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Cache awareness for

query execution models
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The processing model of a database defines how the system executes the query plan.

The four main approaches are:

 Iterator model (volcano, tuple-at-a-time)

 Materialization model (operator-at-a-time, column-at-a-time)

 Vectorization model (vector-at-a-time, batch, block-wise)

 Pushing tuples up model

There are different trade-offs depending on the workload type and the underlying hardware.

 cf. Database Systems on Modern CPU Architectures (chapter 5)

Processing models
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Most classical systems implement the Volcano iterator model:

 Operators request tuples from their input using next()

 On each invocation, the operator returns either a

single tuple or null if there are no more tuples

 Data is processed tuple-at-a-time in a pipelined fashion

 Also called the Volcano or pipeline model

 Each operator keeps its own state

Iterator model
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Iterator model – Example 
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SELECT R.id, S.cdate

FROM   R JOIN S

ON     R.id = S.id

WHERE  S.value > 100

𝜋

𝜎

𝑅 𝑆

R.id, S.value

R.id = S.id

value > 100

for t in child.Next():

emit(projection(t))

for t1 in left.Next():

buildHashTable(t1)
for t2 in right.Next():

if probe(t2): emit(t1 t2)

for t in child.Next():

if evalPred(t): emit(t)

if S.hasNext()

emit(S.next())

else emit(null)

if R.hasNext()

emit(R.next())

else emit(null)



Iterator model – Example 
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SELECT R.id, S.cdate

FROM   R JOIN S

ON     R.id = S.id

WHERE  S.value > 100

𝜋

𝜎

𝑅 𝑆

R.id, S.value

R.id = S.id

value > 100

for t in child.Next():

emit(projection(t))

for t1 in left.Next():

buildHashTable(t1)
for t2 in right.Next():

if probe(t2): emit(t1 t2)

for t in child.Next():

if evalPred(t): emit(t)

if S.hasNext()

emit(S.next())

else emit(null)

if R.hasNext()

emit(R.next())

else emit(null)

Single tuple
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Iterator model – Example 
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SELECT R.id, S.cdate

FROM   R JOIN S

ON     R.id = S.id

WHERE  S.value > 100

𝜋

𝜎

𝑅 𝑆

R.id, S.value

R.id = S.id

value > 100

for t in child.Next():

emit(projection(t))

for t1 in left.Next():

buildHashTable(t1)
for t2 in right.Next():

if probe(t2): emit(t1 t2)

for t in child.Next():

if evalPred(t): emit(t)

if S.hasNext()

emit(S.next())

else emit(null)

if R.hasNext()

emit(R.next())

else emit(null)

1

2

3

4
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This is used in almost every RDBMS. 

 Allows for tuple pipelining.

 Some operators must block until their children emit all their tuples:

 Joins, subqueries, sort, group-by, etc.

Implications on cache usage efficiency:

 All operators in a plan run tightly interleaved

 Their combined instruction footprint may be large

 Many instruction cache misses

 Operators constantly call each other’s functionality

 Results in a big function call overhead

 The combined state of the operators may be too large to fit into caches

 e.g., hash tables, cursors, partial aggregates 

 Results in many data cache misses

Iterator model
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Example: Query Q1 from the TPC-H benchmark on MySQL

 Scan query with arithmetics on aggregated tuples without a join

Results taken from MonetDB/X100: Hyper-Pipelining Query Execution CIDR 2005

Example: TPC-H on MySQL
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SELECT   l_returnflag, l_linestatus, SUM(l_quantity) AS sum_qty,

SUM(l_extendedprice) AS sum_base_price,

SUM(l_extendedprice*(1-l_discount)) AS sum_disc_price,

SUM(l_extendedprice*(1-l_discount)*(1+l_tax)) AS sum_charge,

AVG(l_quantity) AS avg_qty, AVG(l_extendedprice) AS avg_price,

AVG(l_discount) AS avg_disc, COUNT(*) AS count_order

FROM     lineitem

WHERE    l_shipdate <= DATE ‘1998-09-02’

GROUP BY l_returnflag, l_linestatus



Show results from executing the query
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Each call only processes a single tuple 

millions of calls

Only 10% of the time spent on actual query task.

Very low instructions-per-cycle (IPC) ratio.



Much time spent on field access (e.g., rec_get_nth_field()).

 Row-store  polymorphic operators.

Single-tuple functions are hard to optimize (by compiler):

 Low IPC ratio – empty pipelines make the CPU stall

 Optimization across functions not possible (or very difficult)

 Function call overhead is high

 Vector instructions (SIMD) are hardly applicable

Example:

 Let’s consider the Item_func_plus::val function from the previous table


38 instr.

0.8 ൗinstr.
cycle

= 48 cycles vs. 3 instructions for load/add/store assembly

 One explanation for this high cost is the absence of loop pipelining, dependent instructions  20 cycles

 High cost of a function (routine) call (~ 20 cycles) that cannot be amortized

Further observations
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Each operator processes its input all at once and then stores its output all at once (in one buffer)

 Operators consume and produce full columns (or tables).

 Each (sub-)result is fully materialized (in memory)

 No pipelining (rather a sequence of statements)

 Each operator runs exactly once.

The output can be either a whole tuple (row-store) or subsets of columns (column-store).

Materialization model
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Materialization model – Example 
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SELECT R.id, S.cdate

FROM   R JOIN S

ON     R.id = S.id

WHERE  S.value > 100

𝜋

𝜎

𝑅 𝑆

R.id, S.value

R.id = S.id

value > 100

out = []

for t in child.Output():

out.append(projection(t))
return out

out = []

for t1 in left.Output():

buildHashTable(t1)
for t2 in right.Output():

if probe(t2): out.append(t1 t2)
return out

out = []

for t in R

out.append(t)
return out

1

2

3

out = []

for t in child.Output():

if evalPred(t): out.append(t)
return out

out = []

for t in S

out.append(t)
return out

All tuples



Materialization model – Example 
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SELECT R.id, S.cdate

FROM   R JOIN S

ON     R.id = S.id

WHERE  S.value > 100

𝜋

𝜎

𝑅 𝑆

R.id, S.value

R.id = S.id

value > 100

out = []

for t in child.Output():

out.append(projection(t))
return out

out = []

for t1 in left.Output():

buildHashTable(t1)
for t2 in right.Output():

if probe(t2): out.append(t1 t2)
return out

out = []

for t in R

out.append(t)
return out

1

2

3

out = []

for t in child.Output():

if evalPred(t): out.append(t)
return out

out = []

for t in S

out.append(t)
return out

4
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Materialization model – Example 
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SELECT R.id, S.cdate

FROM   R JOIN S

ON     R.id = S.id

WHERE  S.value > 100

𝜋

𝜎

𝑅 𝑆

R.id, S.value

R.id = S.id

value > 100

out = []

for t in child.Output():

out.append(projection(t))
return out

out = []

for t1 in left.Output():

buildHashTable(t1)
for t2 in right.Output():

if probe(t2): out.append(t1 t2)
return out

out = []

for t in R

out.append(t)
return out

1

2

3

out = []

for t in child.Output():

if evalPred(t): out.append(t)
return out

out = []

for t in S

out.append(t)
return out

4

5



Much fewer number of function calls

Due to such operator-at-a-time processing, its tight loops

 Conveniently fit into instruction caches

 Can be optimized effectively by modern compilers

 Loop unrolling

 Vectorization (use of SIMD instructions)

 Can leverage modern CPU features (hardware prefetching)

 Far less expensive function calls are now out of the critical code path

Materialization model – analysis 
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The materialization (operator-at-a-time) model is a two-edged sword:

 Cache-efficient with respect to code and operator state

 Tight loops, optimizable code

But, each operator reads in and out everything, so

 Data won’t fully fit into the cache:

 Repeated scans will fetch data from memory over and over 

 Strategy falls apart when intermediate (materialized) results no longer fit in memory/caches

Can we aim for the middle-ground between the two extremes?

Iterator vs. Materialization model
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tuple-at-a-time

(iterator model)

operator-at-a-time

(materialization model)
vector-at-a-time

(vectorization model)



Idea: use volcano-style iteration

But for each next() call return a batch of tuples instead of a single tuple

 Vector in MonetDB/X100 terminology

 The operator’s internal loop processes multiple tuples at a time

 The size of the batch can vary based on the hardware and query properties

Vectorization model
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Vectorization model – Example 
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SELECT R.id, S.cdate

FROM   R JOIN S

ON     R.id = S.id

WHERE  S.value > 100

𝜋

𝜎

𝑅 𝑆

R.id, S.value

R.id = S.id

value > 100

out = []

for t in child.Output():

out.append(projection(t))
if |out|>n: emit(out)

out = []

for t1 in left.Output():

buildHashTable(t1)
for t2 in right.Output():

if probe(t2): out.append(t1 t2)
if |out|>n: emit(out)

out = []

while R.hasNext() & |out|<n

out.append(R.next())

emit(out)

1

2

3

out = []

for t in child.Output():

if evalPred(t): out.append(t)
if |out|>n: emit(out)

out = []

while S.hasNext() & |out|<n

out.append(S.next())

emit(out)

vector of tuples



Vectorization model – Example 
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SELECT R.id, S.cdate

FROM   R JOIN S

ON     R.id = S.id

WHERE  S.value > 100

𝜋

𝜎

𝑅 𝑆

R.id, S.value

R.id = S.id

value > 100

out = []

for t in child.Output():

out.append(projection(t))
if |out|>n: emit(out)

out = []

for t1 in left.Output():

buildHashTable(t1)
for t2 in right.Output():

if probe(t2): out.append(t1 t2)
if |out|>n: emit(out)

out = []

while R.hasNext() & |out|<n

out.append(R.next())

emit(out)

1

2

3

out = []

for t in child.Output():

if evalPred(t): out.append(t)
if |out|>n: emit(out)

out = []

while S.hasNext() & |out|<n

out.append(S.next())

emit(out)

4

5



Uses the best of both worlds (iterator and materialization models):

 Reduces the number of invocations per operator

 Allows for operators to use vectorized (SIMD) instructions to process batches of tuples

Imperative to choose a vector size that is:

 Large enough to amortize the iteration overhead (e.g., function calls, instruction cache misses, etc), 

 Small enough to not thrash data caches

Will there be such a vector size?

 Or will caches be thrashed long before iteration overhead is compensated?

Vectorization model – analysis 
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Observations:

 Vectorized execution quickly compensates for iteration overhead

 1000 tuples should conveniently fit into caches

Vector size ↔ instruction cache effectiveness
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Vectorized execution in MonetDB/X100
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Microsoft SQL Server supports vectorized (“batched” in MS jargon) execution since version 11.

 Storage via new column-wise index (with compression and prefetching improvements)

 New operators with batch-at-a-time processing

 Typical pattern:

 Scan, pre-filter, project, aggregate data early in the plan using batch operators

 row operators may be needed to finish the operation

 Good for scan-intensive workloads (OLAP), not for point queries (OLTP workloads)

 Internally, the optimizer treats batch processing as new physical property (like being sorted) 

to combine operators in a proper way.

Vectorized execution in SQL Server 11

24
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SQL Server: Performance

25

Performance impact (TPC-DS, scale factor 100, ~ 100GB)
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 Organize query plan into execution groups

 Add buffer operator between execution groups

 The buffer operator provides tuple-at-a-time interface

to the outside, but batches up tuples internally.

 Similar to the example we covered previously

Vectorized execution in PostgreSQL

26
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function: next()

// Read a batch of input tuples if buffer is empty

if empty and !end-of-tuples then

while !full do

append child.next() to buffer

if end-of-tuples then

break;

// Return tuples from buffer

return next tuple in buffer;



Buffer operators in PostgreSQL

27
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Overview of the discussed execution models

Comparison of processing models 

28

Execution model iterator 

(tuple)

materialization 

(operator)

vectorization

(vector)

query plans simple complex simple

instruction cache utilization poor extremely good very good

function calls many extremely few very few

attribute access complex direct direct

most time spent on interpretation processing processing

CPU utilization poor good very good

compiler optimizations limited applicable applicable

materialization overhead very cheap expensive cheap

scalability good limited good
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 Database operators tend to be extremely simple:

 Selection, arithmetic, etc.

 Even operators like hash probes are quite simple

 Even a cache access can incur a noticeable cost

 Keep tuples in registers between operators?

 Pipeline breakers

 Tuples must be moved out of CPU registers on input side

 Try to keep data in registers in-between pipeline breakers

Pushing the envelope further with 
query compilation

29



 HyPer

 Fuse all adjacent non-blocking operators of a query pipeline in a single, tight loop

 Compile query plans into machine code

 Trick:

 Push-based (rather than pull-based) model

 each code block consumes from one pipeline breaker and pushes into next

 Carefully keep data in registers within one code block

Pushing tuples up execution model 

30



Example:

Pushing tuples up execution model

31

// initialize memory of ×𝑎=𝑏, ×𝑐=𝑧, and Γ𝑧
for each tuple 𝑡 in 𝑅1
if 𝑡. 𝑥 = 7
// materialize 𝑡 in hash table of ×𝑎=𝑏

for each tuple 𝑡 in 𝑅2

if 𝑡. 𝑦 = 3
// aggregate 𝑡 in hash table of Γ𝑧

for each tuple 𝑡 in Γ𝑧
// materialize 𝑡 in hash table of ×𝑐=𝑧

for each tuple 𝑡3 in 𝑅3

for each match 𝑡2 in ×𝑐=𝑧 𝑡3. 𝑐
for each match 𝑡1 in ×𝑎=𝑏 𝑡3. 𝑏
output 𝑡1ο 𝑡2ο 𝑡3

Code blocks don’t quite match operator 

boundaries, e.g., build/probe parts of hash join

Operator-centric  Data-centric execution

src: Thomas Neumann, Viktor Leis. Compiling Database Queries into Machine Code. Bulleting of the IEEE Computer Society Technical Committee on Data Engineering 2014



 Use LLVM (Low Level Virtual Machine) to generate code instead of C++

 assembly-style code

 platform-independent

 automatic register assignment

 strong type checking

 Mix generated code with pre-compiled libraries

 e.g., memory management, error handling

 Written in C++ anyway, no need to re-compile at runtime

HyPer – compiled query execution

32
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 Showing both compilation and execution time

 Also the size of the generated machine code, the fraction of the machine code that was 

generated at runtime using LLVM, and the fraction of the time spent in the generated code

 Insights: most of the critical code path is generated, the compilation time is quite low, and

performance is often better than Vectorwise.

HyPer performance

33
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 HyPer was a pioneering system implementing the data-centric code generation 

 Other systems that compile queries (not necessarily with LLVM) are:

 Microsoft’s Hekaton

 compiles stored procedures into native code using C as intermediary language

 Cloudera Impala 

 LLVM JIT compilation for predicate evaluation and record parsing

 MemSQL

 High-level imperative DSL  second language of opcodes  LLVM IR  native code,

 Apache Spark

 WHERE clause expression trees  Scala AST  JVM bytecode,

 PostgreSQL added support for JIT compilation in 2018

 Automatically compiles Postgres’ back-end C code into LLVM C++ code to remove iterator calls

 etc.

Compiling query plans in other systems

34src: Andy Pavlo – https://15721.courses.cs.cmu.edu/spring2020/slides/14-compilation.pdf

https://15721.courses.cs.cmu.edu/spring2020/slides/14-compilation.pdf


 Single test system compares the fundamental properties of the execution model of a

compilation-based pushing tuples up engine (Typer) and a vectorization based engine (Tectorwise).

 Selected OLAP queries from TPC-H with SF 1

 Q1: fixed-point arithmetic, (4 groups) aggregation

 Q6: selective filters

 Q3: join (build: 147k entries, probe: 3.2m entries)

 Q9: join (build: 320k entries, probe: 1.5m entries)

 Q18: high-cardinality aggregation (1.5m groups)

Compiled vs. vectorized query execution

35

There is no clear winner:

 Typer is faster for Q1 and Q18

 TW is better for Q6, Q3 and Q9

Understanding the results, requires

more in-depth analysis on the 

CPU/cache characteristics.
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 Micro-architectural analysis for the TPC-H queries, main observations:

 TW executes significantly more instructions (up to 2.4x) and has more L1-d cache misses (up to 3.3x)

 Typer is more efficient for computational queries that can hold intermediate results in CPU 

registers and have few cache misses.

Compiled vs. vectorized query execution

36

Query 1: dominated by fixed point arithmetic 

operations and a cheap in-cache aggregation.

TW intermediate results must be materialized, 

which is as expensive as the computation itself.

Typer can often keep intermediate results in 

CPU registers and perform the same operations 

with less instructions
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 Micro-architectural analysis for the TPC-H queries, main observations:

 Typer’s complex loops induce more memory stalls and branch misses

 Observation: TW (vectorization) is better at hiding cache-miss latencies.

Compiled vs. vectorized query execution

37

TW’s simple loops for hash probing allow for 

generating many outstanding memory loads.

Q3 and Q9’s performance is determined by the 

efficiency of hash table probing.
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 Micro-architectural analysis for the TPC-H queries, main observations:

 Typer’s complex loops induce more memory stalls and branch misses

 TW (vectorization) is better at hiding cache-miss latencies.

Compiled vs. vectorized query execution

38
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Data Size (TPC-H Scaling Factor)

Both systems observe more CPUs spent on 

memory stalls as data size increases.

Typer Tectorwise

Typer’s performance suffers due to memory 

stalls more than TW’s.



Qualitative analysis and comparison

Compiled vs. vectorized query execution
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Execution model Compilation-based

engines

Vectorized

engines

Computation More efficient code Less efficient (data not in registers)

Parallel data access Less good at hiding memory latencies Can generate more parallel memory requests

SIMD vectorization Good (but, more complex to implement) Very good (better match to leverage SIMD)

Parallelization Good Good

OLTP Can generate fast stored procedures Slower

Language support Easy to write portable code More complex

Compile time Has overhead Primitives are pre-compiled

Profiling More complex for performance debugging Naturally can attribute profiling to primitives

Adaptivity Possible by switching from interpretation to 

compilation

Possible to swap execution primitives mid-flight

Debugging Runtime and compile time co-exist Simple (like every c++)
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 Idea: Relax the pipeline breakers to create mini-batches

 Good for operators that can be vectorized

 Leverage software prefetching to hide memory stalls

 Use data-level parallelism (e.g., using SIMD)

 Implemented in the Peloton DMBS (2017)

 If the query optimizer can correctly decide when to break a pipeline, this approach

can be faster than both standard models (vectorized vs compiled).

Relaxed Operator Fusion
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 Performance comparison of baseline (compiled query execution) vs. optimized (relaxed operator fusion)

 For selected TPC-H queries, with scaling factor 10 (~ 10GB data)

Results of Relaxed Operator Fusion
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Q1 only marginal improvement. Time is spent 

primarily on selection and aggregation.

The big performance improvements for Q3 is 

for the memory-intensive operators, the joins, 

mainly due to pre-fetching and SIMD.

Q13 gets 34% improvement solely due to 

efficient pre-fetching.



 Memory-intensive operations (e.g., join and aggregation) deserve attention on their own.

 How can we optimize their performance for the memory sub-system?

 Next week we will look into how we can optimize the hash joins using techniques such as:

 “blocking” or partitioning

 software-based prefetching

 software write-combining

 non-temporal writes

 etc.

Next lecture
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 Various papers cross-referenced in the slides

 Boncz et al. MonetDB/X100: Hyper-Pipelining Query Execution CIDR 2005

 Zukowski Balancing Vectorized Query Execution with Bandwidth Optimized Storage, PhD thesis, CWI Amsterdam 2009

 Zhou et al. Buffering Database Operations for Enhanced Instruction Cache Performance. SIGMOD 2004

 Larson et al. SQL Server Column Store Indexes. SIGMOD 2011

 Neumann. Efficiently Compiling Efficient Query Plans for Modern Hardware. VLDB 2011

 Neumann, Leis. Compiling Database Queries into Machine Code. Bulletin of the IEEE Computer Society Technical Committee on 

Data Engineering 2014

 Kersten et al. Everything You Always Wanted to Know About Compiled and Vectorized Queries But Were Afraid to Ask. VLDB 2018

 Lecture: Database Systems on Modern CPU Architectures by Prof. Thomas Neumann (TUM)

 Lecture: Data Processing on Modern Hardware by Prof. Jens Teubner (TU Dortmund, past ETH)

 Lecture: Advanced Databases by Prof. Andy Pavlo (CMU)

 Check out the code from Timo Kersten and play around with the TPC-H queries from Typer and Tectorwise (TW):

 https://github.com/TimoKersten/db-engine-paradigms
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