
Classes

Classes

220

Classes

Classes

In C++ classes are the main kind of user-defined type.
Informal specification of a class definition:
class-keyword name {

member-specification
};

• class-keyword is either struct or class
• name can be any valid identifier (like for variables, functions, etc.)
• member-specification is a list of declarations, mainly variables (“data

members”, functions (“member functions”), and types (“nested types”)
• The trailing semicolon is mandatory!

221

https://en.cppreference.com/w/cpp/language/class

Classes Members

Data Members
• Declarations of data members are variable declarations
• extern is not allowed
• Declarations without static are called non-static data members, otherwise

they are static data members
• thread_local is only allowed for static data members
• Declaration must have a complete type (see later slide)
• Name of the declaration must differ from the class name and must be unique

within the class
• Non-static data members can have a default value

struct Foo {
// non-static data members:
int a = 123;
float& b;
const char c;
// static data members:
static int s;
thread_local static int t;

};

222

https://en.cppreference.com/w/cpp/language/data_members

Classes Members

Memory Layout of Data Members

• Every type has a size and an alignment requirement (see last lecture)
• To be compatible between different compilers and programming languages

(mainly C), the memory layout of objects of class type is fixed
• Non-static data members appear in memory by the order of their declarations
• Size and alignment of each data-member is accounted for → leads to “gaps”

in the object, called padding bytes
• Alignment of a class type is equal to the largest alignment of all non-static

data members
• Size of a class type is at least the sum of all sizes of all non-static data

members and at least 1
• static data members are stored separately

223

Classes Members

Size, Alignment and Padding

struct C {
int i;
int* p;
char b;
short s;

};

sizeof(i) == 4
alignof(i) == 4

sizeof(p) == 8
alignof(p) == 8

sizeof(b) == 1
alignof(b) == 1

sizeof(s) == 2
alignof(s) == 2

sizeof(C) == 24
alignof(C) == 8

i padding
p

b s padding

00 01 02 03 04 05 06 07
00
08
10

offset

Reordering the member variables in the order p, i, s, b would lead to
sizeof(C) == 16!
In general: Order member variables by decreasing alignment to get the fewest
padding bytes.

224

Classes Members

Member Functions
• Declarations of member functions are like regular function declarations
• Just like for data members, there are non-static and static (with the static

specifier) member functions
• Non-static member functions can be const-qualified (with const) or

ref-qualified (with const&, &, or &&)
• Non-static member functions can be virtual (see next lecture)
• There are some member functions with special functions:

• Constructor and destructor
• Overloaded operators

struct Foo {
void foo(); // non-static member function
void cfoo() const; // const-qualified non-static member function
void rfoo() &; // ref-qualified non-static member function
static void bar(); // static member function
Foo(); // Constructor
~Foo(); // Destructor
bool operator==(const Foo& f); // Overloaded operator ==

};

225

https://en.cppreference.com/w/cpp/language/member_functions

Classes Members

Accessing Members

Given the following code:
struct C {

int i;
static int si;

};
C o; // o is variable of type C
C* p = &o; // p is pointer to o

the members of the object can be accessed as follows:
• non-static and static member variables and functions can be accessed with

the member-of operator: o.i, o.si
• As a shorthand, instead of writing (*p).i, it is possible to write p->i
• Static member variables and functions can also be accessed with the scope

resolution operator: C::si

226

https://en.cppreference.com/w/cpp/language/operator_member_access

Classes Members

Writing Member Functions

• In a non-static member function members can be accessed implicitly without
using the member-of operator (preferred)

• Every non-static member function has the implicit parameter this
• In member functions without qualifiers and ref-qualified ones this has the

type C*
• In const-qualified or const-ref-qualified member functions this has the type
const C*

struct C {
int i;
int foo() {

this->i; // Explicit member access, this has type C*
return i; // Implicit member access

}
int foo() const { return this->i; /* this has type const C* */ }
int bar() & { return i; /* this (implicit) has type C* */ }
int bar() const& { return this->i; /* this has type const C* */ }

};

227

https://en.cppreference.com/w/cpp/language/this

Classes Members

Out-of-line Definitions
• Just like regular functions member functions can have separate declarations

and definitions
• A member function that is defined in the class body is said to have an inline

definition
• A member function that is defined outside of the class body is said to have

an out-of-line definition
• Member functions with inline definitions implicitly have the inline specifier
• Out-of-line definitions must have the same qualifiers as their declaration

struct Foo {
void foo1() { /* ... */ } // Inline definition
void foo2();
void foo_const() const;
static void foo_static();

};
// Out-of-line definitions
void Foo::foo2() { /* ... */ }
void Foo::foo_const() const { /* ... */ }
void Foo::foo_static() { /* ... */ }

228

Classes Forward Declarations

Forward Declarations (1)

Classes can be forward-declared
• Syntax: class-keyword name ;
• Declares a class type which will be defined later in the scope
• The class name has incomplete type until it is defined
• The forward-declared class name may still be used in some situations (more

details next)

Use Cases
• Allows classes to refer to each other
• Can reduce compilation time (significantly) by avoiding transitive includes of

an expensive-to-compile header
• Commonly used in header files

229

https://en.cppreference.com/w/cpp/language/class#Forward_declaration

Classes Forward Declarations

Forward Declarations (2)

Example
foo.hpp

class A;
class ClassFromExpensiveHeader;

class B {
ClassFromExpensiveHeader* member;

void foo(A& a);
};
class A {

void foo(B& b);
};

foo.cpp
#include "expensive_header.hpp"

/* implementation */

230

Classes Forward Declarations

Incomplete Types

A forward-declared class type is incomplete until it is defined

• In general, no operations that require the size and layout of a type to be
known can be performed on an incomplete type

• E.g. pointer arithmetics on a pointer to an incomplete type
• E.g. Definition or call (but not declaration) of a function with incomplete

return or argument type

• However, some declarations can involve incomplete types
• E.g. pointer declarations to incomplete types
• E.g. member function declarations with incomplete parameter types

• For details: See the reference documentation

231

https://en.cppreference.com/w/cpp/language/types#Incomplete_type

Classes Constructors and Destructors

Constructors

• Constructors are special functions that are called when an object is initialized
• Constructors have no return type, no const- or ref-qualifiers, and their name

is equal to the class name
• The definition of a constructor can have an initializer list
• Constructors can have arguments, a constructor without arguments is called

default constructor
• Constructors are sometimes implicitly defined by the compiler

struct Foo {
Foo() {

std::cout << "Hello\n";
}

};

struct Foo {
int a;
Bar b;
// Default constructor is
// implicitly defined, does
// nothing with a, calls
// default constructor of b

};

232

https://en.cppreference.com/w/cpp/language/initializer_list

Classes Constructors and Destructors

Initializer List
• The initializer list specifies how member variables are initialized before the

body of the constructor is executed
• Other constructors can be called in the initializer list
• Members should be initialized in the order of their definition
• Members are initialized to their default value if not specified in the list
• const member variables can only be initialized in the initializer list

struct Foo {
int a = 123; float b; const char c;
// default constructor initializes a (to 123), b, and c
Foo() : b(2.5), c(7) {}
// initializes a and b to the given values
Foo(int a, float b, char c) : a(a), b(b), c(c) {}
Foo(float f) : Foo() {

// First the default constructor is called, then the body
// of this constructor is executed
b *= f;

}
};

233

Classes Constructors and Destructors

Initializing Objects

• When an object of class type is initialized, an appropriate constructor is
executed

• Arguments given in the initialization are passed to the constructor
• C++ has several types of initialization that are very similar but unfortunately

have subtle differences:
• default initialization (Foo f;)
• value initialization (Foo f{}; and Foo())
• direct initialization (Foo f(1, 2, 3);)
• list initialization (Foo f{1, 2, 3};)
• copy initialization (Foo f = g;)

• Simplified syntax: class-type identifier(arguments); or
class-type identifier{arguments};

234

https://en.cppreference.com/w/cpp/language/initialization

Classes Constructors and Destructors

Converting and Explicit Constructors

• Constructors with exactly one argument are treated specially: They are used
for explicit and implicit conversions

• If implicit conversion with such constructors is not desired, the keyword
explicit can be used to disallow it

• Generally, you should use explicit unless you have a good reason not to

struct Foo {
Foo(int i);

};
void print_foo(Foo f);
// Implicit conversion,
// calls Foo::Foo(int)
print_foo(123);
// Explicit conversion,
// calls Foo::Foo(int)
static_cast<Foo>(123);

struct Bar {
explicit Bar(int i);

};
void print_bar(Bar f);
// Implicit conversion,
// compiler error!
print_bar(123);
// Explicit conversion,
// calls Bar::Bar(int)
static_cast<Bar>(123);

235

https://en.cppreference.com/w/cpp/language/converting_constructor

Classes Constructors and Destructors

Copy Constructors

• Constructors of a class C that have a single argument of type C& or
const C& (preferred) are called copy constructors

• They are often called implicitly by the compiler whenever it is necessary to
copy an object

• The copy constructor if often implicitly defined by the compiler
• See more details in lecture about ownership

struct Foo {
Foo(const Foo& other) { /* ... */ }

};
void doFoo(Foo f);
Foo f;
Foo g(f); // Call copy constructor explicitly
doFoo(g); // Copy constructor is called implicitly

236

https://en.cppreference.com/w/cpp/language/copy_constructor

Classes Constructors and Destructors

Destructors

• The destructor is a special function that is called when the lifetime of an
object ends

• The destructor has no return type, no arguments, no const- or ref-qualifiers,
and its name is ~class-name

• For objects with automatic storage duration (e.g. local variables) the
destructor is called implicitly at the end of the scope in reverse order of their
definition

• Calling the destructor twice on the same object is undefined behavior

Foo a;
Bar b;
{

Baz c;
// c.~Baz() is called;

}
// b.~Bar() is called
// a.~Foo() is called

237

https://en.cppreference.com/w/cpp/language/destructor

Classes Constructors and Destructors

Writing Destructors

• The destructor is a regular function that can contain any code
• Most of the time the destructor is used to explicitly free resources
• Destructors of member variables are called automatically at the end in reverse

order

struct Foo {
Bar a;
Bar b;
~Foo() {

std::cout << "Bye\n";
// b.~Bar() is called
// a.~Bar() is called

}
};

238

Classes Member Access Control

Member Access Control
• Every member of a class has public, protected, or private access
• When the class is defined with class, the default access is private
• When the class is defined with struct, the default access is public
• public members can be accessed by everyone, protected members only be

the class itself and its subclasses, private members only by the class itself

class Foo {
int a; // a is private
public:
// All following declarations are public
int b;
int getA() const { return a; }
protected:
// All following declarations are protected
int c;
public:
// All following declarations are public
static int getX() { return 123; }

};

239

https://en.cppreference.com/w/cpp/language/access

Classes Member Access Control

Friend Declarations (1)

A class body can contain friend declarations
• A friend declaration grants a function or another class access to the private

and protected members of the class which contains the declaration
• Syntax: friend function-declaration ;

• Declares a function as a friend of the class
• Syntax: friend function-definition ;

• Defines a non-member function and declares it as a friend of the class
• Syntax: friend class-specifier ;

• Declares another class as a friend of this class

Notes
• Friendship is non-transitive and cannot be inherited
• Access specifiers have no influence on friend declarations (i.e. they can

appear in private: or public: sections)

240

https://en.cppreference.com/w/cpp/language/friend

Classes Member Access Control

Friend Declarations (2)

Example

class A {
int a;
friend class B;
friend void foo(A&);

};
class B {

friend class C;
void foo(A& a) {

a.a = 42; // OK
}

};
class C {

void foo(A& a) {
a.a = 42; // ERROR

}
};
void foo(A& a) {

a.a = 42; // OK
}

241

Classes Member Access Control

Nested Types

• For nested types classes behave just like a namespace
• Nested types are accessed with the scope resolution operator ::
• Nested types are friends of their parent

struct A {
struct B {

int getI(const A& a) {
return a.i; // OK, B is friend of A

}
};
private:
int i;

};
Foo::Bar b; // reference nested type Bar of class Foo

242

Classes Constness of Members

Constness of Member Variables

• Accessing a member variable through a non-const lvalue yields a non-const
lvalue if the member is non-const and a const lvalue otherwise

• Accessing a member variable through a const lvalue yields a const lvalue
• Exception: Member variables declared with mutable yield a non-const lvalue

even when accessed through a const lvalue

struct Foo {
int i;
const int c;
mutable int m;

}
Foo& foo = /* ... */;
const Foo& cfoo = /* ... */;

Expression Value Category
foo.i non-const lvalue
foo.c const lvalue
foo.m non-const lvalue
cfoo.i const lvalue
cfoo.c const lvalue
cfoo.m non-const lvalue

243

Classes Constness of Members

Constness and Member Functions

• The value category through which a non-static member function is accessed
is taken into account for overload resolution

• For non-const lvalues non-const overloads are preferred over const ones
• For const lvalues only const-(ref-)qualified functions are selected

struct Foo {
int getA() { return 1; }
int getA() const { return 2; }
int getB() & { getA(); }
int getB() const& { getA(); }
int getC() const { getA(); }
int getD() { return 3; }

};
Foo& foo = /* ... */;
const Foo& cfoo = /* ... */;

Expression Value
foo.getA() 1
foo.getB() 1
foo.getC() 2
foo.getD() 3
cfoo.getA() 2
cfoo.getB() 2
cfoo.getC() 2
cfoo.getD() error

244

Classes Constness of Members

Casting and CV-qualifiers
• When using static_cast, reinterpret_cast, or dynamic_cast (see

next lecture), cv-qualifiers cannot be “casted away”
• const_cast must be used instead
• Syntax: const_cast < new_type > (expression)
• new_type may be a pointer or reference to a class type
• expression and new_type must have same type ignoring their cv-qualifiers
• The result of const_cast is a value of type new_type
• Modifying a const object through a non-const access path is undefined

behavior!

struct Foo {
int a;

};
const Foo f{123};
Foo& fref = const_cast<Foo&>(f); // OK, cast is allowed
int b = fref.a; // OK, accessing value is allowed
fref.a = 42; // undefined behavior

245

https://en.cppreference.com/w/cpp/language/const_cast

Classes Constness of Members

Use Cases for const_cast
Most common use case of const_cast: Avoid code duplication in member
function overloads.
• A class may contain a const and non-const overload of the same function

with identical code
• Should only be used when absolutely necessary (i.e. not for simple overloads)

class A {
int* numbers;
int& foo() {

int i = /* ... */;
// do some incredibly complicated computation to
// get a value for i
return numbers[i]

}
const int& foo() const {

// OK as long as foo() does not modify the object
return const_cast<A*>(this)->foo();

}
};

246

Classes Operator Overloading

Operator Overloading

• Classes can have special member functions to overload built-in operators like
+, ==, etc.

• Many overloaded operators can also be written as non-member functions
• Syntax: return-type operator op (arguments)
• Overloaded operator functions are selected with the regular overload

resolution
• Overloaded operators are not required to have meaningful semantics
• Almost all operators can be overloaded, exceptions are: :: (scope

resolution), . (member access), .* (member pointer access), ?: (ternary
operator)

• This includes “unusual” operators like: = (assignment), () (call),
* (dereference), & (address-of), , (comma)

247

https://en.cppreference.com/w/cpp/language/operators

Classes Operator Overloading

Binary Arithmetic and Relational Operators

The expression lhs op rs is mostly equivalent to
lhs.operator op(\emph{rhs}) or
operator op(lhs, rhs) for binary operators.
• As calls to overloaded operators are treated like regular function calls, the

overloaded versions of || and && lose their special behaviors
• Relational operators usually take their arguments by const reference

struct Int {
int i;
Int operator+(const Int& other) const { return Int{i + other.i}; }

};
bool operator==(const Int& a, const Int& b) const { return a.i == b.i; }

Int a{123}; Int b{456};

a + b; /* is equivalent to */ a.operator+(b);
a == b; /* is equivalent to */ operator==(a, b);

248

Classes Operator Overloading

Unary Arithmetic Operators

C++ also has the unary + and − operators which can also be overloaded with
member functions.

struct Int {
int i;
Int operator+() const { return *this; };
Int operator-() const { return Int{-i}; };

};
Int a{123};
+a; /* is equivalent to */ a.operator+();
-a; /* is equivalent to */ a.operator-();

249

Classes Operator Overloading

Increment and Decrement Operators
Overloaded pre- and post-increment and -decrement operators are distinguished
by an (unused) int argument.
• C& operator++(); C& operator--(); overloads the pre-increment or

-decrement operator, usually modifies the object and then returns *this
• C operator++(int); C operator--(int); overloads the post-increment

or -decrement operator, usually copies the object before modifying it and
then returns the unmodified copy

struct Int {
int i;
Int& operator++() { ++i; return *this; }
Int operator--(int) { Int copy{*this}; --i; return copy; }

};
Int a{123};
++a; // a.i is now 124
a++; // ERROR: post-increment is not overloaded
Int b = a--; // b.i is 124, a.i is 123
--b; // ERROR: pre-decrement is not overloaded

250

https://en.cppreference.com/w/cpp/language/operator_incdec

Classes Operator Overloading

Subscript Operator

Classes that behave like containers or pointers usually override the subscript
operator [].
• a[b] is equivalent to a.operator[](b)
• Type of b can be anything, for array-like containers it is usually size_t

struct Foo { /* ... */ };
struct FooContainer {

Foo* fooArray;
Foo& operator[](size_t n) { return fooArray[n]; }
const Foo& operator[](size_t n) const { return fooArray[n]; }

};

251

https://en.cppreference.com/w/cpp/language/operator_member_access

Classes Operator Overloading

Dereference Operators

Classes that behave like pointers usually override the operators * (dereference)
and -> (member of pointer).
• operator*() usually returns a reference
• operator->() should return a pointer or an object that itself has an

overloaded -> operator

struct Foo { /* ... */ };
struct FooPtr {

Foo* ptr;
Foo& operator*() { return *ptr; }
const Foo& operator*() const { return *ptr; }
Foo* operator->() { return ptr; }
const Foo* operator->() const { return ptr; }

};

252

https://en.cppreference.com/w/cpp/language/operator_member_access

Classes Operator Overloading

Assignment Operators

• The simple assignment operator is often used together with the copy
constructor and should have the same semantics (see also: future lecture
about copy and move semantics)

• All assignment operators usually return *this

struct Int {
int i;
Foo& operator=(const Foo& other) { i = other.i; return *this; }
Foo& operator+=(const Foo& other) { i += other.i; return *this; }

};
Foo a{123};
a = Foo{456}; // a.i is now 456
a += Foo{1}; // a.i is now 457

253

https://en.cppreference.com/w/cpp/language/operator_assignment

Classes Operator Overloading

Conversion Operators
A class C can use converting constructors to convert values of other types to type
C. Similarly, conversion operators can be used to convert objects of type C to
other types.
Syntax: operator type ()
• Conversion operators have the implicit return type type
• They are usually declared as const
• The explicit keyword can be used to prevent implicit conversions
• Explicit conversions are done with static_cast
• operator bool() is usually overloaded to be able to use objects in an if

statement

struct Int {
int i;
operator int() const {

return i;
}

};
Int a{123};
int x = a; // OK, x is 123

struct Float {
float f;
explicit operator float() const {

return f;
}

};
Float b{1.0};
float y = b; // ERROR, implicit conversion
float y = static_cast<float>(b); // OK

254

https://en.cppreference.com/w/cpp/language/cast_operator

Classes Operator Overloading

Argument-Dependent Lookup

• Overloaded operators are usually defined in the same namespace as the type
of one of their arguments

• Regular unqualified lookup would not allow the following example to compile
• To fix this, unqualified names of functions are also looked up in the

namespaces of all arguments
• This is called Argument Dependent Lookup (ADL)

namespace A { class X {}; X operator+(const X&, const X&); }
int main() {

A::X x, y;
operator+(x, y); // Need operator+ from namespace A
A::operator+(x, y); // OK
x + y; // How to specify namespace here?

// -> ADL finds A::operator+()
}

255

https://en.cppreference.com/w/cpp/language/adl

Classes Defaulted and Deleted Member Functions

Defaulted Member Functions
• Most of the time the implementation of default constructors, copy

constructors, copy assignment operators, and destructors is trivial
• To let the compiler generate the trivial implementation automatically,
= default; can be used instead of a function body

struct Foo {
Bar b;
Foo() = default; /* equivalent to: */ Foo() {}
~Foo() = default; /* equivalent to: */ ~Foo() {}

Foo(const Foo& f) = default;
/* equivalent to: */
Foo(const Foo& f) : b(f.b) {}

Foo& operator=(const Foo& f) = default;
/* equivalent to: */
Foo& operator=(const Foo& f) {

b = f.b; return *this;
}

};
256

https://en.cppreference.com/w/cpp/language/member_functions#Special_member_functions

Classes Defaulted and Deleted Member Functions

Deleted Member Functions

• Sometimes, implicitly generated constructors or assignment operators are not
wanted

• Writing = delete; instead of a function body explicitly forbids implicit
definitions

• In other cases the compiler implicitly deletes a constructor in which case
writing = default; enables it again

struct Foo {
Foo(const Foo&) = delete;

};
Foo f; // Default constructor is defined implicitly
Foo g(f); // ERROR: copy constructor is deleted

257

https://en.cppreference.com/w/cpp/language/function#Deleted_functions

Other User-Defined Types

Other User-Defined Types

258

Other User-Defined Types Unions

Unions
• In addition to regular classes declared with class or struct, there is

another special class type declared with union
• In a union only one member may be “active”, all members use the same

storage
• Size of the union is equal to size of largest member
• Alignment of the union is equal to largest alignment among members
• Strict aliasing rule still applies with unions!
• Most of the time there are better alternatives to unions, e.g.
std::array<char, N> or std::variant

union Foo {
int a;
double b;

};
sizeof(Foo) == 8;
alignof(Foo) == 8;

Foo f; // No member is active
f.a = 1; // a is active
std::cout << f.b; // Undefined behavior!
f.b = 12.34; // Now, b is active
std::cout << f.b; // OK

259

https://en.cppreference.com/w/cpp/language/union

Other User-Defined Types Enums

Enums
• C++ also has user-defined enumeration types
• Typically used like integral types with a restricted range of values
• Also used to be able to use descriptive names instead of “magic” integer

values
• Syntax: enum-key name { enum-list };
• enum-key can be enum, enum class, or enum struct
• enum-list consists of comma-separated entries with the following syntax:
name [= value]

• When value is not specified, it is automatically chosen starting from 0

enum Color {
Red, // Red == 0
Blue, // Blue == 1
Green, // Green == 2
White = 10,
Black, // Black == 11
Transparent = White // Transparent == 10

};

260

https://en.cppreference.com/w/cpp/language/enum

Other User-Defined Types Enums

Using Enum Values

• Names from the enum list can be accessed with the scope resolution operator
• When enum is used as keyword, names are also introduced in the enclosing

namespace
• Enums declared with enum can be converted implicitly to int
• Enums can be converted to integers and vice versa with static_cast
• enum class and enum struct are equivalent
• Guideline: Use enum class unless you have a good reason not to

Color::Red; // Access with scope resolution operator
Blue; // Access from enclosing namespace
int i = Color::Green; // i == 2, implicit conversion
int j = static_cast<int>(Color::White); // j == 10
Color c = static_cast<Color>(11); // c == Color::Black

261

Other User-Defined Types Type Aliases

Type Aliases
• Names of types that are nested deeply in multiple namespaces or classes can

become very long
• Sometimes it is useful to declare a nested type that refers to another, existing

type
• For this type aliases can be used
• Syntax: using name = type;
• name is the name of the alias, type must be an existing type
• For compatibility with C type aliases can also be defined with typedef with

a different syntax but this should never be used in modern C++ code

namespace A::B::C { struct D { struct E {}; }; }
using E = A::B::C::D::E;
E e; // e has type A::B::C::D::E
struct MyContainer {

using value_type = int;
};
MyContainer::value_type i = 123; // i is an int

262

https://en.cppreference.com/w/cpp/language/type_alias

Other User-Defined Types Type Aliases

Common Type Aliases

In C++ the following aliases are defined in the std namespace and are commonly
used:

intN_t: Integer types with exactly N bits, usually defined for 8, 16, 32, and
64 bits

uintN_t: Similar to intN_t but unsigned
size_t: Used by the standard library containers everywhere a size or index

is needed, also result type of sizeof and alignof

uintptr_t: An integer type that is guaranteed to be able to hold all possible
values that result from a reinterpret_cast from any pointer

intptr_t: Similar to uintptr_t but signed
ptrdiff_t: Result type of expressions that subtract two pointers

max_align_t: Type which has alignment as least as large as all other scalar types

263

	Classes
	Members
	Forward Declarations
	Constructors and Destructors
	Member Access Control
	Constness of Members
	Operator Overloading
	Defaulted and Deleted Member Functions

	Other User-Defined Types
	Unions
	Enums
	Type Aliases

