
References, Arrays, and Pointers

References, Arrays, and Pointers

164

References, Arrays, and Pointers

Overview

So far, we have mostly worked with fundamental types
• void
• Arithmetic types such as int, float, etc.

Much of the power of C++ comes from the ability to define compound types
• Functions
• Classes (covered in the next lecture)
• References
• Arrays
• Pointers

165

https://en.cppreference.com/w/cpp/language/type

References, Arrays, and Pointers References

Reference Declaration (1)

A reference declaration declares an alias to an already-existing object
• Lvalue reference: &declarator
• Rvalue reference: &&declarator
• declarator may be any other declarator, except another reference declarator
• Most of the time, declarator will simply be a name

References have some peculiarities
• There are no references to void
• References are immutable (although the referenced object may be mutable)
• References are not objects, i.e. they do not necessarily occupy storage

Since references are not objects
• There are no references or pointers to references
• There are no arrays of references

166

https://en.cppreference.com/w/cpp/language/reference

References, Arrays, and Pointers References

Reference Declaration (2)

The & or && tokens are part of the declarator, not the type

int i = 10;
int &j = i, k = i; // j is reference to int, k is int

However, we may omit or insert whitespaces before and after the & or && tokens
• Both int& j = i; and int &j = i; are valid C++

• By convention, we use the former notation (int& j = i;)
• To avoid confusion, statements should declare only one identifier at a time
• Very rarely, exceptions to this rule are necessary in the init-statements of if

and switch statements as well as for loops

167

References, Arrays, and Pointers References

Reference Initialization

In general, a reference to a type T must be initialized to refer to a valid object
• An object of type T
• A function of type T
• An object implicitly convertible to T

Exceptions
• Function parameter declarations
• Function return type declarations
• Class member declarations (more details later)
• With the extern specifier

168

https://en.cppreference.com/w/cpp/language/reference_initialization

References, Arrays, and Pointers References

Lvalue References (1)

As an alias for existing objects

unsigned i = 10;
unsigned j = 42;
unsigned& r = i; // r is an alias for i

r = 21; // modifies i to be 21
r = j; // modifies i to be 42

i = 123;
j = r; // modifies j to be 123

169

References, Arrays, and Pointers References

Lvalue References (2)

To implement pass-by-reference semantics for function calls

void foo(int& value) {
value += 42;

}

int main() {
int i = 10;
foo(i); // i == 52
foo(i); // i == 94

}

170

References, Arrays, and Pointers References

Lvalue References (3)

To turn a function call into an lvalue expression

int global0 = 0;
int global1 = 0;

int& foo(unsigned which) {
if (!which)

return global0;
else

return global1;
}

int main() {
foo(0) = 42; // global0 == 42
foo(1) = 14; // global1 == 14

}

171

References, Arrays, and Pointers References

Rvalue References (1)

Can not (directly) bind to lvalues

int i = 10;
int&& j = i; // ERROR: Cannot bind rvalue reference to lvalue
int&& k = 42; // OK

Extend the lifetimes of temporary objects

int i = 10;
int j = 32;

int&& k = i + j; // k == 42
k += 42; // k == 84;

172

References, Arrays, and Pointers References

Rvalue References (2)
Allow overload resolution to distinguish between lvalues and rvalues

void foo(int& x);
void foo(const int& x);
void foo(int&& x);

int& bar();
int baz();

int main() {
int i = 42;
const int j = 84;

foo(i); // calls foo(int&)
foo(j); // calls foo(const int&)
foo(123); // calls foo(int&&)

foo(bar()) // calls foo(int&)
foo(baz()) // calls foo(int&&)

}

173

References, Arrays, and Pointers References

References and CV-Qualifiers

References themselves cannot be cv-qualified
• However, the referenced type may be cv-qualified
• A reference to T can be initialized from a type that is less cv-qualified than T

(e.g. const int& can be initialized from int)

int i = 10;
const int& j = i;
int& k = j; // ERROR: binding reference of type int& to

// const int discards cv-qualifiers
j = 42; // ERROR: assignment of read-only reference

Lvalue references to const also extend the lifetime of temporary objects

int i = 10;
int j = 32;
const int& k = i + j; // OK, but k is immutable

174

References, Arrays, and Pointers References

Dangling references

It is possible to write programs where the lifetime of a referenced object ends
while references to it still exist.
• This mostly happens when referencing objects with automatic storage

duration
• Results in dangling reference and undefined behavior

Example

int& foo() {
int i = 42;
return i; // ERROR: Returns dangling reference

}

175

https://en.cppreference.com/w/cpp/language/reference#Dangling_references

References, Arrays, and Pointers Arrays

Array Declaration (1)

An array declaration declares an object of array type (also: C-style array)
• declarator[expression]
• declarator may be any valid declarator, surrounded by parentheses if it

begins with *, &, or &&
• expression must be an expression which evaluates to an integral constant

at compile time

For example: T a[N]; for some type T and compile-time constant N
• a consists of N contiguously allocated elements of type T
• Elements are numbered 0, …, N - 1
• Elements can be accessed with the subscript operator [], e.g. a[0], …,
a[N - 1]

• Without an initializer, every element of a is uninitialized

176

https://en.cppreference.com/w/cpp/language/array

References, Arrays, and Pointers Arrays

Array Declaration (2)

Example

unsigned short a[10];

for (unsigned i = 0; i < 10; ++i)
a[i] = i + 1;

Array objects are lvalues, but they cannot be assigned to

unsigned short a[10];
unsigned short b[10];

a = b; // ERROR: a is an array

Arrays cannot be returned from functions

int[] foo(); // ERROR

177

References, Arrays, and Pointers Arrays

Array Declaration (3)

Elements of an array are allocated contiguously in memory
• Given unsigned short a[10]; containing the integers 1 through 10
• Assuming a 2-byte unsigned short type
• Assuming little-endian byte ordering

Address
02 04 0600

00 00 00 00 00 00 00 00 00 0001 05040302 080706 0a09
08 100e0c0a 12

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

Arrays are just dumb chunks of memory
• Out-of-bounds accesses are not automatically detected, and do not

necessarily lead to a crash
• May lead to rather weird bugs
• Exist mainly due to compatibility requirements with C

178

References, Arrays, and Pointers Arrays

Array Declaration (4)

The elements of an array can be arrays themselves

unsigned short b[3][2];

for (unsigned i = 0; i < 3; ++i)
for (unsigned j = 0; j < 2; ++j)

b[i][j] = 3 * i + j;

Elements are still allocated contiguously in memory
• b can be thought of as a 3 × 2 matrix in row-major format
• The subscript operator simply returns an array object on the first level, to

which the subscript operator can be applied again ((b[i])[j])

179

References, Arrays, and Pointers Arrays

Array Initialization

Arrays can be default-initialized, in which case every element is default-initialized

unsigned short a[10] = {}; // a contains 10 zeros

Arrays can be list-initialized, in which case the size may be omitted

unsigned short a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

Multi-dimensional arrays may also be list-initialized, but only the first dimension
may have unknown bound

unsigned short b[][2] = {
{0, 1},
{2, 3},
{4, 5}

}

180

References, Arrays, and Pointers Arrays

std::array

C-style arrays should be avoided whenever possible
• Use the std::array type defined in the <array> standard header instead
• Same semantics as a C-style array
• Optional bounds-checking and other useful features
• std::array is a template type with two template parameters (the element

type and count) – more details later

Example

#include <array>

int main() {
std::array<unsigned short, 10> a;
for (unsigned i = 0; i < a.size(); ++i)

a[i] = i + 1; // no bounds checking
}

181

https://en.cppreference.com/w/cpp/container/array

References, Arrays, and Pointers Arrays

std::vector (1)

std::array is inflexible due to compile-time fixed size
• The std::vector type defined in the <vector> standard header provides

dynamically-sized arrays
• Storage is automatically expanded and contracted as needed
• Elements are still stored contiguously in memory

Useful functions
• push_back – inserts an element at the end of the vector
• size – queries the current size
• clear – clears the contents
• resize – change the number of stored elements
• The subscript operator can be used with similar semantics as for C-style

arrays

Familiarize yourself with the reference documentation on std::vector

182

https://en.cppreference.com/w/cpp/container/vector

References, Arrays, and Pointers Arrays

std::vector (2)
Example

#include <iostream>
#include <vector>

int main() {
std::vector<unsigned short> a;
for (unsigned i = 0; i < 10; ++i)

a.push_back(i + 1);

std::cout << a.size() << std::endl; // prints 10
a.clear();
std::cout << a.size() << std::endl; // prints 0

a.resize(10); // a now contains 10 zeros
std::cout << a.size() << std::endl; // prints 10

for (unsigned i = 0; i < 10; ++i)
a[i] = i + 1;

}

183

References, Arrays, and Pointers Arrays

Range-For (1)

Execute a for-loop over a range

for (init-statement; range-declaration : range-expression)
loop-statement

Explanation
• Executes init-statement once, then executes loop-statement once for

each element in the range defined by range-expression
• range-expression may be an expression that represents a sequence (e.g.

an array or an object for which begin and end functions are defined, such as
std::vector)

• range-declaration should declare a named variable of the element type of
the sequence, or a reference to that type

• init-statement may be omitted

184

https://en.cppreference.com/w/cpp/language/range-for

References, Arrays, and Pointers Arrays

Range-For (2)

Example

#include <iostream>
#include <vector>

int main() {
std::vector<unsigned short> a;

// no range-for, we need the index
for (unsigned i = 0; i < 10; ++i)

a.push_back(i + 1);

// range-for
for (const unsigned short& e : a)

std::cout << e << std::endl;
}

185

References, Arrays, and Pointers Pointers

Storage of Objects

A “region of storage” has a physical equivalent
• Typically, objects reside in main memory, either on the stack or on the heap
• Up to now (and for some lectures to come), we have almost exclusively dealt

with objects residing on the stack
• More details on the heap later

Objects reside at some specific location in main memory
• As we have seen in the first lecture, this location can be identified by an

address in main memory
• It is convenient to think of addresses as simple offsets from the beginning of

the address space
• Pointers are a feature of C++ to obtain and interact with these addresses

186

References, Arrays, and Pointers Pointers

Pointer Declaration (1)

Declares a variable of pointer type
• * cv declarator
• declarator may be any other declarator, except for a reference declarator
• cv specifies the cv-qualifiers of the pointer (not the pointed-to type), and

may be omitted
• Analogous to reference declarations, the * token is part of the declarator, not

the type

Notes
• A pointer to an object represents the address of the first byte in memory that

is occupied by that object
• As opposed to references, pointers are themselves objects
• Consequently, pointers to pointers are allowed

187

https://en.cppreference.com/w/cpp/language/pointer

References, Arrays, and Pointers Pointers

Pointer Declaration (2)

Examples of valid pointer declarations

int* a; // pointer to int
const int* b; // pointer to const int
int* const c; // const pointer to int
const int* const d; // const pointer to const int

Pointer-to-pointer declarations

int** e; // pointer to pointer to int
const int* const* const f; // const pointer to const pointer

// to const int

Contraptions like the declaration of f are very rarely (if at all) necessary

188

References, Arrays, and Pointers Pointers

The Address-Of Operator

In general, there is no meaningful conversion from the pointed-to type to a
pointer type
• In order to obtain a pointer to an object, the built-in unary address-of

operator & has to be used
• Given an object a, &a returns a pointer to the object
• The cv-qualification of a is retained

Example

int a = 10;
const int b = 42;
int* c = &a; // OK: c points to a
const int* d = &b; // OK: d points to b
int* e = &b; // ERROR: invalid conversion from

// const int* to int*

189

https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_address-of_operator

References, Arrays, and Pointers Pointers

The Indirection Operator

In general, there is no meaningful conversion from a pointer type to the pointer-to
type
• In order to access the pointed-to object, the built-in unary indirection

operator * has to be used
• Given an expression expr of pointer type, *expr returns a reference to the

pointed-to object
• The cv-qualifiers of the pointed-to type are retained
• Applying the indirection operator is also called dereferencing a pointer

Example

int a = 10;
int* c = &a;
int& d = *c; // reference to a
d = 123; // a == 123
*c = 42; // a == 42

190

https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_indirection_operator

References, Arrays, and Pointers Pointers

Null Pointers

A pointer may not point to any object at all
• Indicated by the special value and corresponding literal nullptr
• Pointers of the same type which are both null pointers are considered equal
• It is undefined behavior to dereference a null pointer

Undefined behavior can lead to surprising results
foo.cpp

int foo(const int* ptr) {
int v = *ptr;

if (ptr == nullptr)
return 42;

return v;
}

foo.o
foo(int*):

movl (%rdi), %eax
ret

191

https://en.cppreference.com/w/cpp/language/pointer#Null_pointers

References, Arrays, and Pointers Pointer Arithmetic

Array to Pointer Decay

Arrays and pointers have many similarities
• There is an implicit conversion from values of array type to values of pointer

type
• The conversion constructs a pointer to the first element of an array
• The pointer type must be at least as cv-qualified as the array type

Example

#include <iostream>

int main() {
int array[3] = {123, 456, 789};
const int* ptr = array;

std::cout << "The first element of array is ";
std::cout << *ptr << std::endl;

}

192

https://en.cppreference.com/w/cpp/language/array#Array-to-pointer_decay

References, Arrays, and Pointers Pointer Arithmetic

The Subscript Operator

The subscript operator is defined on pointer types
• Treats the pointer as a pointer to the first element of an array
• Follows the same semantics as the subscript operator on array types

Example

#include <iostream>

int main() {
int array[3] = {123, 456, 789};
const int* ptr = array;

std::cout << "The elements of array are";
for (unsigned i = 0; i < 3; ++i)

std::cout << " " << ptr[i];
std::cout << std::endl;

}

193

https://en.cppreference.com/w/cpp/language/operator_member_access#Build-in_subscript_operator

References, Arrays, and Pointers Pointer Arithmetic

Special Case: String Literals

String literals are another artifact of C compatibility
• String literals are immutable null-terminated character arrays
• That is, the type of a string literal with N characters is const char[N + 1]
• Most of the time, programmers take advantage of array-to-pointer decay and

write const char* str = "foo";
• The character type can be controlled by the prefixes known from character

literals (i.e. u8"string", u"string", or U"string")

C-style string literals should never be used!
• The C++ standard library provides the much safer std::string and
std::string_view types (more details later)

• Unfortunately, libraries or syscalls often require C-style string parameters
• If required, the standard library types can expose the C-style string

representation

194

https://en.cppreference.com/w/cpp/language/string_literal

References, Arrays, and Pointers Pointer Arithmetic

Arithmetic on Pointers (1)
Some arithmetic operators are defined between pointers and integral types
• Treats the pointer as a pointer to some element of an array
• Adding i to a pointer moves the it i elements to the right
• Subtracting i from a pointer moves it i elements to the left
• The increment and decrement operators are defined analogously

Example

#include <iostream>

int main() {
int array[3] = {123, 456, 789};
const int* ptr = &array[1];

std::cout << "The previous element is ";
std::cout << *(ptr - 1) << std::endl;
std::cout << "The next element is ";
std::cout << *(ptr + 1) << std::endl;

}

195

https://en.cppreference.com/w/cpp/language/operator_arithmetic#Additive_operators

References, Arrays, and Pointers Pointer Arithmetic

Arithmetic on Pointers (2)

Special care has to be taken to only dereference valid pointers
• Especially important since it is valid to take the past-the-end pointer of an

array or std::vector

Example

int main() {
std::vector<int> v;
v.resize(10);

const int* firstPtr = &v[0]; // OK: valid pointer
const int* lastPtr = &v[10]; // OK: past-the-end pointer

int last1 = *lastPtr; // ERROR, might segfault
int last2 = v[10]; // ERROR, might segfault

}

196

References, Arrays, and Pointers Pointer Arithmetic

Arithmetic on Pointers (3)

Subtraction is defined between pointers
• Treats both pointers as pointers to some elements of an array
• Computes the number of elements between these two pointers

Example

#include <iostream>

int main() {
int array[3] = {123, 456, 789};
const int* ptr1 = &array[0];
const int* ptr2 = &array[3]; // past-the-end pointer

std::cout << "There are " << (ptr2 - ptr1) << " elements ";
std::cout << "in array" << std::endl;

}

197

References, Arrays, and Pointers Pointer Arithmetic

Comparisons on Pointers

The comparison operators are defined between pointers
• Interprets the addresses represented by the pointers as integers and compares

them
• Only defined if the pointers point to elements of the same array

Example

#include <iostream>

int main() {
int array[3] = {123, 456, 789};

std::cout << "The elements of array are"
for (const int* it = &array[0]; it < &array[3]; ++it)

std::cout << " " << *it;
std::cout << std::endl;

}

198

https://en.cppreference.com/w/cpp/language/operator_comparison#Pointer_comparison_operators

References, Arrays, and Pointers Pointer Conversions

Void Pointers

Pointers to void are allowed
• A pointer to an object of any type can implicitly be converted to a pointer to
void

• The void pointer must be at least as cv-qualified as the original pointer
• The pointer value (i.e. the address) is unchanged

Usage
• Used to pass objects of unknown type
• Extensively used in C interfaces (e.g. malloc, qsort, ...)
• Only few operations are defined on void pointers (mainly assignment)
• In order to use the pointed-to object, one must cast the void pointer to the

required type

199

https://en.cppreference.com/w/cpp/language/pointer#Pointers_to_void

References, Arrays, and Pointers Pointer Conversions

static_cast (1)

The static_cast conversion is used to cast between related types

static_cast< new_type > (expression)

Explanation
• Converts the value of expression to a value of new_type
• new_type must be at least as cv-qualified as the type of expression
• Can be used to convert void pointers to pointers of another type
• Many more use cases (see reference documentation)

200

https://en.cppreference.com/w/cpp/language/static_cast

References, Arrays, and Pointers Pointer Conversions

static_cast (2)
Void pointers

int i = 42;
void* vp = &i;
int* ip = static_cast<int*>(vp);

Other related types

int sum(int a, int b);
double sum(double a, double b);

int main() {
int a = 42;
double b = 3.14;

double x = sum(a, b); // ERROR: ambiguous
double y = sum(static_cast<double>(a), b); // OK
int z = sum(a, static_cast<int>(b)); // OK

}

201

References, Arrays, and Pointers Pointer Conversions

reinterpret_cast

The reinterpret_cast conversion is used to convert between unrelated types

reinterpret_cast < new_type > (expression)

Explanation
• Interprets the underlying bit pattern of the value of expression as a value

of new_type
• new_type must be at least as cv-qualified as the type of expression
• Usually does not generate any CPU instructions

Only a very restricted set of conversions is allowed
• A pointer to an object can be converted to a pointer to std::byte, char or
unsigned char

• A pointer can be converted to an integral type (typically uintptr_t)
• Invalid conversions usually lead to undefined behavior

202

https://en.cppreference.com/w/cpp/language/reinterpret_cast

References, Arrays, and Pointers Pointer Conversions

Strict Aliasing Rule (1)

It is undefined behavior to access an object using an expression of different type
• In particular, we are not allowed to access an object through a pointer to

another type (pointer aliasing)
• Consequently, compilers typically assume that pointers to different types

cannot have the same value
• There are very few exceptions to this rule (more details next)

203

https://en.cppreference.com/w/cpp/language/object#Strict_aliasing

References, Arrays, and Pointers Pointer Conversions

Strict Aliasing Rule (2)
foo.cpp

static int foo(int* x, double* y) {
*x = 42;
*y = 3.0;
return *x;

}

int main() {
int a = 0;
double* y = reinterpret_cast<double*>(&a);
return foo(&a, y);

}

Compiling this with g++ -O1 will result in the following assembly
foo.o

main:
movl $0, %eax
ret

204

References, Arrays, and Pointers Pointer Conversions

Strict Aliasing Rule (3)
foo.cpp

static int foo(int* x, double* y) {
*x = 42;
*y = 3.0;
return *x;

}

int main() {
int a = 0;
double* y = reinterpret_cast<double*>(&a);
return foo(&a, y);

}

Compiling this with g++ -O2 will result in the following assembly
foo.o

main:
movl $42, %eax
ret

205

References, Arrays, and Pointers Pointer Conversions

Examining the Object Representation (1)

Important exception to the strict aliasing rule
• Any pointer may legally be converted to a pointer to char, or
unsigned char

• Any pointer may legally be converted to a pointer to std::byte (defined in
<cstddef> header, requires C++17),

• Permits the examination of the object representation of any object as an
array of bytes

std::byte behaves similarly to unsigned char
• Represents a raw byte without any integer or character semantics
• Only bitwise operators are defined on bytes

206

https://en.cppreference.com/w/cpp/language/object#Object_representation_and_value_representation

References, Arrays, and Pointers Pointer Conversions

Examining the Object Representation (2)

Example (compile with g++ -std=c++17)

#include <iostream>
#include <iomanip>
#include <cstddef>

int main() {
double a = 3.14;
const std::byte* bytes = reinterpret_cast<const std::byte*>(&a);

std::cout << "The object representation of 3.14 is 0x";
std::cout << std::hex << std::setfill('0') << std::setw(2);

for (unsigned i = 0; i < sizeof(double); ++i)
std::cout << static_cast<unsigned>(bytes[i]);

std::cout << std::endl;
}

207

References, Arrays, and Pointers Pointer Conversions

uintptr_t

Any pointer may legally be converted to an integral type
• The integral type must be large enough to hold all values of the pointer
• Usually, uintptr_t should be used (defined in <cstdint> header)
• Useful in some cases, especially when building custom data structures (more

details later)

Example

#include <cstddint>
#include <iostream>

int main() {
int x = 42;
uintptr_t addr = reinterpret_cast<uintptr_t>(&x);

std::cout << "The address of x is " << addr << std::endl;
}

208

https://en.cppreference.com/w/cpp/types/integer

References, Arrays, and Pointers Pointer Conversions

The sizeof Operator (1)

The sizeof operator queries the size of the object representation of a type

sizeof(type)

Explanation
• The size of a type is given in bytes
• sizeof(std::byte), sizeof(char), and sizeof(unsigned char)

return 1 by definition
• Depending on the computer architecture, there may be 8 or more bits in one

byte (as defined by C++)

209

https://en.cppreference.com/w/cpp/language/sizeof

References, Arrays, and Pointers Pointer Conversions

The sizeof Operator (2)

The size of an object and pointer arithmetics are closely related
foo.cpp

#include <iostream>

int main() {
int array[3] = {123, 456, 789};

std::cout << "sizeof(int) = " << sizeof(int) << std::endl;

int* ptr0 = &array[0];
int* ptr1 = &array[1];

uintptr_t uptr0 = reinterpret_cast<uintptr_t>(ptr0);
uintptr_t uptr1 = reinterpret_cast<uintptr_t>(ptr1);

std::cout << "(ptr1 - ptr0) = " << (ptr1 - ptr0) << std::endl;
std::cout << "(uptr1 - uptr0) = " << (uptr1 - uptr0) << std::endl;

}

210

References, Arrays, and Pointers Pointer Conversions

The sizeof Operator (3)

On an x86-64 machine, the program might produce the following output

$./foo
sizeof(int) = 4
(ptr1 - ptr0) = 1
(uptr1 - uptr0) = 4

Interpretation
• One int occupies 4 bytes
• There is one int between ptr0 and ptr1
• There are 4 bytes (i.e. exactly one int) between ptr0 and ptr1

211

References, Arrays, and Pointers Pointer Conversions

The alignof Operator

Queries the alignment requirements of a type

alignof(type)

Explanation
• Depending on the computer architecture, certain types must have addresses

aligned to specific byte boundaries
• The alignof operator returns the number of bytes between successive

addresses where an object of type can be allocated
• The alignment requirement of a type is always a power of two
• Important (e.g.) for SIMD instructions, where the programmer must

explicitly ensure correct alignment
• Memory accesses with incorrect alignment lead to undefined behavior, e.g.

SIGSEGV or SIGBUS (depending on architecture)

212

https://en.cppreference.com/w/cpp/language/alignof

References, Arrays, and Pointers Guidelines

Usage Guidelines

When to use references
• Pass-by-reference function call semantics
• When it is guaranteed that the referenced object will always be valid
• When object that should be referenced is always the same

When to use pointers
• Only when absolutely necessary!
• When there may not be a pointed-to object (i.e. nullptr)
• When the pointer may change to a different object
• When pointer arithmetic is desired

We will revisit this discussion later during the lecture
• Decision is intricately related to ownership semantics
• We would actually like to avoid using raw pointers as much as possible
• There are standard library classes which encapsulate pointers

213

References, Arrays, and Pointers Troubleshooting

Troubleshooting

Pointers have a reputation of being highly error-prone
• It is very easy to obtain pointers that point to invalid locations
• Once such a pointer is dereferenced, a number of bad things can happen

Bad things that may happen
• The pointer pointed outside of the program’s address space

• The program will likely segfault immediately
• The pointer pointed outside of the intended memory region, but still inside

the program’s address space
• The program might segfault immediately
• ...or simply corrupt some memory, which might lead to problems later

With the right tools, debugging is not as daunting as it may seem

214

References, Arrays, and Pointers Troubleshooting

The Infamous Segfault (1)

Every C++ programmer will encounter a segfault eventually
• Raised by hardware in response to a memory access violation
• In most cases caused by invalid pointers or memory corruption

Obvious example
foo.cpp

int main() {
int* a;
return *a; // ERROR: Dereferencing an uninitialized pointer

}

Executing this program might result in the following

$./foo
[1] 5128 segmentation fault (core dumped) ./foo

215

References, Arrays, and Pointers Troubleshooting

The Infamous Segfault (2)

Sometimes, the root cause may be (much) more difficult to determine

int main() {
long* ptr;
long array[3] = {123, 456, 789};
ptr = &array[0];
array[3] = 987; // ERROR: off-by-one access

return *ptr;
}

When compiled with g++ -fno-stack-protector, this will also segfault
• The off-by-one access array[3] = 987 actually changes the value of ptr
• Dereferencing this pointer in the return statement will result in a segfault
• The -fno-stack-protector option is required, because g++ will by default

emit extra code to prevent such buffer overflows

216

References, Arrays, and Pointers Troubleshooting

The Address Sanitizer (1)

The address sanitizer (ASAN) is one of the most powerful debugging tools
• Enable with the g++ flag -fsanitize=address
• Instruments memory access instructions to check for common bugs
• Should normally be used in conjunction with -g for debug builds
• Should be enabled by default in your debug builds, unless there is a very

compelling reason against it

217

References, Arrays, and Pointers Troubleshooting

The Address Sanitizer (2)

Consider the previous example
foo.cpp

int main() {
long* ptr;
long array[3] = {123, 456, 789};
ptr = &array[0];
array[3] = 987; // ERROR: off-by-one access

return *ptr;
}

This time we build with g++ -fno-stack-protector -fsanitize=address
-g and get an informative error message
• See live demo

218

References, Arrays, and Pointers Troubleshooting

Additional Debugging Tips (1)

Sometimes ASAN cannot detect bugs
• E.g. offset errors within one array

Use the debugger (GDB)!
• Stepping though a buggy part of the program is often enough to identify the

bug
• At least, it can help to narrow down the location of a bug

Make use of the assert macro
• Defined in the <cassert> header
• Can be used to check a boolean expression
• Only enabled when the NDEBUG macro is not defined
• Automatically enabled in debug builds when using CMake

219

	References, Arrays, and Pointers
	References
	Arrays
	Pointers
	Pointer Arithmetic
	Pointer Conversions
	Guidelines
	Troubleshooting

