Organizing Larger Projects

Organizing Larger Projects

Organizing Larger Projects

Overview

Up to now a project scaffold has (mostly) been provided to you
® A substantial challenge in larger projects is simply organizing the project itself

® Bad project organization incurs enormous unnecessary overhead, promotes
bugs, impedes extensibility and maintainability, ...

This lecture attempts to give some suggestions and an overview of useful tools
® Project layout suggestions (tailored to CMake)
® Integrating third-party tools and libraries with CMake

Advanced debugging facilities
® We do not claim completeness or bias-free presentation
Refer to the CMake documentation for much more detail

Organizing Larger Projects Project Layout

Project Layout (1)

The general project layout affects several interconnected properties
® Directory and source tree structure

® Namespace structure
® Library and executable structure

Changes to one of these properties likely entail changes to the other properties
® Namespace structure should (roughly) reflect directory structure and

vice-versa
e Different libraries and executables ideally reside in separate source trees (i.e.

directories)

Project Layout
Project Layout (2)

The project layout will evolve as a project grows

Different guidelines apply to projects of different size

Things one might get away with in small projects can become major issues in
large projects

Things that might be necessary in large projects can be overkill in small
projects

If a project is known to grow to a large size it pays off to plan ahead

Definition of “small” and “large” is subjective

General guidelines

Always clearly organize files, directories and namespaces with modularization
in mind

Start with a monolithic library/executable structure and move to a more
independent and modular structure as the project grows

Organizing Larger Projects Project Layout

Directory Structure

General directory structure guidelines

Files belonging to different libraries and executables should reside in different
directories

Files belonging to different components (logically separate parts) within a
library or executable should reside in different directories

Files belonging to different top-level namespaces should reside in different
directories

Tests should reside in a separate directory tree from the actual
implementation

Out-of-source builds should always be preferred

Organizing Larger Projects Project Layout

Directory Structure: Small Projects (1)

Directory structure guidelines for small projects
® The general directory structure guidelines still apply

® Parts of the CMakeLists.txt may be shared by all components within the
project

® Build system setup (e.g. compiler flags)
® Dependencies (e.g. third-party libraries)

® The test code and executable(s) may be shared by all components within the
project

Evolution
® Eventually, some library or executable in a small project will grow large

® Should then be moved into an independent (sub-)project

Organizing Larger Projects Project Layout

Directory Structure: Small Projects (2)

Small project example

>]

> tree project
project

CMakelLists.txt
my_executable
t:: CMakelLists.txt

my_library
t:: CMakeLists.txt

test
CMakeLists.txt
my_executable
| .

L my_Llibrary
|—-.c

Common CMakelLists.txt logic

CMakelLists.txt logic for my_executable
Source (& header) files

CMakelLists.txt logic for my_library
Source (& header) files

CMakeLists.txt logic for testing
Tests for my_executable

Tests for my_library

RiojectlCayolt
Directory Structure: Large Projects (1)

Directory structure guidelines for large projects
® The general directory structure guidelines still apply

® The components of large projects should be mostly independent subprojects

Should not share most CMakeLists.txt logic

Should not share test code and executable(s)

Evolution

® Eventually other projects or people may want to reuse one of the subprojects
in a different context

® Should then be moved into an entirely independent project

RiojectlCayolt
Directory Structure: Large Projects (2)

Large project example

>_]
> tree project
project
CMakeLists.txt # Minimal common CMakelLists.txt logic
my_executable
CMakeLists.txt # Common my_executable CMakelLists.txt
src
| L ... # Source (& header) files
L— test

|

|

| t:: CMakeLists.txt # CMakeLists.txt logic for tests
| e # Tests for my_executable

L my_library

CMakeLists.txt # Common my_Tlibrary CMakelLists.txt
src

| L ... # Source (& header) files

L test

t:: CMakelLists.txt # CMakeLists.txt logic for tests
ce # Tests for my_library

Organizing Larger Projects Project Layout

Header and Implementation Files

File

File

content

Generally, there should be one separate pair of header and implementation
files for each C++ class

Very tightly coupled classes (e.g. classes that could also be nested classes)
can be placed in the same header and implementation files

location

Option 1: Place associated implementation and header files in the same
directory (preferred by us)

Option 2: Place associated implementation and header files in separate
directory trees (e.g. src and include)

Option 1 makes browsing code somewhat easier, option 2 makes system-wide
installation easier

RiojectlCayolt
Namespaces & Cycles

Namespaces should identify logically coherent components within a library or
executable

® Usually, there should be at least a top-level namespace (i.e. don't put stuff in
the default namespace)

® Namespaces should group broadly similar or coherent functionality

® Rule of thumb: Think of namespaces as “candidates for moving into a
separate library”

Dependencies between namespaces should be cycle-free
® Makes refactoring code much easier
® Allows future modularization into separate libraries

BrojsctlFayout
Library & Executable Structure

It is usually advisable to separate executables from their core functionality
® Executables often serve as “frontends” to some library functionality
® Library functionality can probably be reused in other programs
® Keeps interaction logic (e.g. 1/0) separate from core functionality

® Not necessary in very small projects

There should be a separate CMakeLists.txt for each library or executable
® |mplies that separate libraries and executables reside in separate directories
® Facilitates future modularization into separate (sub-)projects

® The add_subdirectory CMake function can be used to aggregate several
such sub-projects

Organizing Larger Projects Project Layout

Include Directories

Usually, the include path for a library should contain a prefix
® E.g. includes for a library “foo” could start with #include "foo/..."
® Requires a suitable directory structure in the source tree of the library

® Usually requires the use of target_include_directories in the
CMakelLists.txt

> tree project/my_1library
my_library

CMakelLists.txt
src

| L my_library
| Bar.hpp
| Foo.hpp
| Foo.cpp
L— test

I_ ..

Organizing Larger Projects Libraries & Executables

Libraries & Executables

In most cases, libraries and executables are the main product of a CMake project
® Encoded as targets in a CMake project
® Targets can have properties such as dependencies
® CMake projects may contain further targets (e.g. for installing, packaging,
linting, etc.)
Libraries

® Collection of compiled code that can be reused in other libraries or
executables

® Can either be static or shared libraries
® Have to conform to the OS application binary interface (ABI)
® Cannot be executed on their own
Executables
® Compiled code that can be executed on a certain operating system
® Have to conform to the OS application binary interface (ABI)
® May contain further metadata such as information about entry points etc.

Executables in CMake (1)

Organizing Larger Projects Libraries & Executables

Executables are added with the add_executable CMake command

Syntax: add_executable(name sources...)
Adds a CMake target with the specified name

Produces an executable with the specified name in the same relative directory
as the current CMakelLists.txt

sources... can be a whitespace-separated list of source files or a CMake
variable that expands to such a list

Passing source files by variable should be preferred for more than a few files

Properties such as dependencies can be modified through additional CMake
commands

https://cmake.org/cmake/help/latest/command/add_executable.html

Organizing Larger Projects Libraries & Executables

Executables in CMake (2)

Sample CMakeLists.txt for the my_executable sub-project

set(MY_EXECUTABLE_SOURCES
src/my_executable/Helper.cpp

src/my_executable/Main.cpp

)

add_executable(my_executable ${MY_EXECUTABLE_SOURCES})

further commands required

Organizing Larger Projects Libraries & Executables

Static Libraries

Static libraries are essentially archives of executable code

® Contain assembly from some number of object files, e.g. for classes,
functions, etc.

® Dependencies on static libraries are resolved at link time

® Static libraries on Linux typically have the extension *.a

The linker is responsible for resolving dependencies on static libraries

® Code from a static library A is copied into a library or executable B that
depends on A

® At runtime, no dependency on A exists since the relevant code is part of the
library or executable B

Organizing Larger Projects Libraries & Executables

Shared Libraries

Shared libraries are dynamic archives of executable code

® Contain assembly from some number of object files, e.g. for classes,
functions, etc.

® Dependencies on shared libraries are resolved at runtime

® Shared libraries on Linux typically have the extension *.so

The operating system is responsible for resolving dependencies on shared libraries

® Only pointers to the code in a shared library A are used in a library or
executable B that depends on A

® At runtime, the operating system loads A into memory once
® All programs depending on A access this memory to execute code in A

Organizing Larger Projects Libraries & Executables

Advantages and Disadvantages of Static Libraries

Advantages
® Can have slightly higher performance since there are no indirections

® Can prevent compatibility issues since there are no external dependencies

Disadvantages
® Much bigger file sizes than shared libraries since code is actually copied
® Programs depending on static libraries have to be recompiled if the static
library changes
® Can lead to problems with transitive dependencies even if they are “header

only”

Organizing Larger Projects Libraries & Executables

Advantages and Disadvantages of Shared Libraries

Advantages
® Much smaller file sizes since the shared library is only loaded into memory at
run time
® Much lower memory consumption since only a single copy of a shared library
is kept in memory (even for unrelated processes)
® Can be exchanged for other compatible versions without changing programs
that depend on a shared library

Disadvantages
® Programs depending on a shared library rely on a compatible version being
available
® Can be slightly slower due to additional indirection at runtime

Organizing Larger Projects Libraries & Executables

Static Libraries in CMake (1) A

Static libraries are added with the add_1library CMake command
® Syntax: add_library(name STATIC sources...)
® Adds a CMake target with the specified name

® Produces a static library with the specified name in the same relative
directory as the current CMakeLists.txt

® sources... can be a whitespace-separated list of source files or a CMake
variable that expands to such a list

® Passing source files by variable should be preferred for more than a few files

® Properties such as dependencies can be modified through additional CMake
commands

https://cmake.org/cmake/help/latest/command/add_library.html

Organizing Larger Projects Libraries & Executables

Static Libraries in CMake (2)

Sample CMakeLists. txt for the my_library sub-project (assuming static
library)

set (MY_LIBRARY_SOURCES
src/my_library/ClassA.cpp

src/my_library/ClassZ.cpp
)

add_Tlibrary(my_library STATIC ${MY_LIBRARY_SOURCES})

further commands required

Organizing Larger Projects Libraries & Executables

Shared Libraries in CMake (1) A

Shared libraries are added with the add_library CMake command
® Syntax: add_library(name SHARED sources...)
® Adds a CMake target with the specified name

® Produces a shared library with the specified name in the same relative
directory as the current CMakeLists.txt

® sources... can be a whitespace-separated list of source files or a CMake
variable that expands to such a list

® Passing source files by variable should be preferred for more than a few files

® Properties such as dependencies can be modified through additional CMake
commands

https://cmake.org/cmake/help/latest/command/add_library.html

Organizing Larger Projects Libraries & Executables

Shared Libraries in CMake (2)

Sample CMakeLists.txt for the my_library sub-project (assuming shared
library)

set (MY_LIBRARY_SOURCES
src/my_library/ClassA.cpp

src/my_library/ClassZ.cpp
)

add_Tlibrary(my_library SHARED ${MY_LIBRARY_SOURCES})

further commands required

Organizing Larger Projects Libraries & Executables

Interface Libraries in CMake (1) A

Usually only the implementation files (*.cpp) should be added to a CMake target
® Header files on their own are not compiled

® Only headers that are included by implementation files are relevant for
compilation

Exception: Interface libraries
® Syntax: add_library(name INTERFACE)
® A library might contain only template definitions

® Cannot be compiled into a static or shared library (unless explicit
instantiation is used)

Can still have properties such as include paths or dependencies

https://cmake.org/cmake/help/latest/command/add_library.html

Organizing Larger Projects Libraries & Executables

Interface Libraries in CMake (2)

Sample CMakeLists. txt for the my_library sub-project (assuming
header-only)

add_library(my_library INTERFACE)
target_include_directories(my_library INTERFACE src)
target_link_libraries(my_library INTERFACE some_dependency)

Organizing Larger Projects Libraries & Executables

Nested Projects in CMake (1)

The

add_subdirectory CMake command can be used to add a subproject
Syntax: add_subdirectory(source_dir)

Adds the CMakelLists.txt in the specified source_dir to the build
The nested CMakeLists.txt will be processed immediately by CMake

The CMake variable CMAKE_SOURCE_DIR refers to the top-level source
directory inside nested CMakeLists.txt

The CMake variable CMAKE_CURRENT_SOURCE_DIR refers to the source
directory in which the nested CMakelLists.txt resides

https://cmake.org/cmake/help/latest/command/add_subdirectory.html

Organizing Larger Projects Libraries & Executables

Nested Projects in CMake (2)

Example top-level CMakeLists.txt

cmake_minimum_required(VERSION 3.12)
project(project)

more general setup code

add_subdirectory(my_executable)
add_subdirectory(my_Tlibrary)

Organizing Larger Projects Libraries & Executables

Important Project Properties (1) A

Usually, the include directory of libraries and executables needs to be set
® target_include_directories(target PUBLIC|PRIVATE dirs...)
® Should be set to the src or include directory of a subproject in our
suggested layout
® PUBLIC include directories are passed on to targets that depend on the
current target

https://cmake.org/cmake/help/latest/command/target_include_directories.html

Organizing Larger Projects Libraries & Executables

Important Project Properties (2) A

Dependencies between targets can be set with target_link_libraries
® target_link_libraries(target PUBLIC|PRIVATE libs...)
® 1libs... can refer to libraries defined by the current project or imported
third-party library targets
® PUBLIC dependencies are passed on to targets that depend on the current
target

https://cmake.org/cmake/help/latest/command/target_link_libraries.html

Organizing Larger Projects Libraries & Executables

Important Project Properties (3)

Sample CMakeLists.txt for the my_executable sub-project

set (MY_EXECUTABLE_SOURCES
src/my_executable/Helper.cpp

src/my_executable/Main.cpp

)

add_executable(my_executable ${MY_EXECUTABLE_SOURCES})
allows 1includes to be '#include "my_executable/..."
dinstead of '#include "my_executable/src/my_executable/..."
target_include_directories(my_executable PRIVATE src/)
dependency on the my_libary target defined in other subprojec
target_link_libraries(my_executable PRIVATE my_library)

Organizing Larger Projects Libraries & Executables

Paths in CMake A

CMake defines several variables for often-used paths

CMAKE_SOURCE_DIR
Contains the full path to the top level of the source tree, i.e. the location of the
top-level CMakeLists.txt

CMAKE_CURRENT_SOURCE_DIR
Contains the full path the the source directory that is currently being processed
by CMake. Differs from CMAKE_SOURCE_DIR in directories added through
add_subd-irectory.

CMAKE_BINARY_DIR
Contains the full path to the top level of the build tree, i.e. the build directory in
which cmake is invoked.

CMAKE_CURRENT_BINARY_DIR
Contains the full path the binary directory that is currently being processed.
Each directory added through add_subd-irectory will create a corresponding
binary directory in the build tree.

Relative paths are usually relative to the current source directory

https://cmake.org/cmake/help/latest/manual/cmake-variables.7.html

ALbird;Rarsy]Cibyavies
Third-Party Libraries

Usually we do not want to reinvent the wheel
® There is a vast ecosystem of (open-source) third-party libraries

® |f there exists a well-maintained third-party library that matches your
requirements you should use it

If possible and feasible, your project should not bundle third-party dependencies
® Many libraries can easily be installed through a package manager
® Reduces complexity of project configuration and maintenance

® CMake provides facilities for locating third-party dependencies in a
platform-independent way

Organizing Larger Projects Third-Party Libraries

find_package (1) A

Preferred CMake function for locating third-party dependencies
® find_package(<PackageName> [version] [REQUIRED])
® Finds and loads settings from an external project
® Sets the <PackageName>_FOUND CMake variable if the package was found

® May provide additional variables and imported CMake targets depending on
the package

find_package relies on CMake scripts

® Attempts to find a Find<PackageName>.cmake file in the path specified by
the CMAKE_MODULE_PATH variable and in the CMake installation

® Many Findx.cmake scripts are provided by CMake itself

® CMake documentation can be consulted for details about provided
Find*.cmake scripts

® Own Findx*.cmake scripts can be written if necessary

https://cmake.org/cmake/help/latest/command/find_package.html

Third-Party Libraries
find_package (2)

Example

Attempt to locate system-wide installation of libgtest
Invokes the FindGTest.cmake script provided by CMake

Configuration will fail if libgtest cannot be found
find_package(GTest REQUIRED)

add_executable(tester ...)
target_link_libraries(tester PRIVATE

GTest::GTest # Imported target for the gtest library
as specified by the documentation of
FindGTest

Third-Party Libraries
find_library (1)

If no Findx.cmake script is available, find_library can be used
® find_library(<VAR> name [pathl path2 ...])
® Creates a cache entry named <VAR> to store the result of the command
® |f nothing is found, the result will be <VAR>-NOTFOUND
® name specifies the name of the library (e.g. gtest for libgtest)

Additional paths beside the default search paths can be specified

find_library simply searches directories for a library
® A wide range of (highly configurable) paths is searched for the library

® Does not automatically configure non-standard include paths like
find_package

® Should only be used as a fallback or within Find*.cmake scripts

https://cmake.org/cmake/help/latest/command/find_library.html

Third-Party Libraries
find_library (2)

Example (assuming there is no FindGTest.cmake script)

Attempt to locate libgtest library
Searches for the library file in a range of paths
find_library(GTest gtest)

if (${GTest} STREQUAL "GTest-NOTFOUND")
message (FATAL_ERROR "libgtest not found")
endif()

add_executable(tester ...)
target_link_libraries(tester PRIVATE

GTest # Only adds the libgtest library
Does not set include paths

il Py (Lieries
Further Reading

We only scratched the surface of CMake in this lecture
® (CMake provides much more highly useful functionality
® E.g. checks for compiler flags

® E.g. checks for compiler features

E.g. checks for host system features

E.g. defining custom Makefile targets

The CMake documentation provides a good overview

https://cmake.org/cmake/help/latest/

Testing

Tests should be an integral part of every larger project
® Unit tests

® |ntegration tests

Good test coverage greatly facilitates implementing a large project

® Tests can ensure (to some extent) that modifications do not break existing
functionality

® Can easily refactor code
® Can easily change the internals of a component

Organizing Larger Projects Testing

Googletest (1)

We use Googletest in the programming assignments and final project
® Works on a large variety of platforms
® Contains a large set of useful functions

Can usually be installed through a package manager
Can be added to a CMake project through the FindGTest.cmake module

Alternative test frameworks are of course available

Functionality overview
® Test cases
® Predefined and user-defined assertions
® Death tests

https://github.com/google/googletest

Testing
Googletest (2)

Simple tests

#include <gtest/gtest.h>

TEST(TestSuiteName, TestName) {

® Defines and names a test function that belongs to a test suite
® Test suites can for example map to one class or function
® Googletest assertions can be used to control the outcome of the test function

® |f any assertion fails or the test function crashes, the entire test case fails

———— EEE Lareer Projects g
Googletest (3)

Fatal assertions
® Fatal assertions are prefixed with ASSERT_

® When a fatal assertion fails the test function is immediately terminated

Non-fatal assertions
® Non-fatal assertions are prefixed with EXPECT_
® When a non-fatal assertion fails the test function is allowed to continue
® Nevertheless the test case will fail

e A|| assertions exist in fatal and non-fatal versions

Assertion examples
® ASSERT_TRUE (condition); or ASSERT_FALSE(condition);
e ASSERT_EQ(vall, val2); or ASSERT_NE(vall, val2);

Testing
Googletest (4)

A custom main function needs to be provided for Googletest

#include <gtest/gtest.h>

int main(int argc, char**x argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

® Should usually be placed in a separate Tester.cpp or main.cpp

Testing
Coverage (1)

Code coverage can help ensure proper testing of a project
® Simple metrics like line coverage have to be interpreted carefully
® Can indicate that a certain part of a project has not been tested properly

® Can usually not indicate that a certain part of a project has been tested
exhaustively

Line coverage information can automatically be collected during test execution

Possible with a variety of tools

GCC contains the build-in coverage tool gcov
® Clang can produce gcov-like output

® lcov together with genhtml can be used to generate HTML line coverage
reports from information collected during test execution

Testing
Coverage (2)

Brief example

build executable with gcov enabled
> g++ —fprofile-arcs -ftest-coverage -o main main.cpp

run executable and generate coverage data
> ./main

generate lcov report
> lcov --coverage --directory . --output-file coverage.info

generate html report
> genhtml coverage.info --output-directory coverage

® Produces HTML coverage report in coverage/index.html
® Configuration for coverage reports should be part of CMake configuration

Organizing Larger Projects Further Tools & Techniques

Continuous Integration

Platforms like GitLab provide continuous integration (Cl) functionality

® Can automatically run tests or other checks each time some commits are
pushed to GitLab

® Highly useful in larger projects with multiple contributors

® Can be used to enforce certain standards in a project (e.g. minimum line
coverage, no failing tests etc.)

® Has to be taken seriously to be effective (e.g. refuse merge requests with
failing Cl tests etc.)

Configured through .gitlab-ci.yml file in the repository
® Rather complex initial server-side setup
® Already provided by our GitLab server
® .gitlab-ci.yml configures the Cl for a certain GitLab repository

® Refer to the GitLab documentation for details

Organizing Larger Projects Further Tools & Techniques

Linting

A linter performs static source code analysis
® (Can detect some types of “"bad” code
® Some forms of bugs
® Stylistic errors that may lead to bugs

® Suspicious constructs that may lead to bugs

clang-tidy is a clang-based C++ linter
® Widely available through package manager

® Highly configurable set of checks (e.g. through .clang-tidy file)
® Integrated in CLion

® Can be integrated in CMake configuration of a project

Organizing Larger Projects Further Tools & Techniques

perf is a highly useful performance analysis tool for Linux
® Can profile any program using the standalone executable perf
® Can be integrated in a program by using the perf API

® Can interface with hardware and software performance counters

Standalone perf examples

® perf stat [OPTIONS] command

® Run command and display information about event counts such as cache
misses, branch misses etc.

® perf record [OPTIONS] command
® Run command and sample a certain event on the instruction level
® |f possible, command should be built with debug symbols

® perf report
® Analyze a file generated by perf record

® Generates an interactive report that shows sampled event counts for each
instruction.

Organizing Larger Projects Further Tools & Techniques

perf stat example
-
> perf stat --detailed ./my_executable

Performance counter stats for './my_executable':

56.505,78 msec task-clock # 2,573 CPUs utilized
854.187 context-switches # 0,015 M/sec
7.827 cpu-migrations # 0,139 K/sec
309.550 page-faults # 0,005 M/sec
177.728.516.281 cycles # 3,145 GHz
60.347.961.620 instructions # 0,34 dnsn per cycle
12.694.777.815 branches # 224,663 M/sec
89.725.841 branch-misses # 0,71% of all branches
16.672.843.754 L1-dcache-1loads # 295,064 M/sec
1.267.581.260 Ll-dcache-load-misses # 7,60% of all Ll-dcache hitg
471.681.999 LLC-loads # 8,347 M/sec
258.238.607 LLC-load-misses # 54,75% of all LL-cache hits

21,964215591 seconds time elapsed

44,360970000 seconds user
16,626546000 seconds sys

Organizing Larger Projects Further Tools & Techniques

Valgrind is a general-purpose dynamic analysis tool
® Mainly used for memory debugging, memory leak detection and profiling

® Essentially runs programs on a virtual machine, allowing tools to do arbitrary
transformations on the program before execution

® Extremely high overhead compared to other tools like ASAN

Use cases

® Complex memory bugs that are not detected by simpler tools like the address
sanitizer

® Complex profiling tasks

Organizing Larger Projects Further Tools & Techniques

Reverse Debugging (1)

Regular debuggers like GDB can only step forward in the program
® Does not necessarily fit debugging requirements

® E.g. when a crash occurs, we would like to step backwards until we have
found the source of the crash

Reverse debuggers provide such functionality
® Usually, a program run is recorded first

® Subsequently, the program run can be replayed reproducing the exact same
behavior

® During debugging, execution can step forward and backward in time
® Example: rr by Mozilla

il S Further Tools & Techniques
Reverse Debugging (2)

Buggy class

main.cpp
#include <cassert>

struct Foo {
static constexpr int max = 15;

int a = 0;

void bar() {

assert((a % 2) == 0);
a = (a + 2) % max;
}
}s
ittty
int main() {
Foo foo;
for (unsigned i = 0; i < 163 ++1)
foo.bar();

Flirtheigioot IRl echniqtcs
Reverse Debugging (3)

rr example
>-]
> g++ —-g -0 main main.cpp
> rr record main # record execution of main, including crash
> rr replay # start rr GDB session, will break at _start

(rr) continue # continue program until crash

(rr) up 4 # go to Foo::bar stack frame

(rr) watch -1 a # hardware watchpoint for Foo::a

(rr) reverse-continue # continue backwards, will break at SIGABRT
(rr) reverse-continue # continue backwards, will break at watchpoin
Continuing.

Hardware watchpoint 1: -location a

0ld value 1

New value = 14

0x00005568dba67208 in Foo::bar (this=0x7fff75f38980) at main.cpp:9
9 a = (a+ 2) % max;

	Organizing Larger Projects
	Project Layout
	Libraries & Executables
	Third-Party Libraries
	Testing
	Further Tools & Techniques

