

Seminar: Modern Database Systems

Organizational Meeting

Chair of Database Systems Garching, January 28, 2020

Overview

Weekly Meeting

- Wednesdays 16:00-18:00 (first session on 22.04.2020)
- Room 02.09.014
- 2 presentations per meeting
- There will be an attendance log

Required Work

- Seminar paper (5 pages) 60% of the final grade
- Presentation (20 minutes + 10 minutes discussion) 30% of the grade
- Moderate one discussion (act as the "devil's advocate") 10% of the grade

Organization and Due Dates

Check-in via email or personally

- 1. Check in soon after matching for paper recommendations (preferences considered FCFS)
- 2. Check in when rough structure is planned
- 3. Check in when first draft is ready

Due Dates

- Structure: ca. 4 weeks prior to presentation date
- Presentation slides: 1 week prior to presentation date
- Seminar paper: 2 weeks after presentation date (strict!)

Topics

Block 1: OLTP

- Hekaton: SQL Server's Memory-Optimized OLTP Engine (SIGMOD 2013)
- Speedy Transactions in Multicore In-Memory Databases (SOSP 2013)
- Fast Serializable Multi-Version Concurrency Control for Main-Memory Database Systems (SIGMOD 2015)
- SharedDB: Killing One Thousand Queries with One Stone (VLDB 2012)

Block 2: OLAP

- MonetDB/x100: Hyper-Pipelining Query Execution (CIDR 2005)
- Efficiently Compiling Efficient Query Plans for Modern Hardware (VLDB 2011)
- Relaxed Operation Fusion for In-Memory Databases: Making Compilation, Vectorization, and Prefetching Work Together at Last (VLDB 2018)
- Quickstep: A Data Platform Based on the Scaling Up Approach (VLDB 2018)
- Everything You Always Wanted to Know About Compiled and Vectorized Queries But Were Afraid to Ask (VLDB 2019)

Topics

Block 3: In the Cloud

- Amazon Aurora: Design Considerations for High Throughput Cloud-Native Relational Databases (SIGMOD 2017)
- The Snowflake Elastic Data Warehouse (SIGMOD 2016)
- Spanner: Google's Globally Distributed Database (OSDI 2012)
- Obladi: Oblivious Serializable Transactions in the Cloud (OSDI 2018)

Block 4: Hybrid Transactional Analytical Processing (HTAP)

- HyPer: A Hybrid OLTP&OLAP Main Memory Database System Based on Virtual Memory Snapshots (ICDE 2011)
- SAP HANA Database Data Management for Modern Business Applications (SIGMOD 2011)
- BatchDB: Efficient Isolated Execution of Hybrid OLTP+OLAP Workloads for Interactive Applications (SIGMOD 2017)
- Columnstore and B+ tree Are Hybrid Physical Designs Important? (SIGMOD 2018)

Topics

Block 5: Beyond Relational Databases

- Naiad: A Timely Dataflow System (SOSP 2013)
- Differential Dataflow (CIDR 2013)
- EmptyHeaded: A Relational Engine for Graph Processing (SIGMOD 2016)
- LevelHeaded: A Unified Engine for Business Intelligence and Linear Algebra Querying (ICDE 2018)
- Froid: Optimization of Imperative Programs in a Relational Database (VLDB 2018)

Why is reading research papers relevant?

Understand the latest developments

Before any book covers them

Learn how to write and communicate ideas

Read critically

Ask the right questions, challenge the assumptions

Synthesize new ideas

Reading is the most effective way to generate novel research ideas

Some model questions

What is the research question that the paper addresses?

What is the motivation? Is it relevant? What is the impact if it is solved?

What are the contributions?

How do they build on previous work? Is it something new? Can it be generalized?

What do I learn by reading it?

For instance, even a good summary of related work can be worth a lot!

How are the results substantiated?

Experiments, proofs, benchmarks, etc. Is the evaluation thorough?

What are the conclusions and broader impact?

What can be built on top of it? What is an interesting follow-up / future work?

Tip: You should be able to answer all of these questions before you present the paper!

How to read a paper

Read a paper at least three times

First pass: get the general idea

- 5-10 minutes
- Read abstract, introduction, conclusions, (sub-)section headings
- Briefly check the references

Second pass: understand the content

- Approximately 1 hour
- Read the full paper, ignore the details (e.g., proof, etc.)
- Find key points, take notes, check figures carefully to understand them
- Mark references for further reading

Third pass: understand the depth

- 4-5 hours
- Fully understand everything, attention to detail (check related work)
- · Try to virtually re-implement the paper
- Question everything!
- Generate ideas for your work.

Read the related work

If you do not have the required background knowledge then check the related work

Find the related work

- Check the related work section
- Try to find a survey paper of that area (or textbook)
- Check the author's more recent work
- Check top conferences in the field and recent publications
- Check later papers that cite the paper (e.g., Google scholar, ACM digital library)

A good (research) talk

Is centered around the audience (not you)

• Teaches, engages, provokes, and excites the listeners

Provides intuitions to the audiences

Should make them want to read the paper

But, not because they did not understand you

It should not

- Tell them all the technical details
- Cover everything you know about the topic
- Impress the audience how smart you are

What to put in your talk

Motivation (20%)

- What should I listen to the talk?
- What is the problem?
- Is it an interesting problem?
- Is the proposed solution worthwile?

The key idea (80%)

- You must identify the key idea
- Be specific do not leave it up to the audience to figure it out
- Be very specific say "if you remember nothing else, remember this"
- Organize your talk around this specific goal. Remove everything that is irrelevant.

Avoid shallow overviews

• Cut to the technical "meat" even if it covers only a part of the paper

Use examples!

To motivate work, to convey basic intuition, to illustrate the idea, etc.

What to omit

Do not present talk outlines

It is not informative → a good talk has a storyline

Do not present excessive related work

• But, mention it in your slides. Acknowledge pre-cursors, praise the opposition...

Do not present too many technical details

- The audience may find it difficult to follow
- Put them in back-up slides in case somebody asks

Do not exaggerate with animations

Animations are good, but can be also distracting

Do not clutter your slides with graphics

Pointers for further reading

How to read a paper:

- S. Keshav How to Read a Paper
- Philip W. L. Fong How to Read a CS Research Paper?

How to give a good (technical/research) talk:

- Markus Puschel How to give good technical presentations.
- Simon Peyton Jones How to give a great research talk.