
Organizing Larger Projects

Organizing Larger Projects

683

Organizing Larger Projects

Overview

Up to now a project scaffold has (mostly) been provided to you
• A substantial challenge in larger projects is simply organizing the project itself
• Bad project organization incurs enormous unnecessary overhead, promotes

bugs, impedes extensibility and maintainability, …

This lecture attempts to give some suggestions and an overview of useful tools
• Project layout suggestions (tailored to CMake)
• Integrating third-party tools and libraries with CMake
• Advanced debugging facilities
• We do not claim completeness or bias-free presentation
• Refer to the CMake documentation for much more detail

684

Organizing Larger Projects Project Layout

Project Layout (1)

The general project layout affects several interconnected properties
• Directory and source tree structure
• Namespace structure
• Library and executable structure

Changes to one of these properties likely entail changes to the other properties
• Namespace structure should (roughly) reflect directory structure and

vice-versa
• Different libraries and executables ideally reside in separate source trees (i.e.

directories)

685

Organizing Larger Projects Project Layout

Project Layout (2)

The project layout will evolve as a project grows
• Different guidelines apply to projects of different size
• Things one might get away with in small projects can become major issues in

large projects
• Things that might be necessary in large projects can be overkill in small

projects
• If a project is known to grow to a large size it pays off to plan ahead
• Definition of “small” and “large” is subjective

General guidelines
• Always clearly organize files, directories and namespaces with modularization

in mind
• Start with a monolithic library/executable structure and move to a more

independent and modular structure as the project grows

686

Organizing Larger Projects Project Layout

Directory Structure

General directory structure guidelines
• Files belonging to different libraries and executables should reside in different

directories
• Files belonging to different components (logically separate parts) within a

library or executable should reside in different directories
• Files belonging to different top-level namespaces should reside in different

directories
• Tests should reside in a separate directory tree from the actual

implementation
• Out-of-source builds should always be preferred

687

Organizing Larger Projects Project Layout

Directory Structure: Small Projects (1)

Directory structure guidelines for small projects
• The general directory structure guidelines still apply
• Parts of the CMakeLists.txt may be shared by all components within the

project
• Build system setup (e.g. compiler flags)
• Dependencies (e.g. third-party libraries)

• The test code and executable(s) may be shared by all components within the
project

Evolution
• Eventually, some library or executable in a small project will grow large
• Should then be moved into an independent (sub-)project

688

Organizing Larger Projects Project Layout

Directory Structure: Small Projects (2)

Small project example

> tree project
project
├── CMakeLists.txt # Common CMakeLists.txt logic
├── my_executable
│ ├── CMakeLists.txt # CMakeLists.txt logic for my_executable
│ └── ... # Source (& header) files
├── my_library
│ ├── CMakeLists.txt # CMakeLists.txt logic for my_library
│ └── ... # Source (& header) files
└── test

├── CMakeLists.txt # CMakeLists.txt logic for testing
├── my_executable
| └── ... # Tests for my_executable
└── my_library

└── ... # Tests for my_library

689

Organizing Larger Projects Project Layout

Directory Structure: Large Projects (1)

Directory structure guidelines for large projects
• The general directory structure guidelines still apply
• The components of large projects should be mostly independent subprojects
• Should not share most CMakeLists.txt logic
• Should not share test code and executable(s)

Evolution
• Eventually other projects or people may want to reuse one of the subprojects

in a different context
• Should then be moved into an entirely independent project

690

Organizing Larger Projects Project Layout

Directory Structure: Large Projects (2)
Large project example

> tree project
project
├── CMakeLists.txt # Minimal common CMakeLists.txt logic
├── my_executable
│ ├── CMakeLists.txt # Common my_executable CMakeLists.txt
│ ├── src
| | └── ... # Source (& header) files
| └── test
| ├── CMakeLists.txt # CMakeLists.txt logic for tests
| └── ... # Tests for my_executable
└── my_library

├── CMakeLists.txt # Common my_library CMakeLists.txt
 ├── src

| └── ... # Source (& header) files
└── test

├── CMakeLists.txt # CMakeLists.txt logic for tests
└── ... # Tests for my_library

691

Organizing Larger Projects Project Layout

Header and Implementation Files

File content
• Generally, there should be one separate pair of header and implementation

files for each C++ class
• Very tightly coupled classes (e.g. classes that could also be nested classes)

can be placed in the same header and implementation files

File location
• Option 1: Place associated implementation and header files in the same

directory (preferred by us)
• Option 2: Place associated implementation and header files in separate

directory trees (e.g. src and include)
• Option 1 makes browsing code somewhat easier, option 2 makes system-wide

installation easier

692

Organizing Larger Projects Project Layout

Namespaces & Cycles

Namespaces should identify logically coherent components within a library or
executable
• Usually, there should be at least a top-level namespace (i.e. don’t put stuff in

the default namespace)
• Namespaces should group broadly similar or coherent functionality
• Rule of thumb: Think of namespaces as “candidates for moving into a

separate library”

Dependencies between namespaces should be cycle-free
• Makes refactoring code much easier
• Allows future modularization into separate libraries

693

Organizing Larger Projects Project Layout

Library & Executable Structure

It is usually advisable to separate executables from their core functionality
• Executables often serve as “frontends” to some library functionality
• Library functionality can probably be reused in other programs
• Keeps interaction logic (e.g. I/O) separate from core functionality
• Not necessary in very small projects

There should be a separate CMakeLists.txt for each library or executable
• Implies that separate libraries and executables reside in separate directories
• Facilitates future modularization into separate (sub-)projects
• The add_subdirectory CMake function can be used to aggregate several

such sub-projects

694

Organizing Larger Projects Project Layout

Include Directories

Usually, the include path for a library should contain a prefix
• E.g. includes for a library “foo” could start with #include "foo/..."
• Requires a suitable directory structure in the source tree of the library
• Usually requires the use of target_include_directories in the
CMakeLists.txt

> tree project/my_library
my_library
├── CMakeLists.txt
├── src
| └── my_library
| ├── Bar.hpp
| ├── Foo.hpp
| └── Foo.cpp
└── test

└── ...

695

Organizing Larger Projects Libraries & Executables

Libraries & Executables
In most cases, libraries and executables are the main product of a CMake project
• Encoded as targets in a CMake project
• Targets can have properties such as dependencies
• CMake projects may contain further targets (e.g. for installing, packaging,

linting, etc.)
Libraries
• Collection of compiled code that can be reused in other libraries or

executables
• Can either be static or shared libraries
• Have to conform to the OS application binary interface (ABI)
• Cannot be executed on their own

Executables
• Compiled code that can be executed on a certain operating system
• Have to conform to the OS application binary interface (ABI)
• May contain further metadata such as information about entry points etc.

696

Organizing Larger Projects Libraries & Executables

Executables in CMake (1)

Executables are added with the add_executable CMake command
• Syntax: add_executable(name sources...)
• Adds a CMake target with the specified name
• Produces an executable with the specified name in the same relative directory

as the current CMakeLists.txt
• sources... can be a whitespace-separated list of source files or a CMake

variable that expands to such a list
• Passing source files by variable should be preferred for more than a few files
• Properties such as dependencies can be modified through additional CMake

commands

697

https://cmake.org/cmake/help/latest/command/add_executable.html

Organizing Larger Projects Libraries & Executables

Executables in CMake (2)

Sample CMakeLists.txt for the my_executable sub-project

set(MY_EXECUTABLE_SOURCES
src/my_executable/Helper.cpp
...
src/my_executable/Main.cpp

)

add_executable(my_executable ${MY_EXECUTABLE_SOURCES})

further commands required

698

Organizing Larger Projects Libraries & Executables

Static Libraries

Static libraries are essentially archives of executable code
• Contain assembly from some number of object files, e.g. for classes,

functions, etc.
• Dependencies on static libraries are resolved at link time
• Static libraries on Linux typically have the extension *.a

The linker is responsible for resolving dependencies on static libraries
• Code from a static library A is copied into a library or executable B that

depends on A
• At runtime, no dependency on A exists since the relevant code is part of the

library or executable B

699

Organizing Larger Projects Libraries & Executables

Shared Libraries

Shared libraries are dynamic archives of executable code
• Contain assembly from some number of object files, e.g. for classes,

functions, etc.
• Dependencies on shared libraries are resolved at runtime
• Shared libraries on Linux typically have the extension *.so

The operating system is responsible for resolving dependencies on shared libraries
• Only pointers to the code in a shared library A are used in a library or

executable B that depends on A
• At runtime, the operating system loads A into memory once
• All programs depending on A access this memory to execute code in A

700

Organizing Larger Projects Libraries & Executables

Advantages and Disadvantages of Static Libraries

Advantages
• Can have slightly higher performance since there are no indirections
• Can prevent compatibility issues since there are no external dependencies

Disadvantages
• Much bigger file sizes than shared libraries since code is actually copied
• Programs depending on static libraries have to be recompiled if the static

library changes
• Can lead to problems with transitive dependencies even if they are “header

only”

701

Organizing Larger Projects Libraries & Executables

Advantages and Disadvantages of Shared Libraries

Advantages
• Much smaller file sizes since the shared library is only loaded into memory at

run time
• Much lower memory consumption since only a single copy of a shared library

is kept in memory (even for unrelated processes)
• Can be exchanged for other compatible versions without changing programs

that depend on a shared library

Disadvantages
• Programs depending on a shared library rely on a compatible version being

available
• Can be slightly slower due to additional indirection at runtime

702

Organizing Larger Projects Libraries & Executables

Static Libraries in CMake (1)

Static libraries are added with the add_library CMake command
• Syntax: add_library(name STATIC sources...)
• Adds a CMake target with the specified name
• Produces a static library with the specified name in the same relative

directory as the current CMakeLists.txt
• sources... can be a whitespace-separated list of source files or a CMake

variable that expands to such a list
• Passing source files by variable should be preferred for more than a few files
• Properties such as dependencies can be modified through additional CMake

commands

703

https://cmake.org/cmake/help/latest/command/add_library.html

Organizing Larger Projects Libraries & Executables

Static Libraries in CMake (2)

Sample CMakeLists.txt for the my_library sub-project (assuming static
library)

set(MY_LIBRARY_SOURCES
src/my_library/ClassA.cpp
...
src/my_library/ClassZ.cpp

)

add_library(my_library STATIC ${MY_LIBRARY_SOURCES})

further commands required

704

Organizing Larger Projects Libraries & Executables

Shared Libraries in CMake (1)

Shared libraries are added with the add_library CMake command
• Syntax: add_library(name SHARED sources...)
• Adds a CMake target with the specified name
• Produces a shared library with the specified name in the same relative

directory as the current CMakeLists.txt
• sources... can be a whitespace-separated list of source files or a CMake

variable that expands to such a list
• Passing source files by variable should be preferred for more than a few files
• Properties such as dependencies can be modified through additional CMake

commands

705

https://cmake.org/cmake/help/latest/command/add_library.html

Organizing Larger Projects Libraries & Executables

Shared Libraries in CMake (2)

Sample CMakeLists.txt for the my_library sub-project (assuming shared
library)

set(MY_LIBRARY_SOURCES
src/my_library/ClassA.cpp
...
src/my_library/ClassZ.cpp

)

add_library(my_library SHARED ${MY_LIBRARY_SOURCES})

further commands required

706

Organizing Larger Projects Libraries & Executables

Interface Libraries in CMake (1)

Usually only the implementation files (*.cpp) should be added to a CMake target
• Header files on their own are not compiled
• Only headers that are included by implementation files are relevant for

compilation

Exception: Interface libraries
• Syntax: add_library(name INTERFACE)
• A library might contain only template definitions
• Cannot be compiled into a static or shared library (unless explicit

instantiation is used)
• Can still have properties such as include paths or dependencies

707

https://cmake.org/cmake/help/latest/command/add_library.html

Organizing Larger Projects Libraries & Executables

Interface Libraries in CMake (2)

Sample CMakeLists.txt for the my_library sub-project (assuming
header-only)

add_library(my_library INTERFACE)
target_include_directories(my_library INTERFACE src)
target_link_libraries(my_library INTERFACE some_dependency)

708

Organizing Larger Projects Libraries & Executables

Nested Projects in CMake (1)

The add_subdirectory CMake command can be used to add a subproject
• Syntax: add_subdirectory(source_dir)
• Adds the CMakeLists.txt in the specified source_dir to the build
• The nested CMakeLists.txt will be processed immediately by CMake
• The CMake variable CMAKE_SOURCE_DIR refers to the top-level source

directory inside nested CMakeLists.txt
• The CMake variable CMAKE_CURRENT_SOURCE_DIR refers to the source

directory in which the nested CMakeLists.txt resides

709

https://cmake.org/cmake/help/latest/command/add_subdirectory.html

Organizing Larger Projects Libraries & Executables

Nested Projects in CMake (2)

Example top-level CMakeLists.txt

cmake_minimum_required(VERSION 3.12)
project(project)

more general setup code ...

add_subdirectory(my_executable)
add_subdirectory(my_library)

710

Organizing Larger Projects Libraries & Executables

Important Project Properties (1)

Usually, the include directory of libraries and executables needs to be set
• target_include_directories(target PUBLIC|PRIVATE dirs...)
• Should be set to the src or include directory of a subproject in our

suggested layout
• PUBLIC include directories are passed on to targets that depend on the

current target

711

https://cmake.org/cmake/help/latest/command/target_include_directories.html

Organizing Larger Projects Libraries & Executables

Important Project Properties (2)

Dependencies between targets can be set with target_link_libraries
• target_link_libraries(target PUBLIC|PRIVATE libs...)
• libs... can refer to libraries defined by the current project or imported

third-party library targets
• PUBLIC dependencies are passed on to targets that depend on the current

target

712

https://cmake.org/cmake/help/latest/command/target_link_libraries.html

Organizing Larger Projects Libraries & Executables

Important Project Properties (3)

Sample CMakeLists.txt for the my_executable sub-project

set(MY_EXECUTABLE_SOURCES
src/my_executable/Helper.cpp
...
src/my_executable/Main.cpp

)

add_executable(my_executable ${MY_EXECUTABLE_SOURCES})
allows includes to be '#include "my_executable/..."
instead of '#include "my_executable/src/my_executable/..."
target_include_directories(my_executable PRIVATE src/)
dependency on the my_libary target defined in other subproject
target_link_libraries(my_executable PRIVATE my_library)

713

Organizing Larger Projects Libraries & Executables

Paths in CMake

CMake defines several variables for often-used paths

CMAKE_SOURCE_DIR
Contains the full path to the top level of the source tree, i.e. the location of the
top-level CMakeLists.txt
CMAKE_CURRENT_SOURCE_DIR
Contains the full path the the source directory that is currently being processed
by CMake. Differs from CMAKE_SOURCE_DIR in directories added through
add_subdirectory.
CMAKE_BINARY_DIR
Contains the full path to the top level of the build tree, i.e. the build directory in
which cmake is invoked.
CMAKE_CURRENT_BINARY_DIR
Contains the full path the binary directory that is currently being processed.
Each directory added through add_subdirectory will create a corresponding
binary directory in the build tree.

Relative paths are usually relative to the current source directory
714

https://cmake.org/cmake/help/latest/manual/cmake-variables.7.html

Organizing Larger Projects Third-Party Libraries

Third-Party Libraries

Usually we do not want to reinvent the wheel
• There is a vast ecosystem of (open-source) third-party libraries
• If there exists a well-maintained third-party library that matches your

requirements you should use it

If possible and feasible, your project should not bundle third-party dependencies
• Many libraries can easily be installed through a package manager
• Reduces complexity of project configuration and maintenance
• CMake provides facilities for locating third-party dependencies in a

platform-independent way

715

Organizing Larger Projects Third-Party Libraries

find_package (1)

Preferred CMake function for locating third-party dependencies
• find_package(<PackageName> [version] [REQUIRED])
• Finds and loads settings from an external project
• Sets the <PackageName>_FOUND CMake variable if the package was found
• May provide additional variables and imported CMake targets depending on

the package

find_package relies on CMake scripts
• Attempts to find a Find<PackageName>.cmake file in the path specified by

the CMAKE_MODULE_PATH variable and in the CMake installation
• Many Find*.cmake scripts are provided by CMake itself
• CMake documentation can be consulted for details about provided
Find*.cmake scripts

• Own Find*.cmake scripts can be written if necessary

716

https://cmake.org/cmake/help/latest/command/find_package.html

Organizing Larger Projects Third-Party Libraries

find_package (2)

Example

...

Attempt to locate system-wide installation of libgtest
Invokes the FindGTest.cmake script provided by CMake
Configuration will fail if libgtest cannot be found
find_package(GTest REQUIRED)

add_executable(tester ...)
target_link_libraries(tester PRIVATE

...
GTest::GTest # Imported target for the gtest library

as specified by the documentation of
FindGTest

)

717

Organizing Larger Projects Third-Party Libraries

find_library (1)

If no Find*.cmake script is available, find_library can be used
• find_library(<VAR> name [path1 path2 ...])
• Creates a cache entry named <VAR> to store the result of the command
• If nothing is found, the result will be <VAR>-NOTFOUND
• name specifies the name of the library (e.g. gtest for libgtest)
• Additional paths beside the default search paths can be specified

find_library simply searches directories for a library
• A wide range of (highly configurable) paths is searched for the library
• Does not automatically configure non-standard include paths like
find_package

• Should only be used as a fallback or within Find*.cmake scripts

718

https://cmake.org/cmake/help/latest/command/find_library.html

Organizing Larger Projects Third-Party Libraries

find_library (2)
Example (assuming there is no FindGTest.cmake script)

...

Attempt to locate libgtest library
Searches for the library file in a range of paths
find_library(GTest gtest)

if (${GTest} STREQUAL "GTest-NOTFOUND")
message(FATAL_ERROR "libgtest not found")

endif()

add_executable(tester ...)
target_link_libraries(tester PRIVATE

...
GTest # Only adds the libgtest library

Does not set include paths
)

719

Organizing Larger Projects Third-Party Libraries

Further Reading

We only scratched the surface of CMake in this lecture
• CMake provides much more highly useful functionality
• E.g. checks for compiler flags
• E.g. checks for compiler features
• E.g. checks for host system features
• E.g. defining custom Makefile targets
• …

The CMake documentation provides a good overview

720

https://cmake.org/cmake/help/latest/

Organizing Larger Projects Testing

Testing

Tests should be an integral part of every larger project
• Unit tests
• Integration tests
• …

Good test coverage greatly facilitates implementing a large project
• Tests can ensure (to some extent) that modifications do not break existing

functionality
• Can easily refactor code
• Can easily change the internals of a component
• …

721

Organizing Larger Projects Testing

Googletest (1)

We use Googletest in the programming assignments and final project
• Works on a large variety of platforms
• Contains a large set of useful functions
• Can usually be installed through a package manager
• Can be added to a CMake project through the FindGTest.cmake module
• Alternative test frameworks are of course available

Functionality overview
• Test cases
• Predefined and user-defined assertions
• Death tests
• …

722

https://github.com/google/googletest

Organizing Larger Projects Testing

Googletest (2)

Simple tests

#include <gtest/gtest.h>
//--
TEST(TestSuiteName, TestName) {

...
}

• Defines and names a test function that belongs to a test suite
• Test suites can for example map to one class or function
• Googletest assertions can be used to control the outcome of the test function
• If any assertion fails or the test function crashes, the entire test case fails

723

Organizing Larger Projects Testing

Googletest (3)

Fatal assertions
• Fatal assertions are prefixed with ASSERT_
• When a fatal assertion fails the test function is immediately terminated

Non-fatal assertions
• Non-fatal assertions are prefixed with EXPECT_
• When a non-fatal assertion fails the test function is allowed to continue
• Nevertheless the test case will fail
• All assertions exist in fatal and non-fatal versions

Assertion examples
• ASSERT_TRUE(condition); or ASSERT_FALSE(condition);
• ASSERT_EQ(val1, val2); or ASSERT_NE(val1, val2);
• …

724

Organizing Larger Projects Testing

Googletest (4)

A custom main function needs to be provided for Googletest

#include <gtest/gtest.h>
//--
int main(int argc, char** argv) {

::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

}

• Should usually be placed in a separate Tester.cpp or main.cpp

725

Organizing Larger Projects Testing

Coverage (1)

Code coverage can help ensure proper testing of a project
• Simple metrics like line coverage have to be interpreted carefully
• Can indicate that a certain part of a project has not been tested properly
• Can usually not indicate that a certain part of a project has been tested

exhaustively

Line coverage information can automatically be collected during test execution
• Possible with a variety of tools
• GCC contains the build-in coverage tool gcov
• Clang can produce gcov-like output
• lcov together with genhtml can be used to generate HTML line coverage

reports from information collected during test execution

726

Organizing Larger Projects Testing

Coverage (2)

Brief example

build executable with gcov enabled
> g++ -fprofile-arcs -ftest-coverage -o main main.cpp

run executable and generate coverage data
> ./main

generate lcov report
> lcov --coverage --directory . --output-file coverage.info

generate html report
> genhtml coverage.info --output-directory coverage

• Produces HTML coverage report in coverage/index.html
• Configuration for coverage reports should be part of CMake configuration

727

Organizing Larger Projects Further Tools & Techniques

Continuous Integration

Platforms like GitLab provide continuous integration (CI) functionality
• Can automatically run tests or other checks each time some commits are

pushed to GitLab
• Highly useful in larger projects with multiple contributors
• Can be used to enforce certain standards in a project (e.g. minimum line

coverage, no failing tests etc.)
• Has to be taken seriously to be effective (e.g. refuse merge requests with

failing CI tests etc.)

Configured through .gitlab-ci.yml file in the repository
• Rather complex initial server-side setup
• Already provided by our GitLab server
• .gitlab-ci.yml configures the CI for a certain GitLab repository
• Refer to the GitLab documentation for details

728

Organizing Larger Projects Further Tools & Techniques

Linting

A linter performs static source code analysis
• Can detect some types of “bad” code
• Some forms of bugs
• Stylistic errors that may lead to bugs
• Suspicious constructs that may lead to bugs

clang-tidy is a clang-based C++ linter
• Widely available through package manager
• Highly configurable set of checks (e.g. through .clang-tidy file)
• Integrated in CLion
• Can be integrated in CMake configuration of a project

729

Organizing Larger Projects Further Tools & Techniques

perf (1)

perf is a highly useful performance analysis tool for Linux
• Can profile any program using the standalone executable perf
• Can be integrated in a program by using the perf API
• Can interface with hardware and software performance counters

Standalone perf examples
• perf stat [OPTIONS] command

• Run command and display information about event counts such as cache
misses, branch misses etc.

• perf record [OPTIONS] command
• Run command and sample a certain event on the instruction level
• If possible, command should be built with debug symbols

• perf report
• Analyze a file generated by perf record
• Generates an interactive report that shows sampled event counts for each

instruction.

730

Organizing Larger Projects Further Tools & Techniques

perf (2)
perf stat example
> perf stat --detailed ./my_executable
...
Performance counter stats for './my_executable':

56.505,78 msec task-clock # 2,573 CPUs utilized
854.187 context-switches # 0,015 M/sec
7.827 cpu-migrations # 0,139 K/sec

309.550 page-faults # 0,005 M/sec
177.728.516.281 cycles # 3,145 GHz
60.347.961.620 instructions # 0,34 insn per cycle
12.694.777.815 branches # 224,663 M/sec

89.725.841 branch-misses # 0,71% of all branches
16.672.843.754 L1-dcache-loads # 295,064 M/sec
1.267.581.260 L1-dcache-load-misses # 7,60% of all L1-dcache hits
471.681.999 LLC-loads # 8,347 M/sec
258.238.607 LLC-load-misses # 54,75% of all LL-cache hits

21,964215591 seconds time elapsed

44,360970000 seconds user
16,626546000 seconds sys

731

Organizing Larger Projects Further Tools & Techniques

Valgrind

Valgrind is a general-purpose dynamic analysis tool
• Mainly used for memory debugging, memory leak detection and profiling
• Essentially runs programs on a virtual machine, allowing tools to do arbitrary

transformations on the program before execution
• Extremely high overhead compared to other tools like ASAN

Use cases
• Complex memory bugs that are not detected by simpler tools like the address

sanitizer
• Complex profiling tasks

732

Organizing Larger Projects Further Tools & Techniques

Reverse Debugging (1)

Regular debuggers like GDB can only step forward in the program
• Does not necessarily fit debugging requirements
• E.g. when a crash occurs, we would like to step backwards until we have

found the source of the crash

Reverse debuggers provide such functionality
• Usually, a program run is recorded first
• Subsequently, the program run can be replayed reproducing the exact same

behavior
• During debugging, execution can step forward and backward in time
• Example: rr by Mozilla

733

Organizing Larger Projects Further Tools & Techniques

Reverse Debugging (2)
Buggy class

main.cpp
#include <cassert>
//--
struct Foo {

static constexpr int max = 15;
int a = 0;

void bar() {
assert((a % 2) == 0);
a = (a + 2) % max;

}
};
//--
int main() {

Foo foo;
for (unsigned i = 0; i < 16; ++i)

foo.bar();
}

734

Organizing Larger Projects Further Tools & Techniques

Reverse Debugging (3)
rr example

> g++ -g -o main main.cpp
> rr record main # record execution of main, including crash
> rr replay # start rr GDB session, will break at _start
...
(rr) continue # continue program until crash
(rr) up 4 # go to Foo::bar stack frame
(rr) watch -l a # hardware watchpoint for Foo::a
(rr) reverse-continue # continue backwards, will break at SIGABRT
(rr) reverse-continue # continue backwards, will break at watchpoint
Continuing.

Hardware watchpoint 1: -location a

Old value = 1
New value = 14
0x00005568dba67208 in Foo::bar (this=0x7fff75f38980) at main.cpp:9
9 a = (a + 2) % max;

735

	Organizing Larger Projects
	Project Layout
	Libraries & Executables
	Third-Party Libraries
	Testing
	Further Tools & Techniques

