
1

Data Processing on Modern Hardware

Jana Giceva

Lecture 2: Cache awareness

Cache Awareness

2

Hardware trends

Year

P
e
rf

o
rm

a
n
c
e

s
rc

:
H

e
n

n
e

s
s
y
 &

 P
a

tt
e

rs
o

n
,
C

o
m

p
u

te
r

A
rc

h
it
e

c
tu

re
,
6

th
e

d
it
io

n

There is an increasing gap

between CPU and memory speeds:

 Also called the memory wall

 CPUs spend much of their time

waiting for memory

Dynamic RAM (DRAM)

 State kept in capacitor

 Leakage → refreshing needed

 Small capacitor, 1 transistor – high density

 Usage: DIMM (DRAM)

Memory ≠ Memory

4

Static RAM (SRAM)

 Bistable latch (0 or 1)

 Cell state stable → no refreshing needed

 6 transistors – low density, high power

 Usage: CPU-caches

Random Access Memory (RAM)

Dynamic RAM is comparably slow:

 Memory needs to be refreshed periodically

(every 64 ms)

 (Dis-)charging a capacitor takes time

 ~ 200 CPU cycles per access

Under certain circumstances, DRAM can be reasonably fast:

 DRAM cells are physically organized as a 2-d array.

 The discharge/amplify process done for an entire row

and more than one word can be read out.

 Several DRAM cells can be used in parallel.

DRAM Characteristics

5

We can exploit that by using

sequential access patterns.

SRAM, in contrast, can be very fast.

 Transistors actively drive output lines, so access to memory is almost instantaneous.

But, SRAM is significantly more expensive (chip space = money).

Therefore, organize memory as a hierarchy and use small, fast memories as caches for slow memory.

SRAM Characteristics

6

CPU Reg Main

Memory

Intel Haswell:

Can process at least

512 Bytes/cycle

Intel Haswell:

Bandwidth 10 Bytes/cycle

Latency 100 cycles

cache

Memory Hierarchy (Latency)

7

Intuition: Cache resemble the buffer manager but are controlled by hardware

Smaller,

faster,

costlier

per byte

Larger,

slower,

cheaper

per byte

CPU

on-chip L1

cache (SRAM)

on-chip L2 (SRAM)

(used to be off-chip!)

off-chip L3

last level cache (SRAM)

Main memory (DRAM)

Registers hold 8-byte words

kilobytes, access in ~4 cycles, 64-byte cache lines

kilobytes, ~10 cycles, 64-byte cache lines

megabytes, ~50 cycles, data from DRAM

gigabytes, ~100 cycles

Caches take advantage of the principle of locality

 90% execution time spent in 10% of the code

 The hot set of data often fits into caches

Spatial locality:

 Code often contains loops

 Related data is often spatially close

Temporal locality:

 Code may call a function repeatedly,

even if it is not spatially close

 Programs tend to reuse data frequently.

Principle of Locality

8

block

block

Example locality: Data? Instructions?

9

Temporal locality:

 Data: sum referenced in each iteration

 Instructions: cycle through loop repeatedly

Spatial locality:

 Data: array a[] accessed in stride-1 pattern

 Instructions: reference instructions in sequence

sum = 0;

for (i = 0; i < n; i++)

{

sum += a[i];

}

return sum;

How we access data stored in memory can have significant impact on performance.

Locality example

10

int sum_array_col(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++) {

for (i = 0; i < M; i++) {

sum += a[i][j];

}

}

return sum;

}

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++) {

for (j = 0; j < N; j++) {

sum += a[i][j];

}

}

return sum;

}

Locality example #1

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++) {

for (i = 0; i < M; i++) {

sum += a[i][j];

}

}

return sum;

}

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

M = 3, N = 4

a

[0]

[0]

a

[0]

[1]

a

[0]

[2]

a

[0]

[3]

a

[1]

[0]

a

[1]

[1]

a

[1]

[2]

a

[1]

[3]

a

[2]

[0]

a

[2]

[1]

a

[2]

[2]

a

[2]

[3]

Layout in Memory

76 92 108

a[0][0]

a[1][0]

a[2][0]

Access Pattern:

stride = ?
1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

Note: 76 is just one possible starting address of array a

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

a[1][3]

a[2][3]

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++) {

for (j = 0; j < N; j++) {

sum += a[i][j];

}

}

return sum;

}

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

M = 3, N = 4

a

[0]

[0]

a

[0]

[1]

a

[0]

[2]

a

[0]

[3]

a

[1]

[0]

a

[1]

[1]

a

[1]

[2]

a

[1]

[3]

a

[2]

[0]

a

[2]

[1]

a

[2]

[2]

a

[2]

[3]

Layout in Memory

76 92 108

a[0][0]

a[0][1]

a[0][2]

a[0][3]

a[1][0]

a[1][1]

a[1][2]

a[1][3]

a[2][0]

a[2][1]

a[2][2]

a[2][3]

Access Pattern:

stride = ?
1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)Note: 76 is just one possible starting address of array a

Locality example #2

Executing the program for a 20’000 x 20’000 matrix gives an order of magnitude difference:

 16.98 sec for sum_array_col vs 1.71 sec for sum_array_row

Locality example

13

Quick check with perf measuring the

cpu cycles and cache misses

confirms the importance of writing

cache-friendly code.

Cache Internals – recap

14

To guarantee speed, the overhead of caching must be kept reasonable.

 Organize cache in cache lines.

 Only load / evict full cache lines.

 Typical cache line size is 64 bytes.

 The organization in cache lines in consistent with the principle of (spatial) locality.

 Block-wise transfers are well-supported by DRAM chips.

CPU cache internals

15

lin
e

 s
iz

e

cache line

0 1 2 3 4 5 6 7

On every memory access, the CPU checks if the respective cache line is already cached.

Cache hit:

 Read data directly from the cache

 No need to access lower-level memory

Cache miss:

 Read full cache line from lower-level memory

 Evict some cache line and replace it by the newly read cache line

 CPU stalls until data becomes available*

* Modern CPUs support out-of-order execution and several in-flight cache misses

Memory access

16

Big difference between the cost of cache hit and a cache miss

 Could be 100x speed difference between accessing cache and main memory (in clock cycles)

Miss rate (MR)

 Fraction of memory references not found in cache:
#misses

#accesses
= 1 − Hit rate

Hit time (HT)

 Time to deliver a cache line from the cache to the processor

Miss penalty (MP)

 Additional time required because of a miss

Average time to access memory (considering both hits and misses): 𝑯𝑻 + 𝑴𝑹 𝒙𝑴𝑷

Cache performance

17

Big difference between the cost of cache hit and a cache miss

 Could be 100x speed difference between accessing cache and main memory (in clock cycles)

 Average time to access memory (considering both hits and misses): 𝑯𝑻 + 𝑴𝑹 𝒙𝑴𝑷

 99% hit rate is twice as good as 97% hit rate

 Assume HT of 1 𝑐𝑦𝑐𝑙𝑒, and MP of 100 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠

 97%: 1 + (1 − 0.97)𝑥100 = 1 + 3 = 4 𝑐𝑦𝑐𝑙𝑒𝑠

 99%: 1 + (1 − 0.99)𝑥100 = 1 + 1 = 2 𝑐𝑦𝑐𝑙𝑒𝑠

Cache performance

18

In a fully associative cache, a block can be loaded into any cache line.

 Offers freedom to block replacement strategy

 Does not scale to large caches:

 For 4MB cache, line size of 64B

→ 65,536 cache lines

 Used, e.g., for small translation lookaside buffer

(TLB) caches.

Block Placement: Fully Associative Cache

19

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

c
a
c
h
e

M
e
m

o
ry

In a direct mapped cache, a block can be loaded into exactly one cache line.

 Much simpler to implement

 Easier to make it fast.

 But, it increases the chance of conflicts.

Block Placement: Direct-Mapped Cache

20

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

Place block #15 in

cache line 7

7 = 15 mod 8
c
a
c
h
e

M
e
m

o
ry

A compromise are set-associative caches.

 Group cache lines into sets.

 Each memory block maps to one set.

 Block can be placed anywhere within a set.

 Most caches today are set-associative.

Block Placement: Set-Associative Cache

21

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

Place block #15

anywhere in set 3

3 = 15 mod 4

0 1 2 3

c
a
c
h
e

M
e
m

o
ry

When bringing in new cache lines, an existing entry has to be evicted.

No choice for direct-mapped caches.

Possible replacement strategies for fully- and set-associative caches:

 Least Recently Used (LRU)

 Evict cache line whose last access was done longest time ago.

 Due to temporal locality, it is least likely to be needed any time soon.

 First In First Out (FIFO)

 Behaves often similar to LRU

 But, it is easier to implement.

 Random

 Pick a random cache line to evict.

 Very simple to implement in hardware.

Replacement has to be done in hardware and fast. Hardware usually implements not most recently used.

Block Replacement

22

Compulsory (cold) miss:

 Occurs on first access to a block.

Conflict miss:

 Occurs when the cache is large enough, but multiple blocks all map to the same slot.

 Can also happen due to bad alignment of struct elements

 Direct-mapped caches have more conflict misses than N-way set-associative caches.

Capacity miss:

 Occurs when the set of active cache blocks (the working set) is larger than the cache.

 Note: fully-associative caches have only compulsory and capacity misses.

Types of Cache Misses: 3 C’s!

23

Multiple copies of data exist (in cache and memory). What is the problem with that?

Write-through:

 Write immediately to memory and all caches in between

 Memory is always consistent with the cache copy and simplifies data coherency

 But each write will stall the CPU*

 Slow: what if the same value (or line!) is written several times?

Write-back:

 Defer writing to memory until cache line is evicted (replaced)

 Needs a dirty bit that indicates that the line is different from memory

 Has higher performance but is more complex to implement.

Modern processors usually implement write back.

What happens on a write-hit?

24

* Write buffers can be used to overcome this problem.

Write-allocate (load into cache, update line in cache):

 Good if more writes to the location will follow

 More complex to implement

 May evict an existing value

 Common with write-back caches.

No-write-allocate (writes immediately to memory):

 Simpler to implement

 Slower code (bad if value is consistently re-read)

 Seen with write-through caches.

What happens on a write-miss?

25

Effect of Cache Parameters

26

s
rc

:
U

lr
ic

h
 D

re
p

p
e

r.
 W

h
a

t
E

v
e

ry
 P

ro
g

ra
m

m
e

r
S

h
o

u
ld

 K
n

o
w

 A
b

o
u

t
M

e
m

o
ry

All caches have a cache line size of 64 bytes.

L1 instruction-cache (i-cache) and data-cache (d-cache):

 32 KiB, 8-way set-associative

 i-cache: no writes, d-cache: write-back

 Access: 4 cycles

L2 unified cache:

 256 KiB, 8-way set-associative

 Private, write-back

 Access: 11 cycles

L3 unified cache: (shared among multiple cores)

 8 MiB, 16-way set-associative

 Shared, write-back

 Access: 30-40 cycles

Real caches: Intel core i7-5960X

27

Slower, but more likely to hit

Write code that has locality

 Spatial: access data contiguously

 Temporal: make sure access to the same data is not too far apart in time

How to achieve this?

 Adjust memory access in code (software) to improve miss rate (MR)

 Requires knowledge of both how caches work as well as your system’s parameters

 Proper choice of algorithm

 Loop transformations

 Cf. parallel programming class. We’ll cover them in a few weeks

Optimizations for memory hierarchy

Cache performance analysis

29

Example: matrix multiplication

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n, k++)

c[i*n + j] += a[i*n + k] * b[k*n + j];

}

c a b

i
j

// move along rows of a

// move along columns of b

×=

Assume:

 Square matrix (𝑛 × 𝑛), elements are double, sizeof(double)=8

 Cache-line is 64 bytes

 Single matrix row does not fit in the cache

First iteration:

𝑛

8
+ 𝑛 =

9𝑛

8
misses

 Afterwards in cache:

(schematic)

 Thrashing cached items

before using them.

 Total misses:
9𝑛

8
× 𝑛2 =

9

8
𝑛3

Cache miss analysis

= ×

=

𝒏
m

is
s
e

s

8 doubles wide

𝒏/𝟖 misses

×

Can get the same result of matrix multiplication by splitting the matrices

into smaller submatrices (matrix “blocks”)

For example, multiply two 4 × 4 matrices:

𝐴 =

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

=
𝐴11 𝐴12
𝐴21 𝐴22

, with B defined similarly.

𝐴𝐵 =
(𝐴11𝐵11 + 𝐴12𝐵21) (𝐴11𝐵12 + 𝐴12𝐵22)
(𝐴21𝐵11 + 𝐴22𝐵21) (𝐴21𝐵12 + 𝐴22𝐵22)

.

Linear Algebra to the Rescue (1)

Matrices of size 𝑛 × 𝑛, split into 4 blocks of size 𝑟 (𝑛 = 4𝑟)

𝐶22 = 𝐴21𝐵12 + 𝐴22𝐵22 + 𝐴23𝐵32 + 𝐴24𝐵42 = σ𝑘𝐴2𝑘 × 𝐵𝑘2

Multiplication operates on small “block” matrices

 Choose size so that they fit in the cache

 This technique called “cache blocking”

Linear Algebra to the Rescue (2)

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

Blocked version of the naïve algorithm

 𝑟 = block matrix size (assume 𝑟 divides 𝑛 evenly)

6 nested loops may seem less efficient, but leads to a much faster code!!

Blocked Matrix Multiply

/* move by rxr BLOCKS now */

for (i = 0; i < n; i+=r)

for (j = 0; j < n; j+=r)

for (k = 0; k < n, k+=r)

/* block matrix multiplication */

for (ib = i; ib < i+r; ib++)

for (jb = j; jb < j+r; jb++)

for (kb = k; kb < k+r; kb++)

c[ib*n + jb] += a[ib*n + kb] * b[kb*n + jb]

Assume:

 Square matrix (𝑛 × 𝑛), elements are double, sizeof(double)=8

 Cache-line size is 64 bytes

 Single matrix row does not fit in the cache

 Three blocks (𝑟 × 𝑟) fit into cache: 3r2 < cache size

First (block) iteration:

𝑟2

8
misses for each block

𝑛

𝑟
× 2 ×

𝑟2

8
=

𝑛𝑟

4
(again omitting matrix c)

 Afterwards in cache (schematic):

Cache Miss Analysis (Blocked)

𝑟2 elements per block, 8 elements in cache-line

Τ𝑛 𝑟 blocks in row and column

= ×

=

8 doubles wide

𝒏/𝒓 blocks

×

Assume:

 Square matrix (𝑛 × 𝑛), elements are double, sizeof(double)=8

 Cache-line size is 64 bytes

 Single matrix row does not fit in the cache

 Three blocks (𝑟 × 𝑟) fit into cache: 3r2 < cache size

First (block) iteration:

𝑟2

8
misses for each block

𝑛

𝑟
× 2 ×

𝑟2

8
=

𝑛𝑟

4
(again omitting matrix c)

Total misses:

𝑛𝑟

4
× (

𝑛

𝑟
)2=

𝑛3

(4𝑟)
.

Cache Miss Analysis (Blocked)

= ×

=

8 doubles wide

𝒏/𝒓 blocks

×

Naïve: (Τ9 8) × 𝑛3

Blocked: Τ1 (4𝑟) × 𝑛3

 If 𝑟 = 8, difference is 4 ∗ 8 ∗
9

8
= 36x

 If 𝑟 = 16, difference is 4 ∗ 16 ∗
9

8
= 72x

Blocking optimization only works if the blocks fit in the cache

 Suggests larger possible block size up to limit 3𝑟2 ≤ cache size

Matrix multiplication has inherent temporal locality:

 Input data: 3𝑛2, computation 2𝑛3

 Every array element used 𝑂(𝑛) times!

 But program has to be written properly

Matrix Multiply Summary

Programmer can optimise for cache performance

 How data structures are organised

 How data are accessed:

 Nested loop structure

 Blocking is a general technique

All systems favour “cache-friendly code”

 Getting absolute optimum performance is very platform specific

 Cache sizes, cache block size, associativity, etc.

 Can get most of the advantage with generic code:

 Keep working set reasonably small (temporal locality)

 Use small strides (spatial locality)

 Focus on inner loop cycle

 Don’t optimize too much prematurely. Check the hotspots with a profiling tool like perf.

Cache-Friendly Code

The Memory Mountain

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size (bytes)

R
e

ad
 t

h
ro

u
gh

p
u

t
(M

B
/s

)

Stride (x8 bytes)

Aggressive prefetching

Ridges of

temporal

Locality

Ridges of

temporal

Locality

Ridges of temporal

Locality

L1

L2

L3

Mem

Decreasing spatial locality

Stride (x8 bytes) Size (bytes)

Working data set size (increasing)

Core i7 Haswell 2.1 GHz

32 KiB L1-i and L1-d caches

256 KiB L2 cache

8 MiB L3 cache

64 B cache-line size

R
e
a

d
 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

Slopes of spatial

Locality

Slopes of spatial

Locality

Slopes of spatial

Locality Mem

Slopes of spatial

Locality

Slopes of spatial

Locality

Slopes of spatial

Locality

To compensate for slow memory, systems use caches:

 DRAM provides high capacity, but long latency main memory

 SRAM has better latency, but low capacity CPU caches

 Typically multiple levels of caching (memory hierarchy)

 Caches are organized into cache lines (smallest granularity for moving data blocks)

 Set associativity: a memory block can only go into a small number of cache lines

(most caches are set-associative)

Systems will benefit from locality (temporal and spatial):

 Affects both data and code

 Concrete layout of caches in systems may be different, but locality always helps!

Putting it all Together

40

Cache Awareness for Data Processing

42

The Memory Mountain

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size (bytes)

R
e

ad
 t

h
ro

u
gh

p
u

t
(M

B
/s

)

Stride (x8 bytes)

Aggressive prefetching

Ridges of

temporal

Locality

Ridges of

temporal

Locality

Ridges of temporal

Locality

L1

L2

L3

Mem

Decreasing spatial locality

Stride (x8 bytes) Size (bytes)

Working data set size (increasing)

Core i7 Haswell 2.1 GHz

32 KiB L1 cache

256 KiB L2 cache

8 MiB L3 cache

64 B block size

R
e
a

d
 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

Slopes of spatial

Locality

Slopes of spatial

Locality

Slopes of spatial

Locality

Programmer can optimise for cache performance

 How data structures are organised (alignment and layout)

 How data are accessed:

 Nested loop structure

 Blocking is a general technique

All systems favour “cache-friendly code”

 Can get most of the advantage with generic code:

 Keep working set reasonably small (temporal locality)

 Use small strides (spatial locality)

 Focus on inner loop cycle

Cache-Friendly Code

Benchmark program

Misses per 1000 instructions

Also TPC-C

Performance (SPECint 2000)

45

First, we will look into

data cache usage and

how we can improve it.

Afterwards, we will

go over a few techniques

that improve on

instruction cache usage.

Why do database systems show such poor data-cache behavior?

Question

46

How can we improve data cache usage?

 Requires going back to different data storage models and query execution models.

 And thinking both in terms of temporal- and spatial-locality

Let’s consider as an example the following selection query:

Which typically involves a full table scan.

Caches for data processing

47

SELECT COUNT (*)

FROM lineitem

WHERE l_shipdate = “2009-09-26”

Tuples are represented as records stored sequentially on a database page

 With every access to l_shipdate field, we load a large amount of irrelevant data into the cache.

 Accesses to slot directories and variable sized tuples incur additional trouble.

 Especially present in OLAP workloads

Table Scans in row-store databases

48

recordl_shipdate

Cache line boundaries

Improving data cache locality

49

Word and cache aligned attributes with padding are essential to enable the CPU to access elements

without any unexpected behavior or additional work

Data alignment

50

Structure represented as block of memory:

 Big enough to hold all of the fields

Fields ordered according to declaration order

 Even if another ordering would be more compact

Compiler determines overall size + positions of fields

 Machine-level programs has no understanding of the structures in the source code

Structure Representation

typedef rec {

int a[4];

long i;

struct rec *next;

} *r;
a i next

r

0 16 24 32

For good memory system performance, Intel recommends data to be aligned

 Memory is accessed in word-chunks, so it is inefficient to load/store values that

span word boundaries and especially cache-line boundaries

 However, the x86-64 hardware will work correctly regardless of alignment of data

Aligned means that any primitive object of K bytes must have an address that is multiple of K

Memory Alignment in x86-64

K Type Addresses

1 char No restrictions

2 short Lowest bit must be zero: ...02

4 int, float Lowest 2 bits zero: ...002

8 long, double Lowest 3 bits zero: ...0002

16 long double Lowest 4 bits zero: ...00002

Aligned Data:

 Primitive data type requires K bytes

 Address must be multiple of K

Structures and Alignment

vi[0]c i[1]

p p+1 p+5 p+9 p+17

struct S1 {

char c;

int i[2];

double v;

} *p;

vi[0]c i[1]

p+0 p+4 p+8 p+16

3 bytes 4 bytes

p+24

Multiple of 8 Multiple of 8Multiple of 4

Internal fragmentation

Even though it is not

packed, this padded data

structure will result in

better performance.

Compiler will do the following:

 Maintains declared ordering of fields in struct

 Each field must be aligned within the struct (may insert padding)

 offsetof can be used to get actual field offset

 Overall struct must be aligned according to largest field

 Total struct size must be multiple of its alignment (may insert padding)

 sizeof should be used to get true size of structs

 For strings and other variable-length data

 split the string into length and data: fixed size header and variable size tail.

 header contains pointers to tail.

 place variable data at the end of the struct (consider as alignment 1)

 Cf. Database Systems on Modern CPU Architectures (Access Paths)

Alignment of Structs

The compiler must respect the order elements are declared in

 Sometimes the programmer can save space by declaring large data types first

How you can save space

struct S4 {

char c;

int i;

char d;

} *p;

struct S5 {

int i;

char c;

char d;

} *p;

dc i3 bytes 3 bytes c di 2 bytes

12 bytes 8 bytes

Task: test effect of padding and alignment when inserting tuples in an array (single socket, 4 hw-threads)

Data alignment

56

struct S1 {

int primary_key;

long timestamp;

char color[2];

int zipcode;

} *p;

Alignment Throughput

No Alignment 0.523 MB/s

Padding 11.7 MB/s

Reordering +

Padding

814.8 MB/s

→ src: CMU-DB Alignment Experiment by Tianyu Li

https://15721.courses.cs.cmu.edu/spring2020/slides/08-storage.pdf

Row-wise storage (n-ary storage model, NSM) :

Storage model: Option 1 row-store

57

𝑎 𝑏 𝑐 𝑑

𝑎1 𝑏1 𝑐1 𝑑1

𝑎2 𝑏2 𝑐2 𝑑2

𝑎3 𝑏3 𝑐3 𝑑3

𝑎4 𝑏4 𝑐4 𝑑4 page 0 page 1

𝑎1 𝑏1
𝑐1 𝑑1 𝑎2

𝑏2 𝑐2
𝑑2 𝑏1

𝑎3 𝑏3
𝑐3 𝑑3

𝑏4 𝑐4
𝑑4 𝑏1

𝑎4

Ideal for OLTP where txns

tend to operate only on an

individual entry and insert-

or update-heavy workloads.

Good for:

+ Inserts, updates, and deletes.

+ Queries that need the entire tuple.

+ Index-oriented physical storage.

Bad for:

- Scanning large portions

of the table and/or a subset

of the attributes.

Column-wise storage (decomposition storage model, DSM)

Storage model: Option 2 column-store

58

𝑎 𝑏 𝑐 𝑑

𝑎1 𝑏1 𝑐1 𝑑1

𝑎2 𝑏2 𝑐2 𝑑2

𝑎3 𝑏3 𝑐3 𝑑3

𝑎4 𝑏4 𝑐4 𝑑4
page 0 page 1

𝑎4

𝑎1 𝑎2
𝑎3 𝑎4

𝑏1 𝑏2
𝑏3 𝑏4

Ideal for OLAP workloads

where read-only queries

perform large scans over a

subset of the table’s attributes.

Good for:

+ Only reads the data that it needs.

+ Amortizes cost for fetching data

from memory.

+ Better for compression.

Bad for:

- point queries, inserts, updates,

and deletes because of tuple

splitting/stitching.

→ Copeland and Khoshafian. A Decomposition Storage Model. SIGMOD 1985

Tuple identification

 Fixed length offsets – each value is the same length for an attribute

 Embedded Tuple IDs – each value is stored with its tuple id in a column

Example: MonetDB makes this explicit in its data model with Binary Association Tables

 All tables in MonetDB have two columns (“head” and “tail”)

 Each column yields one binary association table (BAT), with oids to identify matching entries

 Often, the oids can be implemented as virtual oids (voids) → not explicitly materialized in memory

Column stores: tuple identification

59

oid NAME AGE SEX

o1 John 34 m

o2 Angelina 31 f

o3 Scott 35 m

o4 Nancy 33 f

→

oid NAME

o1 John

o2 Angelina

o3 Scott

o4 Nancy

oid AGE

o1 34

o2 31

o3 35

o4 33

oid SEX

o1 m

o2 f

o3 m

o4 f

Tuple re-combination can cause considerable overhead:

 Need to perform many joins

 Workload-dependent trade-off

 MonetDB positional joins (thanks to void columns)

Column stores: tuple reconstruction

60→ Column-stores vs. row-stores: How different are they really? SIGMOD 2008

→
C

o
p
e
la

n
d
 a

n
d
 K

h
o
s
h
a
fi
a

n
.

A
 D

e
c
o
m

p
o
s
it
io

n
 S

to
ra

g
e
 M

o
d
e
l.
 S

IG
M

O
D

 1
9
8
5

1970s: Cantor DBMS

1980s: DSM Proposal

1990s: SybaseIQ (in-memory only)

2000s: MonetDB, VectorWise, Vertica

2010s: Almost all commercial databases added extensions to their engines

 Microsoft SQL Server (since SQL Server 11)

 Column Store Indexes (Larson et al. SIGMOD 2011)

 Oracle

 Dual-format in-memory option (Lahiri et al. ICDE 2015)

 IBM DB2 (since DB2 10.5)

 BLU Accelerator (Raman et al. VLDB 2013), enhancing Blink (Raman et al. ICDE 2008)

Column Stores in Commercial DBMS

61

Edgar F. Codd Innovation Award,

and ACM SIGMOD Systems Award

(MonetDB)

ACM SIGMOD Test of Time Award for C-Store

One can also store data in a hybrid format:

 PAX (Partition Attributes Across) layout:

 Divide each page into mini-pages and group attributes into them

 Weaving Relations for Cache Performance by Ailamaki et al. (VLDB 2001)

 Hybrid storage model

 Store new data in NSM for fast OLTP

 Migrate data to DSM for more efficient OLAP

 Fractured mirrors (Oracle, IBM), Delta Store (SAP Hana)

 Recent research states that DSM can be used efficiently for hybrid workloads
 Optimal Column Layout for Hybrid Workloads by Athanassoulis et al. (VLDB 2019)

Hybrid approaches

62

