
References, Arrays, and Pointers

References, Arrays, and Pointers

164



References, Arrays, and Pointers

Overview

So far, we have mostly worked with fundamental types
• void
• Arithmetic types such as int, float, etc.

Much of the power of C++ comes from the ability to define compound types
• Functions
• Classes (covered in the next lecture)
• References
• Arrays
• Pointers
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Reference Declaration (1)

A reference declaration declares an alias to an already-existing object
• Lvalue reference: &declarator
• Rvalue reference: &&declarator
• declarator may be any other declarator, except another reference declarator
• Most of the time, declarator will simply be a name

References have some peculiarities
• There are no references to void
• References are immutable (although the referenced object may be mutable)
• References are not objects, i.e. they do not necessarily occupy storage

Since references are not objects
• There are no references or pointers to references
• There are no arrays of references
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Reference Declaration (2)

The & or && tokens are part of the declarator, not the type

int i = 10;
int &j = i, k = i; // j is reference to int, k is int

However, we may omit or insert whitespaces before and after the & or && tokens
• Both int& j = i; and int &j = i; are valid C++

• By convention, we use the former notation (int& j = i;)
• To avoid confusion, statements should declare only one identifier at a time
• Very rarely, exceptions to this rule are necessary in the init-statements of if

and switch statements as well as for loops
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Reference Initialization

In general, a reference to a type T must be initialized to refer to a valid object
• An object of type T
• A function of type T
• An object implicitly convertible to T

Exceptions
• Function parameter declarations
• Function return type declarations
• Class member declarations (more details later)
• With the extern specifier
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Lvalue References (1)

As an alias for existing objects

unsigned i = 10;
unsigned j = 42;
unsigned& r = i; // r is an alias for i

r = 21; // modifies i to be 21
r = j; // modifies i to be 42

i = 123;
j = r; // modifies j to be 123
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Lvalue References (2)

To implement pass-by-reference semantics for function calls

void foo(int& value) {
value += 42;

}

int main() {
int i = 10;
foo(i); // i == 52
foo(i); // i == 94

}
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Lvalue References (3)

To turn a function call into an lvalue expression

int global0 = 0;
int global1 = 0;

int& foo(unsigned which) {
if (!which)

return global0;
else

return global1;
}

int main() {
foo(0) = 42; // global0 == 42
foo(1) = 14; // global1 == 14

}
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Rvalue References (1)

Can not (directly) bind to lvalues

int i = 10;
int&& j = i; // ERROR: Cannot bind rvalue reference to lvalue
int&& k = 42; // OK

Extend the lifetimes of temporary objects

int i = 10;
int j = 32;

int&& k = i + j; // k == 42
k += 42; // k == 84;
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Rvalue References (2)
Allow overload resolution to distinguish between lvalues and rvalues

void foo(int& x);
void foo(const int& x);
void foo(int&& x);

int& bar();
int baz();

int main() {
int i = 42;
const int j = 84;

foo(i); // calls foo(int&)
foo(j); // calls foo(const int&)
foo(123); // calls foo(int&&)

foo(bar()) // calls foo(int&)
foo(baz()) // calls foo(int&&)

}
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References and CV-Qualifiers

References themselves cannot be cv-qualified
• However, the referenced type may be cv-qualified
• A reference to T can be initialized from a type that is less cv-qualified than T

(e.g. const int& can be initialized from int)

int i = 10;
const int& j = i;
int& k = j; // ERROR: binding reference of type int& to

// const int discards cv-qualifiers
j = 42; // ERROR: assignment of read-only reference

Lvalue references to const also extend the lifetime of temporary objects

int i = 10;
int j = 32;
const int& k = i + j; // OK, but k is immutable
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Dangling references

It is possible to write programs where the lifetime of a referenced object ends
while references to it still exist.
• This mostly happens when referencing objects with automatic storage

duration
• Results in dangling reference and undefined behavior

Example

int& foo() {
int i = 42;
return i; // ERROR: Returns dangling reference

}
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Array Declaration (1)

An array declaration declares an object of array type (also: C-style array)
• declarator[expression]
• declarator may be any valid declarator, surrounded by parentheses if it

begins with *, &, or &&
• expression must be an expression which evaluates to an integral constant

at compile time

For example: T a[N]; for some type T and compile-time constant N
• a consists of N contiguously allocated elements of type T
• Elements are numbered 0, …, N - 1
• Elements can be accessed with the subscript operator [], e.g. a[0], …,
a[N - 1]

• Without an initializer, every element of a is uninitialized
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Array Declaration (2)

Example

unsigned short a[10];

for (unsigned i = 0; i < 10; ++i)
a[i] = i + 1;

Array objects are lvalues, but they cannot be assigned to

unsigned short a[10];
unsigned short b[10];

a = b; // ERROR: a is an array

Arrays cannot be returned from functions

int[] foo(); // ERROR

177



References, Arrays, and Pointers Arrays

Array Declaration (3)

Elements of an array are allocated contiguously in memory
• Given unsigned short a[10]; containing the integers 1 through 10
• Assuming a 2-byte unsigned short type
• Assuming little-endian byte ordering

Address
02 04 0600

00 00 00 00 00 00 00 00 00 0001 05040302 080706 0a09
08 100e0c0a 12

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

Arrays are just dumb chunks of memory
• Out-of-bounds accesses are not automatically detected, and do not

necessarily lead to a crash
• May lead to rather weird bugs
• Exist mainly due to compatibility requirements with C
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Array Declaration (4)

The elements of an array can be arrays themselves

unsigned short b[3][2];

for (unsigned i = 0; i < 3; ++i)
for (unsigned j = 0; j < 2; ++j)

b[i][j] = 3 * i + j;

Elements are still allocated contiguously in memory
• b can be thought of as a 3 × 2 matrix in row-major format
• The subscript operator simply returns an array object on the first level, to

which the subscript operator can be applied again ((b[i])[j])
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Array Initialization

Arrays can be default-initialized, in which case every element is default-initialized

unsigned short a[10] = {}; // a contains 10 zeros

Arrays can be list-initialized, in which case the size may be omitted

unsigned short a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

Multi-dimensional arrays may also be list-initialized, but only the first dimension
may have unknown bound

unsigned short b[][2] = {
{0, 1},
{2, 3},
{4, 5}

}
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std::array

C-style arrays should be avoided whenever possible
• Use the std::array type defined in the <array> standard header instead
• Same semantics as a C-style array
• Optional bounds-checking and other useful features
• std::array is a template type with two template parameters (the element

type and count) – more details later

Example

#include <array>

int main() {
std::array<unsigned short, 10> a;
for (unsigned i = 0; i < a.size(); ++i)

a[i] = i + 1; // no bounds checking
}
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std::vector (1)

std::array is inflexible due to compile-time fixed size
• The std::vector type defined in the <vector> standard header provides

dynamically-sized arrays
• Storage is automatically expanded and contracted as needed
• Elements are still stored contiguously in memory

Useful functions
• push_back – inserts an element at the end of the vector
• size – queries the current size
• clear – clears the contents
• resize – change the number of stored elements
• The subscript operator can be used with similar semantics as for C-style

arrays

Familiarize yourself with the reference documentation on std::vector
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std::vector (2)
Example

#include <iostream>
#include <vector>

int main() {
std::vector<unsigned short> a;
for (unsigned i = 0; i < 10; ++i)

a.push_back(i + 1);

std::cout << a.size() << std::endl; // prints 10
a.clear();
std::cout << a.size() << std::endl; // prints 0

a.resize(10); // a now contains 10 zeros
std::cout << a.size() << std::endl; // prints 10

for (unsigned i = 0; i < 10; ++i)
a[i] = i + 1;

}
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Range-For (1)

Execute a for-loop over a range

for (init-statement; range-declaration : range-expression)
loop-statement

Explanation
• Executes init-statement once, then executes loop-statement once for

each element in the range defined by range-expression
• range-expression may be an expression that represents a sequence (e.g.

an array or an object for which begin and end functions are defined, such as
std::vector)

• range-declaration should declare a named variable of the element type of
the sequence, or a reference to that type

• init-statement may be omitted
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Range-For (2)

Example

#include <iostream>
#include <vector>

int main() {
std::vector<unsigned short> a;

// no range-for, we need the index
for (unsigned i = 0; i < 10; ++i)

a.push_back(i + 1);

// range-for
for (const unsigned short& e : a)

std::cout << e << std::endl;
}
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Storage of Objects

A “region of storage” has a physical equivalent
• Typically, objects reside in main memory, either on the stack or on the heap
• Up to now (and for some lectures to come), we have almost exclusively dealt

with objects residing on the stack
• More details on the heap later

Objects reside at some specific location in main memory
• As we have seen in the first lecture, this location can be identified by an

address in main memory
• It is convenient to think of addresses as simple offsets from the beginning of

the address space
• Pointers are a feature of C++ to obtain and interact with these addresses
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Pointer Declaration (1)

Declares a variable of pointer type
• * cv declarator
• declarator may be any other declarator, except for a reference declarator
• cv specifies the cv-qualifiers of the pointer (not the pointed-to type), and

may be omitted
• Analogous to reference declarations, the * token is part of the declarator, not

the type

Notes
• A pointer to an object represents the address of the first byte in memory that

is occupied by that object
• As opposed to references, pointers are themselves objects
• Consequently, pointers to pointers are allowed
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Pointer Declaration (2)

Examples of valid pointer declarations

int* a; // pointer to int
const int* b; // pointer to const int
int* const c; // const pointer to int
const int* const d; // const pointer to const int

Pointer-to-pointer declarations

int** e; // pointer to pointer to int
const int* const* const f; // const pointer to const pointer

// to const int

Contraptions like the declaration of f are very rarely (if at all) necessary
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The Address-Of Operator

In general, there is no meaningful conversion from the pointed-to type to a
pointer type
• In order to obtain a pointer to an object, the built-in unary address-of

operator & has to be used
• Given an object a, &a returns a pointer to the object
• The cv-qualification of a is retained

Example

int a = 10;
const int b = 42;
int* c = &a; // OK: c points to a
const int* d = &b; // OK: d points to b
int* e = &b; // ERROR: invalid conversion from

// const int* to int*
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The Indirection Operator

In general, there is no meaningful conversion from a pointer type to the pointer-to
type
• In order to access the pointed-to object, the built-in unary indirection

operator * has to be used
• Given an expression expr of pointer type, *expr returns a reference to the

pointed-to object
• The cv-qualifiers of the pointed-to type are retained
• Applying the indirection operator is also called dereferencing a pointer

Example

int a = 10;
int* c = &a;
int& d = *c; // reference to a
d = 123; // a == 123
*c = 42; // a == 42
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Null Pointers

A pointer may not point to any object at all
• Indicated by the special value and corresponding literal nullptr
• Pointers of the same type which are both null pointers are considered equal
• It is undefined behavior to dereference a null pointer

Undefined behavior can lead to surprising results
foo.cpp

int foo(const int* ptr) {
int v = *ptr;

if (ptr == nullptr)
return 42;

return v;
}

foo.o
foo(int*):

movl (%rdi), %eax
ret
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Array to Pointer Decay

Arrays and pointers have many similarities
• There is an implicit conversion from values of array type to values of pointer

type
• The conversion constructs a pointer to the first element of an array
• The pointer type must be at least as cv-qualified as the array type

Example

#include <iostream>

int main() {
int array[3] = {123, 456, 789};
const int* ptr = array;

std::cout << "The first element of array is ";
std::cout << *ptr << std::endl;

}
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The Subscript Operator

The subscript operator is defined on pointer types
• Treats the pointer as a pointer to the first element of an array
• Follows the same semantics as the subscript operator on array types

Example

#include <iostream>

int main() {
int array[3] = {123, 456, 789};
const int* ptr = array;

std::cout << "The elements of array are";
for (unsigned i = 0; i < 3; ++i)

std::cout << " " << ptr[i];
std::cout << std::endl;

}
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Special Case: String Literals

String literals are another artifact of C compatibility
• String literals are immutable null-terminated character arrays
• That is, the type of a string literal with N characters is const char[N + 1]
• Most of the time, programmers take advantage of array-to-pointer decay and

write const char* str = "foo";
• The character type can be controlled by the prefixes known from character

literals (i.e. u8"string", u"string", or U"string")

C-style string literals should never be used!
• The C++ standard library provides the much safer std::string and
std::string_view types (more details later)

• Unfortunately, libraries or syscalls often require C-style string parameters
• If required, the standard library types can expose the C-style string

representation
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Arithmetic on Pointers (1)
Some arithmetic operators are defined between pointers and integral types
• Treats the pointer as a pointer to some element of an array
• Adding i to a pointer moves the it i elements to the right
• Subtracting i from a pointer moves it i elements to the left
• The increment and decrement operators are defined analogously

Example

#include <iostream>

int main() {
int array[3] = {123, 456, 789};
const int* ptr = &array[1];

std::cout << "The previous element is ";
std::cout << *(ptr - 1) << std::endl;
std::cout << "The next element is ";
std::cout << *(ptr + 1) << std::endl;

}
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Arithmetic on Pointers (2)

Special care has to be taken to only dereference valid pointers
• Especially important since it is valid to take the past-the-end pointer of an

array or std::vector

Example

int main() {
std::vector<int> v;
v.resize(10);

const int* firstPtr = &v[0]; // OK: valid pointer
const int* lastPtr = &v[10]; // OK: past-the-end pointer

int last1 = *lastPtr; // ERROR, might segfault
int last2 = v[10]; // ERROR, might segfault

}
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Arithmetic on Pointers (3)

Subtraction is defined between pointers
• Treats both pointers as pointers to some elements of an array
• Computes the number of elements between these two pointers

Example

#include <iostream>

int main() {
int array[3] = {123, 456, 789};
const int* ptr1 = &array[0];
const int* ptr2 = &array[3]; // past-the-end pointer

std::cout << "There are " << (ptr2 - ptr1) << " elements ";
std::cout << "in array" << std::endl;

}
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Comparisons on Pointers

The comparison operators are defined between pointers
• Interprets the addresses represented by the pointers as integers and compares

them
• Only defined if the pointers point to elements of the same array

Example

#include <iostream>

int main() {
int array[3] = {123, 456, 789};

std::cout << "The elements of array are"
for (const int* it = &array[0]; it < &array[3]; ++it)

std::cout << " " << *it;
std::cout << std::endl;

}
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Void Pointers

Pointers to void are allowed
• A pointer to an object of any type can implicitly be converted to a pointer to
void

• The void pointer must be at least as cv-qualified as the original pointer
• The pointer value (i.e. the address) is unchanged

Usage
• Used to pass objects of unknown type
• Extensively used in C interfaces (e.g. malloc, qsort, ...)
• Only few operations are defined on void pointers (mainly assignment)
• In order to use the pointed-to object, one must cast the void pointer to the

required type
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static_cast (1)

The static_cast conversion is used to cast between related types

static_cast< new_type > ( expression )

Explanation
• Converts the value of expression to a value of new_type
• new_type must be at least as cv-qualified as the type of expression
• Can be used to convert void pointers to pointers of another type
• Many more use cases (see reference documentation)
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static_cast (2)
Void pointers

int i = 42;
void* vp = &i;
int* ip = static_cast<int*>(vp);

Other related types

int sum(int a, int b);
double sum(double a, double b);

int main() {
int a = 42;
double b = 3.14;

double x = sum(a, b); // ERROR: ambiguous
double y = sum(static_cast<double>(a), b); // OK
int z = sum(a, static_cast<int>(b)); // OK

}
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reinterpret_cast

The reinterpret_cast conversion is used to convert between unrelated types

reinterpret_cast < new_type > ( expression )

Explanation
• Interprets the underlying bit pattern of the value of expression as a value

of new_type
• new_type must be at least as cv-qualified as the type of expression
• Usually does not generate any CPU instructions

Only a very restricted set of conversions is allowed
• A pointer to an object can be converted to a pointer to std::byte, char or
unsigned char

• A pointer can be converted to an integral type (typically uintptr_t)
• Invalid conversions usually lead to undefined behavior
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Strict Aliasing Rule (1)

It is undefined behavior to access an object using an expression of different type
• In particular, we are not allowed to access an object through a pointer to

another type (pointer aliasing)
• Consequently, compilers typically assume that pointers to different types

cannot have the same value
• There are very few exceptions to this rule (more details next)
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Strict Aliasing Rule (2)
foo.cpp

static int foo(int* x, double* y) {
*x = 42;
*y = 3.0;
return *x;

}

int main() {
int a = 0;
double* y = reinterpret_cast<double*>(&a);
return foo(&a, y);

}

Compiling this with g++ -O1 will result in the following assembly
foo.o

main:
movl $0, %eax
ret
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Strict Aliasing Rule (3)
foo.cpp

static int foo(int* x, double* y) {
*x = 42;
*y = 3.0;
return *x;

}

int main() {
int a = 0;
double* y = reinterpret_cast<double*>(&a);
return foo(&a, y);

}

Compiling this with g++ -O2 will result in the following assembly
foo.o

main:
movl $42, %eax
ret
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Examining the Object Representation (1)

Important exception to the strict aliasing rule
• Any pointer may legally be converted to a pointer to char, or
unsigned char

• Any pointer may legally be converted to a pointer to std::byte (defined in
<cstddef> header, requires C++17),

• Permits the examination of the object representation of any object as an
array of bytes

std::byte behaves similarly to unsigned char
• Represents a raw byte without any integer or character semantics
• Only bitwise operators are defined on bytes
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Examining the Object Representation (2)

Example (compile with g++ -std=c++17)

#include <iostream>
#include <iomanip>
#include <cstddef>

int main() {
double a = 3.14;
const std::byte* bytes = reinterpret_cast<const std::byte*>(&a);

std::cout << "The object representation of 3.14 is 0x";
std::cout << std::hex << std::setfill('0') << std::setw(2);

for (unsigned i = 0; i < sizeof(double); ++i)
std::cout << static_cast<unsigned>(bytes[i]);

std::cout << std::endl;
}

207



References, Arrays, and Pointers Pointer Conversions

uintptr_t

Any pointer may legally be converted to an integral type
• The integral type must be large enough to hold all values of the pointer
• Usually, uintptr_t should be used (defined in <cstdint> header)
• Useful in some cases, especially when building custom data structures (more

details later)

Example

#include <cstddint>
#include <iostream>

int main() {
int x = 42;
uintptr_t addr = reinterpret_cast<uintptr_t>(&x);

std::cout << "The address of x is " << addr << std::endl;
}
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The sizeof Operator (1)

The sizeof operator queries the size of the object representation of a type

sizeof( type )

Explanation
• The size of a type is given in bytes
• sizeof(std::byte), sizeof(char), and sizeof(unsigned char)

return 1 by definition
• Depending on the computer architecture, there may be 8 or more bits in one

byte (as defined by C++)
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The sizeof Operator (2)

The size of an object and pointer arithmetics are closely related
foo.cpp

#include <iostream>

int main() {
int array[3] = {123, 456, 789};

std::cout << "sizeof(int) = " << sizeof(int) << std::endl;

int* ptr0 = &array[0];
int* ptr1 = &array[1];

uintptr_t uptr0 = reinterpret_cast<uintptr_t>(ptr0);
uintptr_t uptr1 = reinterpret_cast<uintptr_t>(ptr1);

std::cout << "(ptr1 - ptr0) = " << (ptr1 - ptr0) << std::endl;
std::cout << "(uptr1 - uptr0) = " << (uptr1 - uptr0) << std::endl;

}
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The sizeof Operator (3)

On an x86-64 machine, the program might produce the following output

$ ./foo
sizeof(int) = 4
(ptr1 - ptr0) = 1
(uptr1 - uptr0) = 4

Interpretation
• One int occupies 4 bytes
• There is one int between ptr0 and ptr1
• There are 4 bytes (i.e. exactly one int) between ptr0 and ptr1
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The alignof Operator

Queries the alignment requirements of a type

alignof( type )

Explanation
• Depending on the computer architecture, certain types must have addresses

aligned to specific byte boundaries
• The alignof operator returns the number of bytes between successive

addresses where an object of type can be allocated
• The alignment requirement of a type is always a power of two
• Important (e.g.) for SIMD instructions, where the programmer must

explicitly ensure correct alignment
• Memory accesses with incorrect alignment lead to undefined behavior, e.g.

SIGSEGV or SIGBUS (depending on architecture)
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Usage Guidelines

When to use references
• Pass-by-reference function call semantics
• When it is guaranteed that the referenced object will always be valid
• When object that should be referenced is always the same

When to use pointers
• Only when absolutely necessary!
• When there may not be a pointed-to object (i.e. nullptr)
• When the pointer may change to a different object
• When pointer arithmetic is desired

We will revisit this discussion later during the lecture
• Decision is intricately related to ownership semantics
• We would actually like to avoid using raw pointers as much as possible
• There are standard library classes which encapsulate pointers
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Troubleshooting

Pointers have a reputation of being highly error-prone
• It is very easy to obtain pointers that point to invalid locations
• Once such a pointer is dereferenced, a number of bad things can happen

Bad things that may happen
• The pointer pointed outside of the program’s address space

• The program will likely segfault immediately
• The pointer pointed outside of the intended memory region, but still inside

the program’s address space
• The program might segfault immediately
• ...or simply corrupt some memory, which might lead to problems later

With the right tools, debugging is not as daunting as it may seem
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The Infamous Segfault (1)

Every C++ programmer will encounter a segfault eventually
• Raised by hardware in response to a memory access violation
• In most cases caused by invalid pointers or memory corruption

Obvious example
foo.cpp

int main() {
int* a;
return *a; // ERROR: Dereferencing an uninitialized pointer

}

Executing this program might result in the following

$ ./foo
[1] 5128 segmentation fault (core dumped) ./foo
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The Infamous Segfault (2)

Sometimes, the root cause may be (much) more difficult to determine

int main() {
long* ptr;
long array[3] = {123, 456, 789};
ptr = &array[0];
array[3] = 987; // ERROR: off-by-one access

return *ptr;
}

When compiled with g++ -fno-stack-protector, this will also segfault
• The off-by-one access array[3] = 987 actually changes the value of ptr
• Dereferencing this pointer in the return statement will result in a segfault
• The -fno-stack-protector option is required, because g++ will by default

emit extra code to prevent such buffer overflows
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The Address Sanitizer (1)

The address sanitizer (ASAN) is one of the most powerful debugging tools
• Enable with the g++ flag -fsanitize=address
• Instruments memory access instructions to check for common bugs
• Should normally be used in conjunction with -g for debug builds
• Should be enabled by default in your debug builds, unless there is a very

compelling reason against it
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The Address Sanitizer (2)

Consider the previous example
foo.cpp

int main() {
long* ptr;
long array[3] = {123, 456, 789};
ptr = &array[0];
array[3] = 987; // ERROR: off-by-one access

return *ptr;
}

This time we build with g++ -fno-stack-protector -fsanitize=address
-g and get an informative error message
• See live demo
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Additional Debugging Tips (1)

Sometimes ASAN cannot detect bugs
• E.g. offset errors within one array

Use the debugger (GDB)!
• Stepping though a buggy part of the program is often enough to identify the

bug
• At least, it can help to narrow down the location of a bug

Make use of the assert macro
• Defined in the <cassert> header
• Can be used to check a boolean expression
• Only enabled when the NDEBUG macro is not defined
• Automatically enabled in debug builds when using CMake
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