
1

Data Processing on Modern Hardware

Introduction

Jana Giceva



Jana Giceva

Chair for Database Systems

Boltzmannstr. 3, Office: 02.11.043

jana.giceva@in.tum.de

Academic Background:

 2006 – 2009   BSc in Computer Science at Jacobs University Bremen

 2009 – 2011   MSc in Computer Science at ETH Zurich

 2011 – 2017   PhD in Computer Science at ETH Zurich (topic: DB/OS co-design)

 2017 – 2019   Lecturer in Department of Computing at Imperial College London

 Since   2020   Assistant Professor for Database Systems at TUM

Connections with Industry:

 Held roles with Oracle Labs and Microsoft Research in the USA in 2013 and 2014

 PhD Fellowship from Google in 2014

 Early Career Faculty Award from VMware in 2019

About me

2

mailto:jana.giceva@in.tum.de


 Make programs run faster on modern multi-core CPUs using a variety of techniques:

 Optimizing the data structures and algorithms for the memory hierarchy

 Vectorization

 Parallelizing algorithms

 Efficient synchronization of data structures

 Learn how to best leverage new hardware technologies

 Accelerators (e.g., FPGAs, modern NICs, etc.)

 Low-latency high-bandwidth networks

 Non-volatile memory

 Apply the knowledge with hands-on work:

 Understand what is happening under the hood, i.e., in the CPU, 

 Do performance analysis and debugging, and 

 Optimize your algorithms and data structures to run well both in isolation and alongside other programs

What this course is about



Task: sum up all entries in a two-dimensional array

Alternative 1:

Both alternatives touch the same data, but in different order. 

A motivating example (memory access)

4

for (r = 0; r < rows; r++)

for (c = 0; c < cols; c++)

sum += src[r * cols + c]; 

for (c = 0; c < cols; c++)

for (r = 0; r < rows; r++)

sum += src[r*cols + c];

Alternative 2:



Task: sum up all entries in a two-dimensional array

A motivating example (memory access)

5

Alternative 1 iterates over the 

elements row-wise, which is more 

friendly to the underlying micro-

architectural features.

Alternative 2 iterates over the 

elements column-wise, and its 

performance is highly dependent 

on whether the working set size 

fits in the memory hierarchy.

If not careful, 50x 

slower execution



Task: run multiple parallel instances of the query

To implement the join (⋈) use either:

 a hash join or

 an index nested loops join

Co-execute the independent instances on different CPU cores and compare performance to baseline

when they are run in isolation.

Results from “Lee, Ding, Chen, Lu, and Zhang. MCC-DB: Minimizing Cache Conflicts in Multi-core Processors for Databases” VLDB 2009

A motivating example (multi-core)

6

SELECT SUM(lo_revenue)

FROM   part, lineorder

WHERE  p_partkey = lo_partkey

AND    p_category <= 5



Task: co-run independent join algorithms on different CPU cores

A motivating example (multi-core)

7

Some algorithms are more 

sensitive to noisy environments 

(victims) and their performance

can be significantly affected if 

collocated with a bad neighbor.

One can either design algorithms

which are robust, or leverage

novel hardware features like

Intel’s Resource Directory 

Technology (RDT) for resource 

allocation and perf. isolation.

Results from “Lee, Ding, Chen, Lu, and Zhang. MCC-DB: Minimizing Cache Conflicts in Multi-core Processors for Databases” VLDB 2009



Task: run the following regular-expression queries

And compare the performance of CPU-only vs. FPGA-enhanced DBMS.

A motivating example (accelerators)

8

Q1: SELECT count(*) FROM address_table

WHERE address_string LIKE ‘%Strasse%’;

Q2: SELECT count(*) FROM address_table

WHERE REGEXP_LIKE(address_string, ‘(Strasse|Str.\.).*(8[0-9]{4})’);

Q3: SELECT count(*) FROM address_table

WHERE REGEXP_LIKE(address_string, ‘[0-9]+(USD|EUR|GBP)’);

Q4: SELECT count(*) FROM address_table

WHERE REGEXP_LIKE(address_string, ‘[A-Za-z]{3}\:[0-9]{4}’);

Results from “Sidler, Istvan, Owaida, Alonso. Accelerating Pattern Matching Queries in Hybrid CPU-FPGA Architectures” SIGMOD 2017



Task: run the following regular expression queries

A motivating example (accelerators)

9
Results from “Sidler, Istvan, Owaida, Alonso. Accelerating Pattern Matching Queries in Hybrid CPU-FPGA Architectures” SIGMOD 2017

Regular expression matching is 

notoriously expensive to evaluate 

on CPUs, 

but are a great match for accelerators

like FPGAs.



 Cache awareness 

 How to place data in memory and access it in a way that makes optimal use of memory caches?

 Query execution

 How can we tune our algorithms to fit modern processor architectures?

 Multi-core architectures

 How can we exploit the parallelism provided by multicore architectures?

 What should we be careful of? Synchronization? NUMA? Interference?

 Specialized hardware

 When should we use accelerators and how to choose the right one for data processing?

 Working with modern network and storage technologies

 InfiniBand / RDMA and Persistent Memory / NVRAM

Course content

10



Lecture:

 Recorded videos uploaded by 8am. Check the lecture’s Moodle webpage.

 Wednesdays, 9-11h 

 Course website: http://db.in.tum.de/teaching/ss20/dataprocessingonmodernhardware

 Please check regularly for updates

Tutorials:

 Interactive video web-conference at: https://bbb.rbg.tum.de/jan-tk9-mzh

 Wednesdays, 11-12h (after the lecture)

 First session: today in-person introduction, Q&A session and general set-up

 Consider that exercise material is part of the course content!

Course Organization

11

https://www.moodle.tum.de/course/view.php?id=57104
http://db.in.tum.de/teaching/ss20/dataprocessingonmodernhardware
https://bbb.rbg.tum.de/jan-tk9-mzh


 The main goal of the course is doing the exercises and understanding the 

material, but there will be an exam.

 You will get a grade for the assignments ℎ, which improves the grade of the exam 𝑒

 𝒎𝒊𝒏 (𝒆, 𝟎. 𝟔𝒆 + 𝟎. 𝟒 𝒉)

 The Exam: TBD

 Depending on the situation, it may be online and could be oral.

Assessment (Homework + Exam)

12



Let’s try to make the course as interactive as possible given the circumstances and TUM’s regulations.

 During the tutorials, please speak-up, ask questions and discuss!

 Engage in asynchronous discussions on Moodle

 Send me questions you want to be addressed during the tutorial sessions

 If tutorials work well, we could try to shift also the lecture to be live and recorded.

The material we discuss is relevant in practice:

 We will provide examples and exercises

 You will achieve the maximum fun factor if you try using the techniques on your machine

Course set-up

13



This is not a standard course – it is state of the art (bleeding edge) systems and research

 There is no real textbook for this course, only for the basics

 Computer architecture basics are covered in 

 “Computer Architecture: A Quantitative Approach” by Hennessy and Patterson. 

 “Computer Systems: A programmer’s perspective” by Bryant and O’Hallaron

 The lecture slides are available online

 Most material that we are going to cover is taken out of research papers:

 The references to those papers will be given as we go

 They are all good and easy (and fun!) to read papers.

 We’ll invite industry speaker(s) to share their experiences towards the end of the course.

Course material

14



15

Data Processing on Modern Hardware

Introduction

Jana Giceva



Hardware trends

16



Hardware trends

17

Slowing down of Moore’s law.

Single-threaded performance used 

to double every 18-22 months.

Now, single-threaded performance

is stagnating!

Since 2004, chips offer more and

more parallelism (esp. on servers).

2010

End of Dennard scaling in 2004!



 Since the end of Dennard scaling in 2004, historic switch for the microprocessor industry to 

increase core count instead of single processor’s efficiency

 Go from relying solely on instruction level parallelism (ILP) to 

data-level parallelism (DLP) and thread-level parallelism (TLP).

Effect 1: Increasing parallelism

18

0

10

20

30

40

50

60

2004 2006 2008 2010 2012 2014 2016 2018 2020

C
o
re

 c
o
u
n
t

Year

Scalable II

(Cascade Lake)

Scalable I

(Skylake)
Broadwell

HaswellIvyBridge

Westmere

Nehalem
Kentsfield

Conroe

Dunnington

Major implications for software:

- Previously hardware and compiler could

implicitly exploit ILP without the programmer’s 

attention and help.

- TLP and DLP, however, are explicitly parallel 

and require restructuring of the application so 

that it can exploit the parallelism



 In addition to core count, which exploits thread-level parallelism (TLP)

 The issue width of vectorized instructions has significantly increased to exploit

data-level parallelism (DLP) within general purpose processors

 Intel’s SIMD (Single Instruction Multiple Data) evolution summarized:

 1997: MMX 64-bit (Pentium 1), 

 1999: SSE 128-bit (Pentium 3),

 2011: AVX 256-bit float (Sandy Bridge)

 2013: AVX2 256-bit int (Haswell), 

 2017: AVX-512 512-bit (Skylake)

 And the increase of popularity and use of Vector and GPU architectures

Effect 1: increasing parallelism

19



 The memory bandwidth does not increase as fast as the core count

Effect 2: hitting the Memory wall

20
img src: http://db.in.tum.de/teaching/ws1718/dataprocessing/chapter1.pdf by Dr. Viktor Leis

Memory has become the new disk

Need for multi-tier cache hierarchy, and

Careful use of registers and the cache hierarchy

But, caches bring their own benefits and pitfalls:

Pollution, MESI protocol, timing attacks

http://db.in.tum.de/teaching/ws1718/dataprocessing/chapter1.pdf


Dark Silicon: 

 The end of Dennard scaling

 Modern CPUs already have close to 10 billion transistors, impossible to power all at the same time

 Alternative 1: more cores, but at lower frequency

 e.g., Intel’s Xeon Phi. But, Amdahl’s law

 Alternative 2: many specialized, heterogeneous cores and function units

Domain specific architectures (DSAs)*

 GPUs, TPUs, NPUs, FPGAs, ASICs, etc.

Active hardware:

 smart storage, smart NICs, programmable 

switches, processing-in-memory, smart DMA 

engines, programmable memory controllers?

Effect 3: towards Hardware Specialization

21*  https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext


 Historical: Only specialized HW before rise of general purpose

 Gamma database machine, Lisp machine

 Today on the market:

 Special instructions: AES encryption, video decoding

 Graphics Processing Units (GPUs)

 Accelerated Processing Units (APU, by AMD)

 Oracle Sparc T7, M7 (data analytics accelerators DAX)

 Google’s Tensor Processing Unit (TPU)

 Field-Programmable Gate Arrays (FPGAs)

 SSDs with embedded FPGA or ARM cores

 Programmable switches with P4

 FPGA enhanced NICs

 Also today: many ongoing research and industry projects

Example hardware specialization today

22



Accelerators are transforming the Cloud

23



 How do we program them? 

 What is the interface? 

 Domain specific languages?

 What is the role of compilers?

 How do we decide which computation to offload? Optimizers?

 Who manages the accelerators/active hardware (e.g., OS, application, runtime)?

 Should they be context-switched? 

 How do we virtualize them? 

 How do they fit in data-center resource disaggregation picture? 

 Good match for serverless functions?

 What is the failure domain?

Implications for (future) system design

24



In our group we have a new generation Scalable Processor Intel Xeon-Gold 6212U (formerly Cascade Lake)

Basic specifications:

 CPU clocked at 2.4 GHz with 24-cores (48 threads)

 with 192GB DRAM (6 x 32GB DDR4 at 2933 MHz), non-inclusive LLC, UPI interconnect

 and 768GB of PMEM (6 x 128GB Intel Optane DC Persistent Memory)

Advanced technologies:

 Vectorization: 

 SSE4.2, AVX, AVX2, AVX-512

 Transactional memory: 

 Synchronization Extensions (TSX)

 Resource allocation and management: 

 Resource Director Technology (RDT)

 Security extensions: 

 Fast and secure data encryption/decryption (AES), Page and Memory Protection Keys (MPX), 

Trusted Execution Technology (SGX)

https://ark.intel.com/content/www/us/en/ark/products/192453/intel-xeon-gold-6212u-processor-35-75m-cache-2-40-ghz.html

https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview

Intel Scalable 2nd generation Processors

25

https://ark.intel.com/content/www/us/en/ark/products/192453/intel-xeon-gold-6212u-processor-35-75m-cache-2-40-ghz.html
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview


AMD EPYC 7002 Series Processor 7H12:

 based on AMD Infinity Architecture

 CPU clocked at 2.6 GHz (with 64 cores per SoC, 128 threads)

 With up to 4TB DRAM at 204GB/s using 128 PCIe 4.0 lanes

 Large 256 MB LLC

Advanced technologies:

 AMD Infinity Guard

 Secure Memory Encryption (SME)

 Secure Encrypted Virtualization (SEV)

src: https://www.amd.com/system/files/documents/TIRIAS-White-Paper-AMD-Infinity-Architecture.pdf

Check more details at “A Deep Dive Into AMD’s ROME EPYC Architecture” article by Timothy Morgan 

https://www.nextplatform.com/2019/08/15/a-deep-dive-into-amds-rome-epyc-architecture/

AMD EPYC Infinity Architecture Processors

26

https://www.amd.com/system/files/documents/TIRIAS-White-Paper-AMD-Infinity-Architecture.pdf
https://www.nextplatform.com/2019/08/15/a-deep-dive-into-amds-rome-epyc-architecture/


Beyond CPU trends and Accelerators

27

 Persistent Memory (PMEM)

 byte-addressable memory device that resides on the memory bus

 can have DRAM-like access to data (similar latency as DRAM) 

 while non-volatile like NAND flash.

 Examples: NVDIMM and Intel’s 3D Xpoint DIMMs (Optane DC persistent memory modules)

src: https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

 Low-latency high-bandwidth networks 

 InfiniBand (IB) is a networking standard used in HPC that 

has very high throughput and low latencies

 HDR already offers 200-600 Gb/s

 Blurring the boundaries between a single machine 

and a cluster

src: https://www.mellanox.com/products/infiniband-switches/QM8700

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.mellanox.com/products/infiniband-switches/QM8700


Beyond CPU trends and Accelerators

28

 Computational Storage

 Architectures that performs computation where data

is stored, offloading host processing and reducing

data movement.

 Integration of compute resources, near the storage

or between the host and storage

Src: https://www.snia.org/education/what-is-computational-storage

 In-network computing

 via Programmable Switches (e.g., using P4)

 Industry vendors: Barefoot Tofino, Cavium 

Xpliant, Cisco Quantum Flow, etc.

src: https://barefootnetworks.com/products/brief-tofino/

https://www.snia.org/education/what-is-computational-storage
https://barefootnetworks.com/products/brief-tofino/


In addition to cross-references provided in the slides

Some material based on:

 Lecture notes by Prof. Viktor Leis and Prof. Jens Teubner

 Research talks and papers from DaMoN, HotChips, SIGMOD, VLDB, ADMS, MICRO, ISCA, etc.

Interesting videos:

 A New Golden Age for Computer Architecture, a Turing-award lecture by Patterson and Hennessy

 Clouds, catapults and life after the end of Moore’s Law with Dr. Doug Burger – Microsoft Research

Useful material in general for the course at:

 Intel’s Software Developer’s Manuals

 Intel’s Top-Down Micro-architectural Analysis Method 

 Anger Fog’s Software optimization resources

 Ulrich Drepper’s What every Programmer needs to know about Memory

 Godbolt – the compiler explorer (https://godbolt.org/)

References

29

https://godbolt.org/

