= u

     
1

     
. . . u

     
m

     
is an IDM transaction over a given database, the 

     
effect

     
of t,

  

   
eff(t), is defined as

  

   
eff(t) := eff[u

     
1

     
] 

     
°

     
. . . 

     
°

     
eff[u

     
m

     
]

  

   
Insertion:

     
expression of the 

     
form 

     
i
     
R

     
(C), where C specifies a tuple over R

  

   
Deletion:

     
expression of the form d

     
R

     
(C), where C is a set of conditions

  

   
Modification:

     
expression of the form m

     
R

     
(C

     
1

     
; C

     
2

     
) (tuples satisfying C

     
1

  

   
are modified so that they satisfy C

     
2

     
)
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Transaction Equivalence

  

   
Definition 8.2 (Transaction Equivalence):

  

   
Two IDM transactions over the same database schema are equivalent, written

  

   
t 

     
≈

     
t‘, if

     
eff(t) = eff(t‘), i.e., t and t‘ have the same effect.

  

   
Transaction equivalence can be decided in polynomial time:

  

   
•

     
using a graphical illustration of transaction effects (“transition specs“)

  

   
•

     
using a sound and complete axiomatization of “

     
≈

     
“

  

   
We look at the latter (but only at some of the relevant rules)
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Commutativity Rules

   
  

Let C
   
  

1
   
  

, C
   
  

2
   
  

, C
   
  

3
   
  

, C
   
  

4
   
  

be sets of conditions describing pairwise disjoint

   
  

hyperplanes:

   
  

1.
   
  

i(C
   
  

1
   
  

) i(C
   
  

2
   
  

) 
   
  

≈
   
  

i(C
   
  

2
   
  

) i(C
   
  

1
   
  

)

   
  

2.
   
  

d(C
   
  

1
   
  

) d(C
   
  

2
   
  

) 
   
  

≈
   
  

d(C
   
  

2
   
  

) d(C
   
  

1
   
  

)

   
  

3.
   
  

d(C
   
  

1
   
  

) i(C
   
  

2
   
  

) 
   
  

≈
   
  

i(C
   
  

2
   
  

) d(C
   
  

1
   
  

)
   
  

if C
   
  

1
   
  

<> C
   
  

2

   
  

4.
   
  

m(C
   
  

1
   
  

; C
   
  

2
   
  

) m(C
   
  

3
   
  

; C
   
  

4
   
  

) 
   
  

≈
   
  

m(C
   
  

3
   
  

; C
   
  

4
   
  

) m(C
   
  

1
   
  

; C
   
  

2
   
  

) if C
   
  

3
   
  

<> C
   
  

1
   
  

, C
   
  

2
   
  

and C
   
  

1
   
  

<> C
   
  

4

   
  

5.
   
  

m(C
   
  

1
   
  

; C
   
  

2
   
  

) i(C
   
  

3
   
  

) 
   
  

≈
   
  

i(C
   
  

3
   
  

) m(C
   
  

1
   
  

; C
   
  

2
   
  

) if C
   
  

1
   
  

<> C
   
  

3

   
  

6.
   
  

m(C
   
  

1
   
  

; C
   
  

2
   
  

) d(C
   
  

3
   
  

) 
   
  

≈
   
  

d(C
   
  

3
   
  

) m(C
   
  

1
   
  

; C
   
  

2
   
  

) if C
   
  

3
   
  

<> C
   
  

1
   
  

, C
   
  

2
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Simplification Rules

   
  

1.
   
  

i(C
   
  

1
   
  

) i(C
   
  

1
   
  

) => i(C
   
  

1
   
  

)

   
  

2.
   
  

d(C
   
  

1
   
  

) d(C
   
  

1
   
  

) => d(C
   
  

1
   
  

)

   
  

3.
   
  

i(C
   
  

1
   
  

) d(C
   
  

1
   
  

) => d(C
   
  

1
   
  

)

   
  

4.
   
  

d(C
   
  

1
   
  

) i(C
   
  

1
   
  

) => i(C
   
  

1
   
  

)

   
  

5.
   
  

m(C
   
  

1
   
  

; C
   
  

1
   
  

) => 
   
  

e

   
  

6.
   
  

m(C
   
  

1
   
  

; C
   
  

2
   
  

) i(C
   
  

2
   
  

) => d(C
   
  

1
   
  

) i(C
   
  

2
   
  

)

   
  

Let C
   
  

1
   
  

, C
   
  

2
   
  

, C
   
  

3
   
  

, be sets of conditions describing pairwise disjoint hyperplanes:

   
  

7.
   
  

i(C
   
  

1
   
  

) m(C
   
  

1
   
  

; C
   
  

2
   
  

) => m(C
   
  

1
   
  

; C
   
  

2
   
  

) i(C
   
  

2
   
  

)

   
  

8.
   
  

m(C
   
  

1
   
  

; C
   
  

2
   
  

) d(C
   
  

1
   
  

) => m(C
   
  

1
   
  

; C
   
  

2
   
  

)

   
  

9.
   
  

m(C
   
  

1
   
  

; C
   
  

2
   
  

) d(C
   
  

2
   
  

) => d(C
   
  

1
   
  

) d(C
   
  

2
   
  

)

   
  

10.
   
  

d(C
   
  

1
   
  

) m(C
   
  

1
   
  

; C
   
  

2
   
  

) => d(C
   
  

1
   
  

)

   
  

11.
   
  

m(C
   
  

1
   
  

; C
   
  

2
   
  

) m(C
   
  

1
   
  

; C
   
  

3
   
  

) => m(C
   
  

1
   
  

; C
   
  

2
   
  

)

   
  

if C
   
  

1
   
  

<> C
   
  

2

   
  

12.
   
  

m(C
   
  

1
   
  

; C
   
  

2
   
  

) m(C
   
  

2
   
  

; C
   
  

3
   
  

) 

   
  

=> m(C
   
  

1
   
  

; C
   
  

3
   
  

) m(C
   
  

2
   
  

; C
   
  

3
   
  

) 

   
  

These rules can be used for transaction optimization.
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Final State Serializability

  

   
Definition 8.3 (Final State Serializability):

  

   
A history s for a set T = { t

     
1

     
, ... t

     
n

     
} of IDM transactions is 

     
final state

  

   
serializable 

     
if s 

     
≈

     
s‘ for some serial history s‘ for T

     
.
  

   
Let FSR

     
IDM 

     
denote the class of all final state serializable histories (for T).

  

   
Example 8.3/4

     
: Let

  

   
t
     
1

     
= d(3) m(1; 2) m(3; 4),

     
t
     
2

     
= d(3) m(2; 3)

  

   
and consider

     
s = d

     
2

     
(3) d

     
1

     
(3) m

     
1

     
(1; 2) m

     
2

     
(2; 3) m

     
1

     
(3; 4)

  

   
s is neither equivalent to t

     
1

     
t
     
2

     
nor to t

     
2

     
t
     
1

     
; thus, s is not in FSR

     
IDM

  

   
However, optimizing t

     
1

     
to d(3) m(1; 2) yields

  

   
s‘ = d

     
2

     
(3) d

     
1

     
(3) m

     
1

     
(1; 2) m

     
2

     
(2; 3) 

     
≈

     
t
     
1

     
t
     
2
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Testing Membership in FSR

  
   
IDM

  

   
Theorem 8.1:

  

   
The problem of testing whether a given history is in FSR

     
IDM

     
is NP complete.

  

   
Thus, “exact“ testing is no easier than for page 

  

   
model transactions when semantic information is 

  

   
present.
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Conflict Serializability

  

   
Definition 8.4 (Conflict Serializability):

  

   
A history s for a set T of n transactions is 

     
conflict serializable 

     
if the equivalence

  

   
of s 

     
to a serial history can be proven using the commutativity rules alone

     
.
  

   
Let CSR

     
IDM 

     
denote the class of all 

     
conflict

     
serializable histories (for T).

  

   
Definition 8.5 (Conflict Graph):

  

   
Let T be a set of IDM transactions and s a history for T. The 

     
conflict graph

  

   
G(s) = (T, E) of s is defined by: (t

     
i
     
, t

     
j
     
) is in E if for transactions t

     
i
     
and t

     
j
     
in V,

  

   
i <> j, there is an update u in t

     
i
     
and an update u‘ in t

     
j
     
s.t. u <

     
s
     
u‘ and

  

   
uu‘ is not equivalent to u‘u (i.e., uu‘

     
≈

     
u‘u does not hold)

     
. 

  

   
Theorem 8.2:

  

   
Let s be a history for a set T of transactions. Then s is in CSR

     
IDM

     
iff G(s) is

  

   
acyclic.
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Example 8.6

  

   
C

     
onsider

     
s = m

     
2

     
(1; 2) m

     
1

     
(2; 3) m

     
2

     
(3; 

     
2

     
)

  

   
G(

     
s

     
) is cyclic, so s is 

     
not

     
in 

     
CSR

     
IDM 

  

   
On the other hand, s 

     
≈

     
m

     
1

     
(2; 3) m

     
2

     
(1; 2) m

     
2

     
(3; 

     
2

     
)

     
≈

     
t
     
1

     
t
     
2

  

   
so s is in 

     
F

     
SR

     
IDM

  

   
Consequence: 

     
CSR

     
IDM

     
is a strict subset of F

     
SR

     
IDM

  

   
t
     
1

  

   
t
     
2
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Extended Conflict Serializability

  

   
Definition 8.6 (Extended Conflict Graph / Serializability):

  

   
Let s be a history for a set T = { t

     
1

     
, ... t

     
n

     
} of transactions.

  

   
(i)

     
The 

     
extended conflict graph

     
EG(s) = (T, E) of s is defined by:

  

   
(t

     
i
     
, t

     
j
     
) is in E if there is an update u in t

     
j 

     
s.t. s = s‘ u s‘‘ and u does not commute

  

   
with the projection of s‘ onto t

     
i
     
.
  

   
(ii)

     
s is 

     
extended conflict serializable 

     
if EG(s) is acyclic.

  

   
Let ECSR

     
IDM 

     
denote the class of all extended conflict serializable histories.

  

   
Sometimes, the 

     
context

     
in which a conflict occurs can make a difference:

  

   
Example

     
: Let

  

   
s = d

     
1

     
(0) m

     
1

     
(0; 1) m

     
2

     
(1; 2) m

     
1

     
(2; 3)

  

   
G(s) is cyclic, but s 

     
≈

     
m

     
2

     
(1; 2) d

     
1

     
(0) m

     
1

     
(0; 1) m

     
1

     
(2; 3) 

     
≈

     
t
     
2

     
t
     
1

  

   
Intutively, the conflict involving 

     
m

     
1

     
(0; 1) does not exist (due to d

     
1

     
(0) ) !
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Relationship between the Classes

  

   
Theorem

     
8.3

     
:

  

   
CSR

     
IDM

     
⊂

     
E

     
CSR

     
IDM 

     
⊂

     
F

     
SR

     
IDM

     
.
  

   
CSR

     
IDM

  

   
E

     
CSR

     
IDM

  

   
F

     
SR

     
IDM
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Serializability w/ Functional Dependencies

   
  

Consider a relation with attributes A and B s.t. A 
   
  

-
   
  

> B holds, and the following

   
  

history:

   
  

s = m
   
  

1
   
  

(A=0, B=0; A=0, B=2) m
   
  

2
   
  

(A=0, B=0; A=0, B=3)

   
  

m
   
  

2
   
  

(A=0, B=1; A=0, B=3) m
   
  

1
   
  

(A=0, B=1; A=0, B=2)

   
  

s is in neither of CSR
   
  

IDM
   
  

, 
   
  

ECSR
   
  

IDM 
   
  

, 
   
  

FSR
   
  

IDM 
   
  

.

   
  

However, the first conflict affects (0,0), while the second affects (0,1),

   
  

and 
   
  

these two tuples cannot occur simultaneously in a relation satisfying

   
  

the given FD
   
  

! So depending on the state, s 
   
  

≈
   
  

t
   
  

1
   
  

t
   
  

2 
   
  

or s 
   
  

≈
   
  

t
   
  

2
   
  

t
   
  

1 .
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Motivation: Short Transactions Are Good

   
  

decompose

   
  

?

   
  

t
   
  

11
   
  

: r(A
   
  

1
   
  

)w(A
   
  

1
   
  

)

   
  

t
   
  

12
   
  

: 
   
  

r(B
   
  

1
   
  

)w(B
   
  

1
   
  

)

   
  

t
   
  

21
   
  

: r(A
   
  

3
   
  

)w(A
   
  

3
   
  

)

   
  

t
   
  

22
   
  

: 
   
  

r(B
   
  

1
   
  

)w(B
   
  

1
   
  

)

   
  

t
   
  

31
   
  

: r(A
   
  

4
   
  

)w(A
   
  

4
   
  

)

   
  

t
   
  

32
   
  

: 
   
  

r(B
   
  

2
   
  

)w(B
   
  

2
   
  

)

   
  

t
   
  

61
   
  

: r(A
   
  

1
   
  

)r(A
   
  

2
   
  

)r(A
   
  

3
   
  

)r(B
   
  

1
   
  

)

   
  

t
   
  

62
   
  

: 
   
  

r(A
   
  

4
   
  

)r(A
   
  

5
   
  

)r(B
   
  

2
   
  

)

   
  

Debit/credit:

   
  

t
   
  

1
   
  

: r(A
   
  

1
   
  

)w(A
   
  

1
   
  

)
   
  

r(B
   
  

1
   
  

)w(B
   
  

1
   
  

)

   
  

t
   
  

2
   
  

: r(A
   
  

3
   
  

)w(A
   
  

3
   
  

)
   
  

r(B
   
  

1
   
  

)w(B
   
  

1
   
  

)

   
  

t
   
  

3
   
  

: r(A
   
  

4
   
  

)w(A
   
  

4
   
  

)
   
  

r(B
   
  

2
   
  

)w(B
   
  

2
   
  

)

   
  

Balance:

   
  

t
   
  

4
   
  

: r(A
   
  

2
   
  

)

   
  

t
   
  

5
   
  

: r(A
   
  

4
   
  

)

   
  

Audit:

   
  

t
   
  

6
   
  

: r(A
   
  

1
   
  

)r(A
   
  

2
   
  

)r(A
   
  

3
   
  

)r(B
   
  

1
   
  

)
   
  

r(A
   
  

4
   
  

)r(A
   
  

5
   
  

)r(B
   
  

2
   
  

)

   
  

Example 8.12:
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Transaction Chopping

  

   
Assumption:

  

   
all potentially concurrent app programs are known in advance and

  

   
their structure and resulting access patterns can be precisely analyzed

  

   
Definition 8.8 (Transaction Chopping):

  

   
A 

     
chopping

     
of transaction t

     
i 

     
is a decomposition of t

     
i
     
into pieces t

     
i1

     
, ..., t

     
ik

     
s.t.

  

   
every step of t

     
i
     
is contained in exactly one piece and the step order is preserved.

  

   
Definition 8.10 (Correct Chopping):

  

   
A chopping of T={t

     
1

     
, ..., t

     
n

     
} is 

     
correct 

     
if every execution of the transaction 

  

   
pieces is conflict

     
-

     
equivalent to a serial history of T under a protocol with

  

   
•

     
transaction pieces obey the execution precedences of the original programs.

  

   
•

     
each piece is executed as a unit under a CSR scheduler. 
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Chopping Graph

  

   
Definition 8.9 (Chopping Graph):

  

   
For a chopping of transaction set T the 

     
chopping graph

     
C(T)

     
is 

  

   
an undirected graph s.t.

  

   
•

     
the nodes of C(T) are the transaction pieces

  

   
•

     
for two pieces p, q from different transactions C(T) contains a 

  

   
c edge

     
between p and p‘ if p and q contain conflicting operations

  

   
•

     
for two pieces p, q from the same transaction C(T) contains an 

     
s edge

  

   
Theorem 8.5:

  

   
A chopping is correct if the associated chopping graph does not contain

  

   
an sc cycle (i.e., a cycle that involves at least one s edge and at least one c edge.

  

   
Example 8.13:

  

   
t
     
1

     
= r(x)w(x)

     
r(y)w(y)

  

   
t
     
2

     
= r(x)w(x)

  

   
t
     
3

     
= r(y)w(y)

  

   
t
     
11

     
= r(x)w(x)

  

   
t
     
12

     
= 

     
r(y)w(y)

  

   
t
     
11

     
t
     
12

  

   
t
     
2

     
t
     
3

  

   
s

  

   
c

     
c

  

   
C(T):
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Chopping Example 8.14

   
  

t
   
  

1
   
  

: r(A
   
  

1
   
  

)w(A
   
  

1
   
  

)
   
  

r(B
   
  

1
   
  

)w(B
   
  

1
   
  

)

   
  

t
   
  

2
   
  

: r(A
   
  

3
   
  

)w(A
   
  

3
   
  

)r(B
   
  

1
   
  

)w(B
   
  

1
   
  

)

   
  

t
   
  

3
   
  

: r(A
   
  

4
   
  

)w(A
   
  

4
   
  

)r(B
   
  

2
   
  

)w(B
   
  

2
   
  

)

   
  

t
   
  

4
   
  

: r(A
   
  

2
   
  

)

   
  

t
   
  

5
   
  

: r(A
   
  

4
   
  

)

   
  

t
   
  

6
   
  

: r(A
   
  

1
   
  

)r(A
   
  

2
   
  

)r(A
   
  

3
   
  

)r(B
   
  

1
   
  

)
   
  

r(A
   
  

4
   
  

)r(A
   
  

5
   
  

)r(B
   
  

2
   
  

)

   
  

t
   
  

61
   
  

: r(A
   
  

1
   
  

)r(A
   
  

2
   
  

)r(A
   
  

3
   
  

)r(B
   
  

1
   
  

)

   
  

t
   
  

62
   
  

: 
   
  

r(A
   
  

4
   
  

)r(A
   
  

5
   
  

)r(B
   
  

2
   
  

)

   
  

t
   
  

1
   
  

t
   
  

2
   
  

t
   
  

3

   
  

t
   
  

4
   
  

t
   
  

5

   
  

t
   
  

61
   
  

t
   
  

62

   
  

c

   
  

c
   
  

c
   
  

c   
  

c

   
  

s

   
  

t
   
  

11
   
  

: r(A
   
  

1
   
  

)w(A
   
  

1
   
  

)

   
  

t
   
  

12
   
  

: 
   
  

r(B
   
  

1
   
  

)w(B
   
  

1
   
  

)
   
  

t
   
  

12
   
  

t
   
  

2
   
  

t
   
  

3

   
  

t
   
  

4
   
  

t
   
  

5

   
  

t
   
  

61
   
  

t
   
  

62

   
  

c

   
  

c
   
  

c
   
  

c   
  

c

   
s

   
  

t
   
  

11

   
  

c
   
  

s
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Applicability of Chopping

   
  

Directly applicable to straight
   
  

-
   
  

line, parameter
   
  

-
   
  

less

   
  

SQL programs with predicate locking

   
  

Needs to conservatively derive covering program for

   
  

parameterized SQL, if
   
  

-
   
  

then
   
  

-
   
  

else and loops, 

   
  

and needs to be conservative about c edges

   
  

Example:
   
  

Select AccountNo From Accounts 

   
  

Where AccountType=‚savings‘ And City = :x;

   
  

if not found then

   
  

Select AccountNo From Accounts

   
  

Where AccountType=‚checking‘ And City = :x 

   
  

fi;

   
  

→
   
  

Select AccountNo From Accounts 

   
  

Where AccountType=‚savings‘;

   
  

Select AccountNo From Accounts

   
  

Where AccountType=‚checking‘;
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Lessons Learned

   
  

•
   
  

Predicate locking is an elegant method for concurrency control

   
  

on relational databases, but has non
   
  

-
   
  

negligible overhead

   
  

→
   
  

record locking (plus index key locking) for 2
   
  

-
   
  

level schedules

   
  

remains the practical method of choice

   
  

•
   
  

Concurrency control may exploit additional knowledge about

   
  

limited operation types, integrity constraints, and program 

   
  

structure

   
  

•
   
  

Transaction chopping is an interesting tuning technique

   
  

that aims to exploit such knowledge
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