Miscellaneous

Miscellaneous



Miscellaneous Tricks on x86-64

Pointer Tagging on x86-64 (1)

Virtual addresses are translated to physical addresses by the MMU
® Virtual addresses are 64-bit integers on x86-64
® On x86-64, only the lower 48 bit of pointers are actually used

® The upper 16 bit of pointers are usually required to be zero

The upper 16 bit of each pointer can be used to store useful information
® Usually called pointer tagging
® Tagged pointers require careful treatment to avoid memory bugs

® |f portability is desired, an implementation that works without pointer
tagging has to be provided (e.g. through preprocessor defines)

e Allows us to modify two values (16 bit tag and 48 bit pointer) with a single
atomic instruction



Miscellaneous Tricks on x86-64

Pointer Tagging on x86-64 (2)

We can store different things in the upper 16 bit of pointers
® Up to 16 binary flags
® A single 16 bit integer

Guidelines
® Always wrap tagged pointers within a suitable data structure
® Do not expose tagged pointers in raw form
® Store tagged pointers as uintptr_t internally

® Use bit operations to access tag and pointer parts



Pointer Tagging on x86-64 (3)

Using the upper 16 bit to store information

static constexpr uint64_t shift = 48;
static constexpr uintptr_t mask = (1ull << shift) - 1;

uintptr_t tagPointer(voidx ptr, uinté4_t tag)
// Tag a pointer. Discards the upper 48 bit of tag.
{
return (reinterpret_cast<uintptr_t>(ptr) & mask) | (tag << shift);

uint64_t getTag(uintptr_t taggedPtr)
// Get the tag stored 1in a tagged pointer

{
return taggedPtr >> shift;

void* getPointer(uintptr_t taggedPtr)
// Get the pointer stored in a tagged pointer
{
return reinterpret_cast<void*>(taggedPtr & mask);

}




Pointer Tagging on x86-64 (4)

Using the lower 16 bit to store information

static constexpr uint64_t shift = 16;
static constexpr uintptr_t mask = (1ull << shift) - 1;

uintptr_t tagPointer(voidx ptr, uinté4_t tag)
// Tag a pointer. Discards the upper 48 bit of tag.
{
return (reinterpret_cast<uintptr_t>(ptr) << shift) | (tag & mask);

uint64_t getTag(uintptr_t taggedPtr)
// Get the tag stored 1in a tagged pointer

{
return taggedPtr & mask;

void* getPointer(uintptr_t taggedPtr)
// Get the pointer stored in a tagged pointer
{
return reinterpret_cast<void*>(taggedPtr >> shift);

}




Miscellaneous Vectorization

Vectorization

Most modern CPUs contain vector units that can exploit data-level parallelism

® Apply the same operation (e.g. addition) to multiple data elements in a single
instruction

® Can greatly improve the performance of suitable algorithms (e.g. image
processing)

® Not all algorithms are amenable to vectorization

Overview
® Can be used through extensions to the x86 instruction set architecture

® Commonly referred to as single instruction, multiple data (SIMD) instructions

Can be used in C/C++ code through intrinsic functions

The Intel Intrinsics Guide provides an excellent documentation


https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Miscellaneous Vectorization

SIMD Extensions

SIMD extensions have evolved substantially over time
°* MMX
e SSE, SSE2, SSE3, SSE4
°* AVX, FMA, AVX2, AVX-512

Modern CPUs retain backward compatibility with older instruction set extensions

® The CPU flags exposed in /proc/cpuinfo indicate which extensions are
supported

® We will briefly introduce AVX (avx flag in /proc/cpuinfo)
® AVX should be supported on most reasonably modern CPUs



Miscellaneous Vectorization

AVX Data Types

AVX data types and intrinsics are defined in the <immintrin.h> header
® AVX adds 16 registers which are 256 bits wide each
® Can hold multiple data elements

® Can be used through special opaque data types

AVX data types
e __m256: Can hold eight 32 bit floating point values
e __m256d: Can hold four 64 bit floating point values

® __m2561: Can hold thirty-two 8 bit, sixteen 16 bit, eight 32 bit or four 64 bit
integer values

® Commonly referred to as vectors (not to be confused with std: :vector)

Other SIMD extensions follow similar naming conventions for data types



Miscellaneous Vectorization

AVX Intrinsics

Usually, there are separate intrinsics for each data type
e AVX intrinsics usually begin with _mm256
® Next is a name for the instruction (e.g. loadu)

® Finally, the data type is indicated

® ps for __m256
® pd for __m256d
® 59256 for __m2561

® Example: _mm256_loadu_ps

We will only show intrinsics for __m256 in the following
® |Intrinsics for other data types usually follow similar patterns

® Exception: AVX does not contain many arithmetic operations on integer
types (added in AVX2)



Miscellaneous Vectorization

Constant Values

We cannot directly modify individual data elements in AVX data types
® We have to use intrinsics for that purpose

® |Intrinsics usually return the result of a modification

We can create constant vectors
® _m256 _mm256_setl_ps(float a)
® Returns a vector with all elements equal to a

® m256 _mm256_set_ps(float e7, ..., float e0)
® Returns a vector with the elements e0, ..., e7
® _m256 _mm256_setr_ps(float e®, ..., float e7)

® Returns a vector with the elements e0, ..., e7



Miscellaneous Vectorization

Loading and Storing

Loading data from memory
® _m256 _mm256_load_ps(const float* addr)
® |oad eight 32 bit floating point values from memory starting at addr
® addr has to be aligned to a 32 byte boundary
® _m256 _mm256_loadu_ps(const float* addr)

® |oad eight 32 bit floating point values from memory starting at addr
® addr does not have to be aligned beyond usual float alignment

Storing data to memory
® void _mm256_store_ps(float*x addr, __m256 a)
® Store eight 32 bit floating point values in a to memory starting at addr
® addr has to be aligned to a 32 byte boundary
® void _mm256_storeu_ps(floatx addr, __m256 a)
® Store eight 32 bit floating point values in a to memory starting at addr
® addr does not have to be aligned beyond usual float alignment



Miscellaneous Vectorization

Arithmetic Operations

AVX provides many arithmetic operations on vectors
® All the usual arithmetic operations

® Bitwise operations on integer types

Example: Adding vectors
® _m256 _mm256_add_ps(__m256 a, __m256 b)

® Adds the individual elements of the vectors a and b
® Returns the result of the addition



Miscellaneous Vectorization

Example

Computing the sum of elements in an std: :vector

#include <immintrin.h>
#include <vector>

float fastSum(const std::vector<float>& vec) {
__m256 vectorSum = _mm256_setl_ps(0);
uint64_t dindex;
for (index = 0; (index + 8) <= vec.size(); index += 8) {
__m256 data = _mm256_loadu_ps(&vec[index]);
vectorSum = _mm256_add_ps(vectorSum, data);

}

float sum = 0;
float buffer[8];
_mm256_storeu_ps (buffer, vectorSum);
for (unsigned i = 0; i < 8; ++1)
sum += buffer[i];
for (; index < vec.size(); ++index)
sum += vec[index];

return sum;




Miscellaneous Vectorization

Further Operations

AVX contains many more instructions
® Comparison operations on vectors

® Masked operations

Allows vectorization of many algorithms
® Vectorization is not guaranteed to improve performance
® Generally, compute-heavy algorithms benefit greatly from vectorization

® Algorithms with a lot of fine-grained branching or many loads and stores may
not benefit

® \ectorization is always an optimization that should not be applied
prematurely



Template Metaprogramming

Templates can be used for meta-programming at compile time.

® Template specializations can be used to select different types depending on
template arguments

® Recursive templates can be used for basic “control flow"
® The standard library defines several useful templates in <type_traits>

® All types and values are generated at compile time, so can be used as
constants or template parameters



iiemplatelMstap o amming
Type Traits

Type traits can be used to analyze properties of arbitrary types:

constexpr bool
constexpr bool
constexpr bool
constexpr bool

= std::is_arithmetic_v<int>; // true

= std::is_class_v<int>; // false
std::is_class_v<std::vector<int>>; // true

= std::is_move_assignable_v<std::vector<int>>; // true

Q0N T
"

They can also be used to generate new types:

using Tl = std::remove_reference_t<int&>; // Tl is int
using T2 = std::add_pointer_t<int>; // T2 is intx
// T3 is const std::vector<int>&
using T3 = std::add_const_t<std::add_lvalue_reference_t<std::vector<int>>>;
// my_uintptr_t is uint64_t on systems where the size of voidx is 8 bytes,
// or uint32_t otherwise.
using my_uintptr_t =
std::conditional_t<sizeof(voidx) == 8, uint64_t, uint32_t>;




iiemplatelMstap o amming
Using Type Traits

Using type traits can prevent code duplication. Common example: const and
non-const versions of an iterator.

template <typename T>

class Container {
private:
template <bool isConst>
class Iterator {

public:
using reference = std::conditional_t<isConst, const T&, T&>;
/1 L.

}s

public:

using iterator = Iterator<false>;
using const_iterator = Iterator<true>;

}s




Tkt HEEpEgamiing
Implementing Type Traits

Some of the templates from <type_traits> are “magic” and cannot be
implemented in pure C++ without compiler support.

Still, many can be implemented by using template specializations:

// By default, my_remove_pointer just gives back T

template <typename T>

struct my_remove_pointer { using type = T; };

// Use template specialization that is only selected for pointer types
// and declare type to be T without the pointer.

template <typename T>

struct my_remove_pointer<Tx> { using type = T; };

template <typename T>

using my_remove_pointer_t = typename my_remove_pointer<T>::type;




Tkt HEEpEgamiing
Substition Failure Is Not An Error (SFINAE) @

When a template is instantiated, the template arguments are substituted
everywhere the template parameter is used (e.g. T is replaced by int)

This can lead to invalid code — Substitution Failure

® |n some cases, substitution failures do not lead to a compile error!

This is necessary to enable overloaded template functions

Can be (ab)used for meta programming (see std: :enable_if)

template <typename T>
T::value_type foo(const T& values) { /x ... x/ }

int foo(int a) { return a + 1; }

foo(123); // Is this a compile error?

// This 1ds 1dnvalid code:

int::value_type foo(const int& values) { /* ... %/ }

// Because of SFINAE, only int foo(int) 1is considered as overload



https://en.cppreference.com/w/cpp/language/sfinae

Miscellaneous Additional C++20 Features

The C++20 Standard @

C++20 is the latest release of the C4++ standard
® Adds some very cool features to the C++ standard

® We already covered many of the well-supported new features throughout this
course (e.g. concepts)

® In the following we will give an overview of additional potentially very useful
features

Compiler support for these features is improving although still intermittent

® Some features (e.g. modules) are not yet implemented completely by some
compilers

® Some features (e.g. coroutines) may be implemented but affected by compiler
bugs

® |n any case: Use the latest compiler version available to you


https://en.cppreference.com/w/cpp/compiler_support

Miscellaneous Additional C++20 Features

Coroutines (1)

Regular function calls are strictly nested

® A function call suspends execution of the calling function, and resumes
execution at the start of the called function

® Eventually, the called function returns and execution of the calling function
resumes after the function call expression

Functions have state that has to be maintained across nested function calls
® Values of any local variables
® The instruction at which to resume execution after a function call

® Strict nesting of function calls allows for highly optimized state maintenance
on the stack

® Strict nesting of function calls makes implementing asynchronous operations
cumbersome



Miscellaneous Additional C++20 Features

Coroutines (2) @

Coroutines are functions that can be suspended and resumed (almost) arbitrarily
® Suspending a coroutine transfers execution back to the caller

® Resuming a suspended coroutine continues execution at the point it was
suspended

® The state of a coroutine remains alive across suspensions (e.g. local variables)

Coroutines in C++ are implemented with the help of three new keywords
® co_await <expr>: Suspends the coroutine and returns control to the caller
® co_yield <expr>: Returns a value to the caller and suspends the coroutine
® co_return <expr>: Returns a value to the caller and finishes the coroutine


https://en.cppreference.com/w/cpp/language/coroutines

Miscellaneous Additional C++20 Features

Coroutines (3)

Coroutines look like sequential code that is executed asynchronously

ThreadPool pool;

Task<> work(...) {
// Executed on the calling thread
doSomeWork(...);

// Suspend the coroutine and schedule it for resumption
// on the thread pool. Control returns immediately to
// the caller of the coroutine.

co_await pool.schedule();

// Executed on a thread from the thread pool
doSomeMoreWork(...);




Miscellaneous Additional C++20 Features

Coroutines (4)

Coroutines can be used to implement lazy generators

#include <jostream>

Generator<int> jota(int n
while (true)
// Return a value
// iota coroutine
co_yield n++;

Task<> work() {

=0) {

to the caller and suspend the

auto generator = dotal();

for (size_t i = 0; i < 10; ++1)
// Resume the +iota coroutine to retrieve the
// next value from the generator
std::cout << co_await generator << std::endl;




Miscellaneous Additional C++20 Features

Coroutines (5)

Coroutines can be used to implement asynchronous 10

Task<> work(Socket socket) {
while (true) {
// Suspend the coroutine until data becomes available
auto incoming = co_await socket.receive_async(...);

// Do some work with the received data
auto outgoing = doSomeWork(incoming);

// Suspend the coroutine until data has been sent
co_await socket.send_async(outgoing);




Miscellaneous Additional C++20 Features

Coroutines (6) @

Unfortunately, C++ coroutines are currently quite painful to use
® There is not yet any “coroutine standard library”

® In order to actually use any of the coroutine keywords, we have to implement
a lot of (boilerplate) infrastructure ourselves

® The behavior of C++ coroutines is highly configurable through the details of
this infrastructure implementation

® Qverall, it is quite difficult to implement working coroutines

Further complications that will (hopefully) improve over time
® Compiler bugs in the implementation of coroutines
® Suboptimal compiler error messages for coroutines

® Suboptimal debugger support for coroutines


https://en.cppreference.com/w/cpp/language/coroutines

Miscellaneous Additional C++20 Features

Modules (1)

Modules help structure large amounts of code into logical parts
® A module consists of multiple translation units called module units
® Module units can import other modules

® Module units can export certain declarations

Facilitates encapsulation of logically independent parts

® Exported declarations are visible to name lookup in translation units that
import the module

® QOther declarations are not visible to name lookup

Reduces compilation overhead
® Exported definitions are compiled into easy-to-parse binary format

® No need to recursively parse transitive includes


https://en.cppreference.com/w/cpp/language/modules

Miscellaneous Additional C++20 Features

Modules (2)

Example
greeting.cpp

export module greeting;
import <string>;
export std::string getGreeting() {

return "Hello world!";

}

main.cpp

import greeting;
import <iostream>;

int main() {
std::cout << getGreeting() << std

}

::endl;




Miscellaneous Additional C++20 Features

Designated Initializers

C++20 introduces designated initializers
® Allows explicit initialization of class members by name
® This was already possible in C and supported by many compilers

® C++20 now supports a subset of what is allowed in C

struct Foo {
int a;
int b;
1
Foo f{ .a =1, .b =2 };



https://en.cppreference.com/w/cpp/language/aggregate_initialization#Designated_initializers

Bit Manipulation

Miscellaneous Additional C++20 Features

The <bit> header introduces several functions for bit inspection and
manipulation.

std:

:bit_cast: Inspect the object representation (instead of using

reinterpret_cast with potential undefined behavior)

std:
std:
std:
std::
std:

:endian: Check the endianness of the system
:has_single_bit: Check if number is power of two

tbit_ceil, std::bit_floor: Find the next/previous power of two

rotl, std::rotr: Rotate bits

:countl_zero: Count the number of consecutive zero bits starting

from the most significant bit

std:

:popcount: Count the number of one bits


https://en.cppreference.com/w/cpp/header/bit

Miscellaneous Additional C++20 Features

Additional atomic types

C++20 introduces an atomic specialization of std: :shared_ptr

#include <atomic>
#include <memory>

struct LargeObject {
char data[1000];
}s
std::atomic<std::shared_ptr<LargeObject>> object;

void readThreadSafe() {
auto objectPtr = object.load();
if (objectPtr)
objectPtr->data; /* do something with objectPtr->data */
}

void replaceThreadSafe(std::shared_ptr<LargeObject> newObject) {
object.store(std: :move(newObject));

}



https://en.cppreference.com/w/cpp/atomic/atomic

Miscellaneous Additional C++20 Features

More Features

C++20 introduces further small and large features, such as:

std: :source_location: Stores a location in the source code.
std::source_location::current() can be used to get the location of
the current line

<numbers> header: Contains mathematical constants like
std::numbers: :pi and std: :numbers::e

consteval and constinit: Behave like a “mandatory” constexpr
More functions and classes in the standard library are constexpr

Some restrictions of lambdas were removed, e.g. you can capture structural
bindings

Non-type-template arguments can have a user-defined type



	Miscellaneous
	Tricks on x86-64
	Vectorization
	Template Metaprogramming
	Additional C++20 Features


