Data Processing on Modern Hardware
Assignment 3 — Hardware optimized hash joins

Handout: 20" May 2020
Due: 3"% June 2020 by 9am
Introduction

The goal of this exercise is to apply some of the optimization techniques we covered in the last two
weeks in the context of hash join, and analyze the cache characteristics of the original and optimized
version of the code that joins two relations R and .S. The assumptions we make are the following:

e Each relation contains a set of tuples, identified by an ID (join attribute key) and a payload.
e For the purpose of this exercise, the join only counts the matching results.

e We can implement a relation in C++ using a simple array, e.g.,

struct tuple_t {
uinte4d_t key;
uint64_t value[N];

We populate both relations with tuples with uniform distribution. For one of the relations as key you
can use a permutation of the numbers [1 :: number of tuples], while for the second relation for the join
key, you can generate random numbers from the same range.

Part 1 — Hash Join baseline

Implement a simple hash join (e.g., slide 4 from the lecture on In-memory Joins) and analyze the per-
formance characteristics (per tuple) as you vary the dataset size (e.g., the size of the input relations).
Part 2 — Partitioning

The cache efficiency of the hash join can be improved by partitioning the input relations to cache-size
chunks. Implement the partitioning operation with three options:

1. Simple naive partitioning,
2. Partitioning with “software-managed buffers” and “non-temporal writes”,
3. Multi-pass partitioning.

Analyze which option gives you the best performance, depending on the input relation size.

Part 3 — Radix Join

Implement the Radix Join algorithm by joining the partitioning phase with the hash join baseline. Ana-
lyze the performance characteristics (per tuple) of your implementation of the radix join and compare it
to the baseline results from Part 1.



Submission guidelines

This homework has a duration of two weeks. Fork the repository, commit your changes in the git, and
invite us (@dpmh) to hand in your homework. We advise you to start by implementing Part I, Part 2.1,
Part 2.3 and Part 3 at first and then implement Part 2.2 afterward.

The programming language of this homework is C++. We provide you a simple code skeleton, feel
free to add functions or change the function signatures if needed.

The lecture covers all parts of this homework and provides pseudo code for the hash join and the parti-
tionings. Use the slides and the pseudo-code as a hint for the tasks.

Furthermore, you are allowed to use libraries, e.g., for the hash table. However, please make sure you
understand how the data structures work to interpret your performance results correctly. If you want to
implement the hash table yourself, do not spend too much time on it. A simple hash table is sufficient,
and the lecture slides cover some ideas for hash table design.



