
Systems Programming in C++
Practical Course

Summer Term 2021

Organization

Organization

2

Organization

Course Goals

Learn to write good C++

• Basic syntax
• Common idioms and best practices

Learn to implement large systems with C++

• C++ standard library and Linux ecosystem
• Tools and techniques (building, debugging, etc.)

Learn to write high-performance code with C++

• Multithreading and synchronization
• Performance pitfalls

3

Organization

Formal Prerequisites

Knowledge equivalent to the lectures
• Introduction to Informatics 1 (IN0001)
• Fundamentals of Programming (IN0002)
• Fundamentals of Algorithms and Data Structures (IN0007)

Additional formal prerequisites (B.Sc. Informatics)
• Introduction to Computer Architecture (IN0004)
• Basic Principles: Operating Systems and System Software (IN0009)

Additional formal prerequisites (B.Sc. Games Engineering)
• Operating Systems and Hardware oriented Programming for Games (IN0034)

4

Organization

Practical Prerequisites

Practical prerequisites
• No previous experience with C or C++ required
• Familiarity with another general-purpose programming language

Operating System
• Working Linux operating system (e.g. Ubuntu)

• Ideally with root access
• Basic experience with Linux (in particular with shell)
• You are free to use your favorite OS, we only support Linux

• Our CI server runs Linux
• It will run automated tests on your submissions

5

Organization

Lecture & Tutorial

• Sessions
• Tuesday, 12:00 – 14:00, live on BigBlueButton
• Friday, 10:00 – 12:00, live on BigBlueButton

• Roughly 50% lectures
• New content
• Recordings on http://db.in.tum.de/teaching/ss21/c++praktikum

• Roughly 50% tutorials
• Discuss assignments and any questions
• Recordings on https://www.moodle.tum.de/course/view.php?id=68169

• Attendance is mandatory
• Announcements on the website and through Mattermost

6

http://db.in.tum.de/teaching/ss21/c++praktikum
https://www.moodle.tum.de/course/view.php?id=68169

Organization

Preliminary Schedule

Day Date Session
Tue 13.04.2021 Lecture
Fri 16.04.2021 Lecture
Tue 20.04.2021 Lecture
Fri 23.04.2021 Lecture
Tue 27.04.2021 Tutorial
Fri 30.04.2021 Lecture
Tue 04.05.2021 Tutorial
Fri 07.05.2021 Lecture
Tue 11.05.2021 Tutorial
Fri 14.05.2021 Lecture
Tue 18.05.2021 Tutorial
Fri 21.05.2021 Lecture
Tue 25.05.2021 Holiday
Fri 28.05.2021 Tutorial

Day Date Session
Tue 01.06.2021 Lecture
Fri 04.06.2021 Tutorial
Tue 08.06.2021 Lecture
Fri 11.06.2021 Tutorial
Tue 15.06.2021 Lecture
Fri 18.06.2021 Tutorial
Tue 22.06.2021 Lecture
Fri 25.06.2021 Lecture
Tue 29.06.2021 Tutorial
Fri 02.07.2021 Lecture
Tue 06.07.2021 Tutorial
Fri 09.07.2021 Lecture
Tue 13.07.2021 Tutorial
Fri 16.07.2021 Combined

7

Organization

Assignments

• Brief non-coding quiz on the day of random lectures or tutorials
• Published on Moodle and announced in Mattermost
• Can be completed at any time during the day of the quiz

• Weekly programming assignments published after each lecture
• No teams
• Due approximately 9 days later (details published on each assignment)
• Managed through our GitLab (more details in first tutorial)
• Deadline is enforced automatically (no exceptions)

• Final (larger) project at end of the semester
• No teams
• Published mid-June
• Due 08.08.2021 at 23:59 (three weeks after last lecture)
• Managed through our GitLab (more details in first tutorial)
• Deadline is enforced automatically (no exceptions)

8

Organization

Grading

Grading system
• Quizzes: Varying number of points
• Weekly assignments: Varying number of points depending on workload
• Final project

Final grade consists of
• ≈ 60% programming assignments
• ≈ 30% final project
• ≈ 10% quizzes

9

Organization

Literature

Primary
• C++ Reference Documentation. (https://en.cppreference.com/)
• Lippman, 2013. C++ Primer (5th edition). Only covers C++11.
• Stroustrup, 2013. The C++ Programming Language (4th edition). Only

covers C++11.
• Meyers, 2015. Effective Modern C++. 42 specific ways to improve your use

of C++11 and C++14..

Supplementary
• Aho, Lam, Sethi & Ullman, 2007. Compilers. Principles, Techniques & Tools

(2nd edition).
• Tanenbaum, 2006. Structured Computer Organization (5th edition).

10

https://en.cppreference.com/

Organization

Contact

Important links
• Website: http://db.in.tum.de/teaching/ss21/c++praktikum
• Moodle: https://www.moodle.tum.de/course/view.php?id=68169
• E-Mail: freitagm@in.tum.de, sichert@in.tum.de
• GitLab: https://gitlab.db.in.tum.de/cpplab21
• Mattermost: https://mattermost.db.in.tum.de/cpplab21

11

http://db.in.tum.de/teaching/ss21/c++praktikum
https://www.moodle.tum.de/course/view.php?id=68169
mailto:freitagm@in.tum.de
mailto:sichert@in.tum.de
https://gitlab.db.in.tum.de/cpplab21
https://mattermost.db.in.tum.de/cpplab21

Introduction

Introduction

12

Introduction

What is C++?

Multi-paradigm general-purpose programming language
• Imperative programming
• Object-oriented programming
• Generic programming
• Functional programming

Key characteristics
• Compiled language
• Statically typed language
• Facilities for low-level programming

13

Introduction

A Brief History of C++

Initial development
• Bjarne Stroustrup at Bell Labs (since 1979)
• In large parts based on C
• Inspirations from Simula67 (classes) and Algol68 (operator overloading)

First ISO standardization in 1998 (C++98)
• Further amendments in following years (C++03, C++11, C++14, C++17)
• Current standard: C++20
• Next standard: C++23

14

Introduction

Why Use C++?

Performance
• Flexible level of abstraction (very low-level to very high-level)
• High-performance even for user-defined types
• Direct mapping of hardware capabilities
• Zero-overhead rule: “What you don’t use, you don’t pay for.” (Bjarne

Stroustrup)

Flexibility
• Choose suitable programming paradigm
• Comprehensive ecosystem (tool chains & libraries)
• Scales easily to very large systems (with some discipline)
• Interoperability with other programming languages (especially C)

15

Background

Background

16

Background Central Processing Unit

The Central Processing Unit (1)

“Brains” of the computer
• Execute programs stored in main memory
• Fetch, examine and execute instructions

Connected to other components by a bus
• Collection of parallel wires for transmitting signals
• External (inter-device) and internal (intra-device) buses

17

Background Central Processing Unit

The Central Processing Unit (2)

Control
Unit

Arithmetic
Logical Unit

(ALU)

Registers

... ... Main
Memory

Bus

Central Processing Unit

18

Background Central Processing Unit

Components of a CPU

Control Unit
• Fetch instructions from memory and determine their type
• Orchestrate other components

Arithmetic Logical Unit (ALU)
• Perform operations (e.g. addition, logical AND, ...)
• “Workhorse” of the CPU

Registers
• Small, high-speed memory with fixed size and function
• Temporary results and control information (one number / register)
• Program Counter (PC): Next instruction to be fetched
• Instruction Register (IR): Instruction currently being executed

19

Background Central Processing Unit

Data Path (1)

ALU

A

A + B

B

Registers

ALU Input Registers
ALU Input Bus

ALU Output Register

A
B

A + B

20

Background Central Processing Unit

Data Path (2)

Internal organization of a typical von Neumann CPU
• Registers feed two ALU input registers
• ALU input registers hold data while ALU performs operations
• ALU stores result in output register
• ALU output register can be stored back in register

⇒ Data Path Cycle
• Central to most CPUs (in particular x86)
• Fundamentally determines capabilities and speed of a CPU

21

Background Central Processing Unit

Instruction Categories

Register-register instructions
• Fetch two operands from registers into ALU input registers
• Perform some computation on values
• Store result back into one of the registers
• Low latency, high throughput

Register-memory instructions
• Fetch memory words into registers
• Store registers into memory words
• Potentially incur high latency and stall the CPU

22

Background Central Processing Unit

Fetch-Decode-Execute Cycle

Rough steps to execute an instruction
1. Load the next instruction from memory into the instruction register
2. Update the program counter to point the the next instruction
3. Determine the type of the current instruction
4. Determine the location of memory words accessed by the instruction
5. If required, load the memory words into CPU registers
6. Execute the instruction
7. Continue at step 1

Central to the operation of all computers

23

Background Central Processing Unit

Execution vs. Interpretation

We do not have to implement the fetch-decode-execute cycle in hardware
• Easy to write an interpreter in software (or some hybrid)
• Break each instruction into small steps (microoperations, or µops)
• Microoperations can be executed in hardware

Major implications for computer organization and design
• Interpreter requires much simpler hardware
• Easy to maintain backward compatibility
• Historically led to interpreter-based microprocessors with very large

instruction sets

24

Background Central Processing Unit

RISC vs. CISC

Complex Instruction Set Computer (CISC)
• Large instruction set
• Large overhead due to interpretation

Reduced Instruction Set Computer (RISC)
• Small instruction set executed in hardware
• Much faster than CISC architectures

CISC architectures still dominate the market
• Backward compatibility is paramount for commercial customers
• Modern Intel CPUs: RISC core for most common instructions

25

Background Central Processing Unit

Instruction-Level Parallelism

Just increasing CPU clock speed is not enough
• Fetching instructions from memory becomes a major bottleneck
• Increase instruction throughput by parallel execution

Instruction Prefetching
• Fetch instructions from memory in advance
• Hold prefetched instructions in buffer for fast access
• Breaks instruction execution into fetching and actual execution

Pipelining
• Divide instruction execution into many steps
• Each step handled in parallel by dedicated piece of hardware
• Central to modern CPUs

26

Background Central Processing Unit

Pipelining (1)

Instruction
Execution

S4
Write
Back

S5

Frontend Backend

Instruction
Fetch

S1
Instruction

Decode

S2
Operand

Fetch

S3

S1

S2

S3

S4

S5

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

1 2 3 4 5Time
27

Background Central Processing Unit

Pipelining (2)

Pipeline frontend (x86)
• Fetch instructions from memory in-order
• Decode assembly instructions to microoperations
• Provide stream of work to pipeline backend (Skylake: 6 µops / cycle)
• Requires branch prediction (implemented in special hardware)

Pipeline backend (x86)
• Execute microoperations out-of-order as soon as possible
• Complex bookkeeping required
• Microoperations are run on execution units (e.g. ALU, FPU)

28

Background Central Processing Unit

Superscalar Architectures

Multiple pipelines could execute instructions even faster
• Parallel instructions must not conflict over resources
• Parallel instructions must be independent
• Incurs hardware replication

Superscalar architectures
• S3 stage is typically much faster than S4
• Issue multiple instructions per clock cycle in a single pipeline
• Replicate (some) execution units in S4 to keep up with S3

29

Background Central Processing Unit

Branch Prediction and Out-Of-Order Execution

The pipeline frontend requires branch prediction
• “Guess” which branches will be taken e.g. in if-statements
• Speculatively issue corresponding microoperations to pipeline backend
• Discard results if prediction did not come true
• Can heavily affect program performance

Microoperations may be executed out-of-order by the pipeline backend
• Effects of independent instructions may become visible in arbitrary order
• Order does not necessarily match instruction order in assembly
• Superscalar architectures require independent instructions for maximum

performance

30

Background Central Processing Unit

Multiprocessors

Include multiple CPUs in a system
• Shared access to main memory over common bus
• Requires coordination in software to avoid conflicts
• CPU-local caches to reduce bus contention
• CPU-local caches require highly sophisticated cache-coherency protocols

31

Background Primary Memory

Main Memory

Main memory provides storage for data and programs
• Information is stored in binary units (bits)
• Bits are represented by values of a measurable quantity (e.g. voltage)
• More complex data types are translated into suitable binary representation

(e.g. two’s complement for integers, IEEE 754 for floating point numbers, ...)
• Main memory is (much) slower but (much) larger than registers

32

Background Primary Memory

Memory Addresses (1)

Memory consists of a number of cells
• All cells contain the same number of bits
• Each cell is assigned a unique number (its address)
• Logically adjacent cells have consecutive addresses
• De-facto standard: 1 byte per cell ⇒ byte-addressable memory (with some

caveats, more details later)
• Usually 1 byte is defined to consist of 8 bits

Instructions typically operate on entire groups of bytes (memory words)
• 32-bit architecture: 4 bytes / word
• 64-bit architecture: 8 bytes / word
• Memory accesses commonly need to be aligned to word boundaries

Addresses are memory words themselves
• Addresses can be stored in memory or registers just like data
• Word size determines the maximum amount of addressable memory

33

Background Primary Memory

Memory Addresses (2)

Example: two-byte addresses, one-byte cells

0000
0008
0010

01 02 03 04 05 06 0700
48 65 6c 6c 6f 20 57 6f
72 6c 64 21 20 49 20 6c
69 6b 65 20 43 2b 2b 21Ad

dr
es

s

Address

0000
0008
0010

01 02 03 04 05 06 0700

Ad
dr

es
s

Address

H e l l o W o
r l d ! I l
i k e C + + !

Hexadecimal

ASCII

34

Background Primary Memory

Byte Ordering (1)

ASCII requires just one byte per character
• Fits into a single memory cell
• What about data spanning multiple cells (e.g. 32-bit integers)?

Bytes of wider data types can be ordered differently (endianness)
• Most significant byte first ⇒ big-endian
• Least significant byte first ⇒ little-endian

Most current architectures are little-endian
• But big-endian architectures such as ARM still exist (although many support

little-endian mode)
• Has to be taken into account for low-level memory manipulation

35

Background Primary Memory

Byte Ordering (2)

Big-endian byte ordering can lead to unexpected results
• Conversions between word-sizes need care and address calculations

0000 00 2a
00 01 02 03

32-bit integer
at address 00:

4210

16-bit integer
at address 00:

010

00 2a 00 00
00 01 02 03

16-bit integer
at address 00:

4210

32-bit integer
at address 00:
2,752,51210

36

Background Primary Memory

Byte Ordering (3)

Little-endian byte ordering can lead to unexpected results
• Mainly because we are used to reading from left to right

0000 00
00 01 02 03

00 01 00 00
00 02 00 00
01 00 00 00
01 01 00 00

00

000001 02

4-byte words in
byte-wise lexicographical

order

010
25610
51210

110
25710
51310

interpreted as
little-endian

32-bit integers

37

Background Primary Memory

Cache Memory (1)

Main memory has substantial latency
• Usually 10s of nanoseconds
• Memory accesses cause CPU to stall for multiple cycles

Memory accesses very commonly exhibit spatial and temporal locality
• When a memory load is issued adjacent words are likely accessed too
• The same memory word is likely to be accessed multiple times within a small

number of instructions
• Locality can be exploited to hide main memory latency

38

Background Primary Memory

Cache Memory (2)

Introduce small but fast cache between CPU and main memory
• CPU transparently keeps recently accessed data in cache (temporal locality)
• Memory is divided into blocks (cache lines)
• Whenever a memory cell is referenced, load the entire corresponding cache

line into the cache (spatial locality)
• Requires specialized eviction strategy

Intel CPUs
• 3 caches (L1, L2, L3) with increasing size and latency
• Caches are inclusive (i.e. L1 is replicated within L2, and L2 within L3)
• 64 byte cache lines

39

Background Primary Memory

Cache Memory (3)

Typical cache hierarchy on Intel CPUs

L1-I L1-D
Unified L2

Unified L3

CPU 1

L1-I L1-D
Unified L2

CPU 2

Main
Memory

40

Background Primary Memory

Cache Memory (4)

Cache memory interacts with byte-addressability
• On Intel, we can access each byte individually
• However, on each access, the entire corresponding cache line is loaded
• Can lead to read amplification (e.g. if we read every 64th byte)

Designing cache-efficient data structures is a major challenge
• A programmer has to take care that data is kept in caches as long as possible
• However, there is no direct control over caches
• Must be ensured through suitable programming techniques

41

Background Primary Memory

Cache Memory on Multiprocessor Systems

Modern processors usually use a write-back strategy
• Writes to memory initially only change CPU-local caches (x86)
• Changes are propagated to main memory at some later time

Unpleasant side-effects on multiprocessor systems
• Memory reads and writes are ordered only within a single CPU
• Changes may become visible in arbitrary order on other CPUs
• Requires special programming models to maintain consistency

42

Background Assembly

Assembly Language (1)

A basic understanding of assembly is immensely helpful when learning C++

• Understand how C++ features map to assembly
• Understand the close connection between C++ and low-level code
• (Sometimes) C++ design decisions become easier to understand
• (Sometimes) helps visualize what a piece of C++ code is doing

A basic understanding of assembly is immensely helpful when writing C++

• Ensure that you get the performance you expect from your code
• Ensure that you get the behavior you expect from your code
• Ensure that the compiler is doing what you expect it to do

43

Background Assembly

Assembly Language (2)

Basic program structure
• Series of mnemonic processor instructions (e.g. movl, addl)
• Instructions usually operate on one or more operands
• Operands are usually registers, constants, or memory addresses

Example

movl %edi, -4(%rbp) # move data from register to memory
movl -4(%rbp), %eax # move data from memory to register
shll $1, %eax # shift register content 1 bit to left
addl $42, %eax # add 42 to register content

44

Background Assembly

Registers (1)

Data is manipulated in the registers of a CPU
• CPUs contain a limited number of registers
• Registers are extremely fast in comparison to caches or main memory
• The compiler has to determine which variables to put into registers
• If not enough registers are available, variables are spilled into main memory

Assembly instructions usually manipulate data in registers
• Registers are referenced in assembly through their names (e.g. eax)
• Data transfer between memory and registers is explicit in assembly
• Some registers are used for specific purposes (e.g. rip for storing the

instruction pointer)

45

Background Assembly

Registers (2)

Important registers on x86-64

AH ALRAX

64 bit 32 bit 16 bit 8 bit

RSI

RDI

RSP

RBP

R8

R15

EAX AX

RBX EBX BX
BH BL

RCX ECX CX
CH CL

RDX EDX DX
DH DL

ESI SI

EDI DI

EBP BP

ESP SP

R8B
R8WR8D

R15D R15W
R15B

SIL

DIL

BPL

SPL

...

general-purpose

base pointer

stack pointer

general-purpose

46

Background Assembly

Godbolt Compiler Explorer

The Compiler Explorer created by Matt Godbolt is an invaluable tool
• Allows interactive viewing of the assembly generated by various C++

compilers
• We host an instance at https://compiler.db.in.tum.de/
• We encourage you to play with the tool throughout this course

47

https://compiler.db.in.tum.de/

Introduction to the C++ Ecosystem

Introduction to the C++ Ecosystem

48

Introduction to the C++ Ecosystem Hello World

Hello World in C++

myprogram.cpp
#include <iostream>
int main(int argc, char** argv) {

std::cout << "Hello " << argv[1] << '!' << std::endl;
return 0;

}

$ c++ -std=c++20 -Wall -Werror -o myprogram ./myprogram.cpp
$./myprogram World
Hello World!

49

Introduction to the C++ Ecosystem Compiler

Generating an Executable Program

• Programs that transform C++ files into executables are called compilers
• Popular compilers: gcc (GNU), clang (llvm)
• Minimal example to compile the hello world program with gcc:

$ g++ -o myprogram ./myprogram.cpp

• Internally, the compiler is divided into:
• Preprocessor
• Compiler
• Linker

50

Introduction to the C++ Ecosystem Compiler

Compiler Flags

General syntax to run a compiler: c++ [flags] -o output inputs...
Most common flags:

-std=c++20 Set C++ standard version
-O0 no optimization
-O1 optimize a bit, assembly mostly readable
-O2 optimize more, assembly not readable
-O3 optimize most, assembly not readable
-Os optimize for size, similar to -O3
-Wall Enable most warnings
-Wextra Enable warnings not covered by -Wall
-Werror Treat all warnings as errors
-march=native Enable optimizations supported by your CPU
-g Enable debug symbols

51

Introduction to the C++ Ecosystem make

make

• C++ projects usually consist of many .cpp (implementation files) and .hpp
(header files) files

• Each implementation file needs to be compiled into an object file first, then
all object files must be linked

• Very repetitive to do this by hand
• When one .cpp file changes, only the corresponding object file should be

recompiled, not all
• When one .hpp file changes, only implementation files that use it should be

recompiled
• make is a program that can automate this
• Requires a Makefile
• GNU make manual:
https://www.gnu.org/software/make/manual/make.html

52

https://www.gnu.org/software/make/manual/make.html

Introduction to the C++ Ecosystem make

Basic Makefile

• Makefiles consist of rules and contain variables
• Each rule has a target, prerequisites, and a recipe
• Recipes are only executed when the prerequisites are newer than the target or

when the target does not exist
• Note: The indentation in Makefiles must be exactly one tab character, no

spaces!

Makefile
CONTENT="test 123" # set the variable CONTENT
rule and recipe to generate the target file foo
foo:

echo $(CONTENT) > foo
$^ always contains all prerequisites ("foo baz" here)
$< contains only the first prerequisite ("foo" here)
$@ contains the target ("bar" here)
bar: foo baz

cat $^ > $@

53

Introduction to the C++ Ecosystem make

make and Timestamps

• make uses timestamps of files to decide when to execute recipes
• When any prerequisite file is newer than the target → execute recipe

$ make foo # the file foo does not exist yet
echo "test 123" > foo
$ make foo # now foo exists
make: 'foo' is up to date.
$ make bar # bar requires baz which doesn't exist
make: *** No rule to make target 'baz', needed by 'bar'. Stop.
$ touch baz # create the file baz
$ make bar
cat foo baz > bar
$ make bar # bar exists, nothing to do
make: 'bar' is up to date.
$ touch baz # update timestamp of file baz
$ make bar # now the recipe for bar is executed again
cat foo baz > bar

54

Introduction to the C++ Ecosystem make

Advanced Makefile

• Recipes are usually the same for most files
• Pattern rules can be used to reuse a recipe for multiple files

Makefile
CXX?=g++ # set CXX variable only if it's not set
CXXFLAGS+= -O3 -Wall -Wextra # append to CXXFLAGS
SOURCES=foo.cpp bar.cpp
%.o: %.cpp # pattern rule to make .o files out of .cpp files

$(CXX) $(CXXFLAGS) -c -o $@ $<
use a substitution reference to get .o file names
myprogram: myprogram.o $(SOURCES:.cpp=.o)

$(CXX) $(CXXFLAGS) -o $@ $^

$ make # executes the first (non-pattern) rule
g++ -O3 -Wall -Wextra -c -o myprogram.o myprogram.cpp
g++ -O3 -Wall -Wextra -c -o foo.o foo.cpp
g++ -O3 -Wall -Wextra -c -o bar.o bar.cpp
g++ -O3 -Wall -Wextra -o myprogram myprogram.o foo.o bar.o

55

Introduction to the C++ Ecosystem CMake

CMake

• make prevents writing many repetitive compiler commands
• Still, extra flags must be specified manually (e.g. -l to link an external

library)
• On different systems the same library may require different flags
• CMake is a tool specialized for C and C++ projects that uses a
CMakeLists.txt to generate Makefiles or files for other build systems
(e.g. ninja, Visual Studio)

• Also, the C++ IDE CLion uses CMake internally
• CMakeLists.txt consists of a series of commands
• CMake Reference Documentation:
https://cmake.org/cmake/help/latest/

56

https://cmake.org/cmake/help/latest/

Introduction to the C++ Ecosystem CMake

Basic CMakeLists.txt

CMakeLists.txt
cmake_minimum_required(VERSION 3.10)
project(myprogram)
set(MYPROGRAM_FILES sayhello.cpp saybye.cpp)
add_executable(myprogram myprogram.cpp ${MYPROGRAM_FILES})

$ mkdir build; cd build # create a separate build directory
$ cmake .. # generate Makefile from CMakeLists.txt
-- The C compiler identification is GNU 8.2.1
-- The CXX compiler identification is GNU 8.2.1
[...]
-- Configuring done
-- Generating done
-- Build files have been written to: /home/X/myproject/build
$ make
Scanning dependencies of target myprogram
[25%] Building CXX object CMakeFiles/myprogram.dir/myprogram.cpp.o
[50%] Building CXX object CMakeFiles/myprogram.dir/sayhello.cpp.o
[75%] Building CXX object CMakeFiles/myprogram.dir/saybye.cpp.o
[100%] Linking CXX executable myprogram

57

Introduction to the C++ Ecosystem CMake

CMake Commands

cmake_minimum_required(VERSION 3.10)
Require a specific cmake version.
project(myproject)
Define a C/C++ project with the name “myproject”, required for every project.
set(FOO a b c)
Set the variable ${FOO} to be equal to a b c.
add_executable(myprogram a.cpp b.cpp)
Define an executable to be built that consists of the source files a.cpp and
b.cpp.
add_library(mylib a.cpp b.cpp)
Similar to add_executable() but build a library.
add_compile_options(-Wall -Wextra)
Add -Wall -Wextra to all invocations of the compiler.
target_link_library(myprogram mylib)
Link the executable or library myprogram with the library mylib.

58

Introduction to the C++ Ecosystem CMake

CMake Variables

CMake has many variables that influence how the executables and libraries are
built. They can be set in the CMakeLists.txt with set(), on the command
line with cmake -D FOO=bar, or with the program ccmake.
CMAKE_CXX_STANDARD=20
Set the C++ to standard to C++20, effectively adds -std=c++20 to the compiler
flags.
CMAKE_CXX_COMPILER=clang++
Set the C++ compiler to clang++.
CMAKE_BUILD_TYPE=Debug
Set the “build type” to Debug. Other possible values: Release,
RelWithDebInfo. This mainly affects the optimization compiler flags.
CMAKE_CXX_FLAGS(_DEBUG/_RELEASE)=-march=native
Add -march=native to all compiler invocations (or only for the Debug or
Release build types).

59

Introduction to the C++ Ecosystem CMake

Subdirectories with CMake

• Larger C++ projects are usually divided into subdirectories
• CMake allows the CMakeLists.txt to also be divided into the

subdirectories
• A subdirectory can have its own CMakeLists.txt (without the project()

command)
• The “main” CMakeListst.txt can then include the subdirectory with
add_subdirectory(subdir)

60

Introduction to the C++ Ecosystem CMake

Complete CMake Example

cmake_example_project
├── CMakeLists.txt
├── lib
│ ├── CMakeLists.txt
│ ├── saybye.cpp
│ ├── saybye.hpp
│ ├── sayhello.cpp
│ └── sayhello.hpp
└── src

├── CMakeLists.txt
└── print_greetings.cpp

• This project contains the library
greetings and the executable
print_greetings

• The library consists of the files
sayhello.cpp and saybye.cpp

• You can find this project in our
Gitlab

61

Introduction to the C++ Ecosystem Git

Version Control Systems (VCS)

• Code projects evolve gradually
• Incremental changes, also called versions, should be tracked to allow:

• Documentation of the project history
• Selective inspection/modification of specific versions
• Efficient collaboration when working in a team

• Version Control Systems (VCS) manage versions, usually represent them in a
directed acyclic graph

v1 v2 v3

v4 v5

v6

Created project Added file A Added file B

Added file C Changed file C

Combined v3 and v5

62

Introduction to the C++ Ecosystem Git

Git

• Many VCS exist, Git is a very popular one: Used by Linux, GCC, LLVM, etc.
• Git in particular has the following advantages compared to other version

control systems (VCS):
• Open source (LGPLv2.1)
• Decentralized, i.e. no server required
• Efficient management of branches and tags

• All Git commands are document with man-pages (e.g. type man
git-commit to see documentation for the command git commit)

• Pro Git book: https://git-scm.com/book
• Git Reference Manual: https://git-scm.com/docs

63

https://git-scm.com/book
https://git-scm.com/docs

Introduction to the C++ Ecosystem Git

Git Concepts

Repository: A collection of Git objects (commits and trees) and references
(branches and tags).

Branch: A named reference to a commit. Every repository usually has at
least the master branch and contains several more branches, like
fix-xyz or feature-abc.

Tag: A named reference to a commit. In contrast to a branch a tag is
usually set once and not changed. A branch regularly gets new
commits.

Commit: A snapshot of a tree. Identified by a SHA1 hash. Each commit can
have multiple parent commits. The commits form a directed
acyclic graph.

Tree: A collection of files (not directories!) with their path and other
metadata. This means that Git does not track empty directories.

64

Introduction to the C++ Ecosystem Git

Creating a Git Repository

git init
Initialize a Git repository
git config --global user.name <name>
Sets the name that will be used in commits
git config --global user.email <email>
Sets the e-mail address that will be used in commits
git status
Shows information about the repository

$ mkdir myrepo && cd myrepo
$ git init
Initialized empty Git repository in /home/X/myrepo/.git/
$ git status
On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

65

Introduction to the C++ Ecosystem Git

Git Working Directory and Staging Area

When working with a Git repository, changes can live in any of the following
places:
• In the working directory (when you edit a file)
• In the staging area (when you use git add)
• In a commit (after a git commit)

Once a change is in a commit and it is referenced by at least one branch or tag
you can always restore it even if you remove the file.

working directory commitstaging area
git add

git commit

git checkout

git reset

66

Introduction to the C++ Ecosystem Git

Committing Changes

git add [-p] <path>...
Add changes to the staging area. Changes can be selected interactively when the
-p option is used.
git reset [-p] <path>...
Remove changes from the staging area without directly modifying the files. Can
also be done interactively with -p.
git commit
Take all changes from the staging area and turn them into a commit. Includes a
commit message and author and date information. The parent of the new
commit is set to the newest commit of the current branch. Then the current
branch is updated to point to the new commit.
git checkout -- <path>...
Remove changes from the working directory by overwriting the given files or
directories with their committed versions.

67

Introduction to the C++ Ecosystem Git

Inspecting the Commit History (1)

git log [<branch>]
View the commit history of the current (or another) branch.
git show [<commit>]
Show the changes introduced by the last (or the given) commit.
• “Browsing” the commit history with Git alone usually requires you to know

the commands that list commits, show changes, etc., and execute several of
them.

• There is a program called tig that provides a text-based interface where you
can scroll through branches, commits, and changes.

• Running tig without arguments shows an overview of the current branch.
• tig also understands the subcommands tig status, tig log, and
tig show, which take the same arguments as the git variants

68

Introduction to the C++ Ecosystem Git

Inspecting the Commit History (2)

git diff
View the changes in the working directory (without the staging area).
git diff --staged
View the changes in the staging area (without the working directory).
git diff HEAD
View the changes in the working directory and the staging area.
git diff branch1..branch2
View the changes between two branches (or tags, commits).

Example output of git diff
diff --git a/foo b/foo
index e965047..980a0d5 100644
--- a/foo
+++ b/foo
@@ -1 +1 @@
-Hello
+Hello World!

69

Introduction to the C++ Ecosystem Git

Working with Branches and Tags

git branch
Show all branches and which one is active.
git branch <name>
Create a new branch that points to the current commit (HEAD).
git checkout <name>
Switch to another branch, i.e. change all files in the working directory so that
they are equal to the tree of the other branch.
git checkout -b <name>
Create a branch and switch to it.
git tag
Show all tags.
git tag [-s] <name>
Create a new tag that points to the current commit. Is signed with PGP when
-s is given.

70

Introduction to the C++ Ecosystem Git

Modifying the Commit History (overview)

C1 C2 C3

C4 C5

master

feature-abc

C1 C2 C3

C4 C5

Cm

master feature-abc

C1 C2 C3 C4′ C5′

master feature-abc

git merge git rebase

71

Introduction to the C++ Ecosystem Git

Modifying the Commit History

git merge <branch>...
• Combines the current branch and one or more other branches with a special

merge commit
• The merge commit has the latest commit of all merged branches as parent
• No commit is modified

git rebase <branch>
• Start from the given branch and reapply all diverging commits from the

current branch one by one
• All diverging commits are changed (they get a new parent) so their SHA1

hash changes as well

72

Introduction to the C++ Ecosystem Git

Dealing with Merge Conflicts

• Using merge or rebase may cause merge conflicts
• This happens when two commits are merged that contain changes to the

same file
• When a merge conflict happens, Git usually tells you:

$ git merge branch2
Auto-merging foo
CONFLICT (content): Merge conflict in foo
Automatic merge failed; fix conflicts and then commit the result.

• git status also shows additional information on how to proceed
• To fix the conflict you have to manually fix all conflicting files. Git inserts

markers in the files to show where the conflicts arose:
foo

<<<<<<< HEAD
Hello World!
=======
Hello You!
>>>>>>> branch2

73

Introduction to the C++ Ecosystem Git

Undoing Committed Changes

: This operation may potentially irrevocably remove data

git revert <commit>
Create a new commit that is the “inverse” of the specified commit.
git reset <commit>
Reset the current branch to point to the given commit. No files are changed.
git reset --hard <commit>
Reset the current branch to point to the given commit. All files in the working
directory are overwritten.
git rebase -i <commit>
Show all commits from the given one up to the current one and potentially
remove individual commits.
git reflog
Shows a history of SHA1 commit hashes that were added or removed. Allows to
restore removed commits if they were not garbage collected yet.

74

Introduction to the C++ Ecosystem Git

Working with Remote Git Repositories

git clone <url>
Download the repository with all its commits, tags, and branches from the url.
git push
Upload the current branch to a remote repository.
git push -f
Force override the current branch on the remote repository. This is necessary
when the local and remote branches have diverging histories, e.g., after using
git rebase or git reset --hard.
git fetch
Download new commits, tags, and branches from a remote repository into an
existing repository.
git pull
Run git fetch and then update (i.e. git merge) the current branch to match
the branch on the remote repository.

75

Introduction to the C++ Ecosystem Git

Finding out Who Wrote the Code

• Sometimes, especially when reading a new code base, you want to know
which commit changed a certain line

• Also, sometimes you want to know who wrote a certain line
git blame <filename>
• Shows the given file with commit annotations
• Each line starts with the commit hash, the name of the author, and the

commit date
tig blame <filename>
• Like git blame but with a nicer interface
• Allows to “re-blame” at a given line, i.e. showing the selected line in the

version just before it was last modified
• tig can also be used with other git commands: tig log, tig diff, etc.

76

Introduction to the C++ Ecosystem Git

Special Files in Git

.gitignore
• git status, git diff, etc. usually look at all files in all subdirectories of

the repository
• If files or directories should always be excluded (e.g. build or cache

directories), they can be added to the .gitignore file
• This file contains one entry per line, lines starting with # are skipped:

foo.txt Ignores all files named foo.txt
/foo.txt Ignores only the file foo.txt in the top-level directory
foo/ Ignores all directories named foo and their contents
f Ignores all files and directories that contain the letter f

.git
• This directory contains all commits, branches, etc.
• E.g., .git/refs/heads contains one file per branch
• If you remove this directory, all data is lost!

77

Basic C++ Syntax

Basic C++ Syntax

78

Basic C++ Syntax

Overview

Common set of basic features shared by a wide range of programming languages
• Built-in types (integers, characters, floating point numbers, etc.)
• Variables (“names” for entities)
• Expressions and statements to manipulate values of variables
• Control-flow constructs (if, for, etc.)
• Functions, i.e. units of computation

Supplemented by additional functionality
• Programmer-defined types (struct, class, etc.)
• Library functions

79

Basic C++ Syntax

The C++ Reference Documentation

C++ is in essence a simple language
• Limited number of basic features and rules
• But: There is a corner case to most features and an exception to most rules
• But: Some features and rules are rather obscure

These slides will necessarily be inaccurate or incomplete at times
• https://en.cppreference.com/w/cpp provides an excellent and complete

reference documentation of C++

• Every C++ programmer should be able to read and understand the reference
documentation

• Slides that directly relate to the reference documentation contain the
symbol with a link to the relevant webpage in the slide header

Look at these links and familiarize yourself with the reference documentation!

80

https://en.cppreference.com/w/cpp

Basic C++ Syntax Comments

Comments

C++ supports two types of comments
• “C-style” or “multi-line” comments: /* comment */
• “C++-style” or “single-line” comments: // comment

Example

/* This comment is unnecessarily
split over two lines */

int a = 42;

// This comment is also split
// over two lines
int b = 123;

81

https://en.cppreference.com/w/cpp/comment

Basic C++ Syntax Basic Types and Variables

Fundamental Types

C++ defines a set of primitive types
• Void type
• Boolean type
• Integer types
• Character types
• Floating point types

All other types are composed of these fundamental types in some way

82

https://en.cppreference.com/w/cpp/language/types

Basic C++ Syntax Basic Types and Variables

Void Type

The void type has no values
• Identified by the C++ keyword void
• No objects of type void are allowed
• Mainly used as a return type for functions that do not return any value
• Pointers to void are also permitted

void* pointer; // OK: pointer to void
void object; // ERROR: object of type void
void doSomething() { // OK: void return type

// do something important
}

83

https://en.cppreference.com/w/cpp/language/types#Void_type

Basic C++ Syntax Basic Types and Variables

Boolean Type

The boolean type can hold two values
• Identified by the C++ keyword bool
• Represents the truth values true and false
• Quite frequently obtained from implicit automatic type conversion

bool condition = true;
// ...
if (condition) {

// ...
}

84

https://en.cppreference.com/w/cpp/language/types#Boolean_type

Basic C++ Syntax Basic Types and Variables

Integer Types (1)

The integer types represent integral values
• Identified by the C++ keyword int
• Some properties of integer types can be changed through modifiers
• int keyword may be omitted if at least one modifier is used

Signedness modifiers
• signed integers will have signed representation (i.e. they can represent

negative numbers)
• Since C++20 signed integers must use two’s complement representation
• unsigned integers will have unsigned representation (i.e. they can only

represent non-negative numbers)

Size modifiers
• short integers will be optimized for space (at least 16 bits wide)
• long integers will be at least 32 bits wide
• long long integers will be at least 64 bits wide

85

https://en.cppreference.com/w/cpp/language/types#Integer_types

Basic C++ Syntax Basic Types and Variables

Integer Types (2)
Modifiers and the int keyword can be specified in any order
// a, b, c and d all have the same type
unsigned long long int a;
unsigned long long b;
long unsigned int long c;
long long unsigned d;

By default integers are signed, thus the signed keyword can be omitted
// e and f have the same type
signed int e;
int f;

By convention modifiers are ordered as follows
1. Signedness modifier
2. Size modifier
3. (int)

86

https://en.cppreference.com/w/cpp/language/types#Integer_types

Basic C++ Syntax Basic Types and Variables

Integer Type Overview

Overview of the integer types as specified by the C++ standard

Canonical Type Specifier Minimum Width Minimum Range
short 16 bit −215 to 215 − 1
unsigned short 0 to 216 − 1

int 16 bit −215 to 215 − 1
unsigned 0 to 216 − 1

long 32 bit −231 to 231 − 1
unsigned long 0 to 232 − 1

long long 64 bit −263 to 263 − 1
unsigned long long 0 to 264 − 1

The exact width of integer types is not specified by the standard!

87

https://en.cppreference.com/w/cpp/language/types#Integer_types

Basic C++ Syntax Basic Types and Variables

Fixed-Width Integer Types

Sometimes we need integer types with a guaranteed width
• Use fixed-width integer types defined in <cstdint> header
• int8_t, int16_t, int32_t and int64_t for signed integers of width 8,

16, 32 or 64 bit, respectively
• uint8_t, uint16_t, uint32_t and uint64_t for unsigned integers of

width 8, 16, 32 or 64 bit, respectively

Only defined if the C++ implementation directly supports the type

#include <cstdint>

long a; // may be 32 or 64 bits wide
int32_t b; // guaranteed to be 32 bits wide
int64_t c; // guaranteed to be 64 bits wide

88

https://en.cppreference.com/w/cpp/types/integer

Basic C++ Syntax Basic Types and Variables

Integer Type Guidelines

Use basic (i.e. non-fixed-width) integer types by default
• They guarantee a minimum range that can be supported
• Most of the time we do not need to know an exact maximum value
• Usually (unsigned) int or long are a reasonable choice

Only use fixed-width integer types where absolutely required
• E.g. in data structures that need to have deterministic fixed size
• E.g. in library calls
• E.g. for bitwise operations that rely on masks, shifts etc.

Do not prematurely optimize for space consumption
• Registers on modern CPUs are likely to be 64 bit wide anyway
• Most of the time a program only becomes susceptible to overflow bugs if

narrow integer types are used without good reason

89

Basic C++ Syntax Basic Types and Variables

Character Types

Character types represent character codes and (to some extent) integral values
• Identified by C++ keywords signed char and unsigned char
• Minimum width is 8 bit, large enough to represent UTF-8 eight-bit code units
• The C++ type char may either be equivalent to signed char or
unsigned char, depending on the implementation

• Nevertheless char is always a distinct type
• signed char and unsigned char are sometimes used to represent small

integral values

Larger UTF characters are supported as well
• char16_t for UTF-16 character representation
• char32_t for UTF-32 character representation

90

https://en.cppreference.com/w/cpp/language/types#Character_types

Basic C++ Syntax Basic Types and Variables

Floating Point Types

Floating point types of varying precision
• float usually represents IEEE-754 32 bit floating point numbers
• double usually represents IEEE-754 64 bit floating point numbers
• long double is a floating point type with extended precision (varying width

depending on platform and OS, usually between 64 bit and 128 bit)

Floating point types may support special values
• Infinity
• Negative zero
• Not-a-number

91

https://en.cppreference.com/w/cpp/language/types#Floating_point_types

Basic C++ Syntax Basic Types and Variables

Implicit Conversions (1)

Type conversions may happen automatically
• If we use an object of type A where an object of type B is expected
• Exact conversion rules are highly complex (full details in the reference

documentation)

Some common examples
• If one assigns an integral type to bool the result is false if the integral

value is 0 and true otherwise
• If one assigns bool to an integral type the result is 1 if the value is true and
0 otherwise

• If one assigns a floating point type to an integral type the value is truncated
• If one assigns an out-of-range value to an unsigned integral type of width w ,

the result is the original value modulo 2w

92

https://en.cppreference.com/w/cpp/language/implicit_conversion

Basic C++ Syntax Basic Types and Variables

Implicit Conversions (2)

Example

uint16_t i = 257;
uint8_t j = i; // j is 1

if (j) {
/* executed if j is not zero */

}

93

Basic C++ Syntax Basic Types and Variables

Undefined Behavior (1)

In some situations the behavior of a program is not well-defined
• E.g. overflow of an unsigned integer is well-defined (see previous slide)
• But: Signed integer overflow results in undefined behavior
• We will encounter undefined behavior every once in a while

Undefined behavior falls outside the specification of the C++ standard
• The compiler is allowed to do anything when it encounters undefined behavior
• Fall back to some sensible default behavior
• Do nothing
• Print 42
• Do anything else you can think of

A C++ program must never contain undefined behavior!

94

https://en.cppreference.com/w/cpp/language/ub

Basic C++ Syntax Basic Types and Variables

Undefined Behavior (2)

Example
foo.cpp

int foo(int i) {
if ((i + 1) > i)

return 42;

return 123;
}

foo.o
foo(int):

movl $42, %eax
retq

95

Basic C++ Syntax Basic Types and Variables

Undefined Behavior (3)

Undefined behavior differs from unspecified or implementation-defined behavior
• Unspecified or implementation-defined behavior is still valid C++

• However its effects may be different across compilers
• Only implementation-defined behavior is required to be documented

Undefined behavior gives compilers more freedom for optimization
• They can assume that programs contain no undefined behavior
• E.g. makes it possible for the compiler to omit some checks

Example
• Out-of-bounds array accesses are undefined behavior
• Therefore, the compiler does not need to generate range checks for each

array access

96

https://en.cppreference.com/w/cpp/language/ub

Basic C++ Syntax Basic Types and Variables

Variables

Variables need to be defined before they can be used
• Simple declaration: Type specifier followed by comma-separated list of

declarators (variable names) followed by semicolon
• Variable names in a simple declaration may optionally be followed by an

initializer

void foo() {
unsigned i = 0, j;
unsigned meaningOfLife = 42;

}

97

https://en.cppreference.com/w/cpp/language/declarations

Basic C++ Syntax Basic Types and Variables

Variable Initializers (1)

Initialization provides an initial value at the time of object construction
1. variableName(<expression>)
2. variableName = <expression>
3. variableName{<expression>}

Important differences
• Options 1 and 2 simply assign the value of the expression to the variable,

possibly invoking implicit type conversions
• Option 3 results in a compile error if implicit type conversions potentially

result in loss of information

A declaration may contain no initializer
• Non-local variables are default-initialized (to zero for built-in types)
• Local variables are usually not default-initialized

Accessing an uninitialized variable is undefined behavior

98

https://en.cppreference.com/w/cpp/language/initialization

Basic C++ Syntax Basic Types and Variables

Variable Initializers (2)

double a = 3.1415926;
double b(42);
unsigned c = a; // OK: c == 3
unsigned d(b); // OK: d == 42
unsigned e{a}; // ERROR: potential information loss
unsigned f{b}; // ERROR: potential information loss

Initializers may be arbitrarily complex expressions

double pi = 3.1415926, z = 0.30, a = 0.5;
double volume(pi * z * z * a);

99

Basic C++ Syntax Basic Types and Variables

Integer Literals

Integer literals represent constant values embedded in the source code
• Decimal: 42
• Octal: 052
• Hexadecimal: 0x2a
• Binary: 0b101010

The following suffixes may be appended to a literal to specify its type
• unsigned suffix: 42u or 42U
• Long suffixes:

• long suffix: 42l or 42L
• long long suffix: 42ll or 42LL

• Both suffixes can be combined, e.g. 42ul, 42ull

Single quotes may be inserted between digits as a separator
• e.g. 1'000'000'000'000ull
• e.g. 0b0010'1010

100

https://en.cppreference.com/w/cpp/language/integer_literal

Basic C++ Syntax Basic Types and Variables

Floating-point literals

Floating-point literals represent constant values embedded in the source code
• Without exponent: 3.1415926, .5
• With exponent: 1e9, 3.2e20, .5e-6

One of the following suffixes may be appended to a literal to specify its type
• float suffix: 1.0f or 1.0F
• long double suffix: 1.0l or 1.0L

Single quotes may be inserted between digits as a separator
• e.g. 1'000.000'001
• e.g. .141'592e12

101

https://en.cppreference.com/w/cpp/language/floating_literal

Basic C++ Syntax Basic Types and Variables

Character Literals

Character literals represent constant values embedded in the source code
• Any character from the source character set except single quote, backslash

and newline, e.g. 'a', 'b', '€'
• Escape sequences, e.g. '\'', '\\', '\n', '\u1234'

One of the following prefixes may be prepended to a literal to specify its type
• UTF-8 prefix: u8'a', u8'b'
• UTF-16 prefix: u'a', u'b'
• UTF-32 prefix: U'a', U'b'

102

https://en.cppreference.com/w/cpp/language/character_literal

Basic C++ Syntax Basic Types and Variables

Const & Volatile Qualifiers (1)

Any type T in C++ (except function and reference types) can be cv-qualified
• const-qualified: const T
• volatile-qualified: volatile T
• cv-qualifiers can appear in any order, before or after the type

Semantics
• const objects cannot be modified
• Any read or write access to a volatile object is treated as a visible side

effect for the purposes of optimization
• volatile should be avoided in most cases (it is likely to be deprecated in

future versions of C++)
• Use atomics instead

103

https://en.cppreference.com/w/cpp/language/cv

Basic C++ Syntax Basic Types and Variables

Const & Volatile Qualifiers (2)

Only code that contributes to observable side-effects is emitted

int main() {
int a = 1; // will be optimized out
int b = 2; // will be optimized out
volatile int c = 42;
volatile int d = c + b;

}

Possible x86-64 assembly (compiled with -O1)

main:
movl $42, -4(%rsp) # volatile int c = 42
movl -4(%rsp), %eax # volatile int d = c + b;
addl $2, %eax # volatile int d = c + b;
movl %eax, -8(%rsp) # volatile int d = c + b;
movl $0, %eax # implicit return 0;
ret

104

Basic C++ Syntax Expressions

Expression Fundamentals

C++ provides a rich set of operators
• Operators and operands can be composed into expressions
• Most operators can be overloaded for custom types

Fundamental expressions
• Variable names
• Literals

Operators act on a number of operands
• Unary operators: E.g. negation (-), address-of (&), dereference (*)
• Binary operators: E.g. equality (==), multiplication (*)
• Ternary operator: a ? b : c

105

https://en.cppreference.com/w/cpp/language/expressions

Basic C++ Syntax Expressions

Value Categories

Each expression in C++ is characterized by two independent properties
• Its type (e.g. unsigned, float)
• Its value category
• Operators may require operands of certain value categories
• Operators result in expressions of certain value categories

Broadly (and inaccurately) there are two value categories: lvalues and rvalues
• lvalues refer to the identity of an object
• rvalues refer to the value of an object
• Modifiable lvalues can appear on the left-hand side of an assignment
• lvalues and rvalues can appear on the right-hand side of an assignment

C++ actually has a much more sophisticated taxonomy of expressions
• Will (to some extent) become relevant later during the course

106

https://en.cppreference.com/w/cpp/language/value_category

Basic C++ Syntax Expressions

Arithmetic Operators (1)

Operator Explanation
+a Unary plus
-a Unary minus
a + b Addition
a - b Subtraction
a * b Multiplication
a / b Division
a % b Modulo
~a Bitwise NOT
a & b Bitwise AND
a | b Bitwise OR
a ^ b Bitwise XOR
a << b Bitwise left shift
a >> b Bitwise right shift

C++ arithmetic operators have the usual semantics

107

https://en.cppreference.com/w/cpp/language/expressions

Basic C++ Syntax Expressions

Arithmetic Operators (2)

Incorrectly using the arithmetic operators can lead to undefined behavior, e.g.
• Signed overflow (see above)
• Division by zero
• Shift by a negative offset
• Shift by an offset larger than the width of the type

108

https://en.cppreference.com/w/cpp/language/ub

Basic C++ Syntax Expressions

Logical and Relational Operators (1)

Operator Explanation
!a Logical NOT
a && b Logical AND (short-circuiting)
a || b Logical OR (short-circuiting)
a == b Equal to
a != b Not equal to
a < b Less than
a > b Greater than
a <= b Less than or equal to
a >= b Greater than or equal to
a <=> b Three-way comparison

Most C++ logical and relational operators have the usual semantics

109

https://en.cppreference.com/w/cpp/language/expressions

Basic C++ Syntax Expressions

Logical and Relational Operators (2)

The three-way comparison (or spaceship) operator is a useful addition in C++20
• (a <=> b) < 0 if a < b
• (a <=> b) == 0 if a == b
• (a <=> b) > 0 if a > b
• Can be generated by the compiler automatically in some cases
• Facilitates, for example, sorting values

110

Basic C++ Syntax Expressions

Assignment Operators (1)

Operator Explanation
a = b Simple assignment
a += b Addition assignment
a -= b Subtraction assignment
a *= b Multiplication assignment
a /= b Division assignment
a %= b Modulo assignment
a &= b Bitwise AND assignment
a |= b Bitwise OR assignment
a ^= b Bitwise XOR assignment
a <<= b Bitwise left shift assignment
a >>= b Bitwise right shift assignment

Notes
• The left-hand side of an assignment operator must be a modifiable lvalue
• For built-in types a OP= b is equivalent to a = a OP b except that a is

only evaluated once
111

https://en.cppreference.com/w/cpp/language/operator_assignment

Basic C++ Syntax Expressions

Assignment Operators (2)

The assignment operators return a reference to the left-hand side

unsigned a, b, c;
a = b = c = 42; // a, b, and c have value 42

Usually rarely used, with one exception

unsigned d;
if (d = computeValue()) {

// executed if d is not zero
} else {

// executed if d is zero
}

// unconditionally do something with d

112

Basic C++ Syntax Expressions

Increment and Decrement Operators

Operator Explanation
++a Prefix increment
--a Prefix decrement
a++ Postfix increment
a-- Postfix decrement

Return value differs between prefix and postfix variants
• Prefix variants increment or decrement the value of an object and return a

reference to the result
• Postfix variants create a copy of an object, increment or decrement the value

of the original object, and return the copy

113

https://en.cppreference.com/w/cpp/language/operator_incdec

Basic C++ Syntax Expressions

Ternary Conditional Operator

Operator Explanation
a ? b : c Conditional operator

Semantics
• a is evaluated and converted to bool
• If the result was true, b is evaluated
• Otherwise c is evaluated

The type and value category of the resulting expression depend on the operands

int n = (1 > 2) ? 21 : 42; // 1 > 2 is false, i.e. n == 42
int m = 42;
((n == m) ? m : n) = 21; // n == m is true, i.e. m == 21

int k{(n == m) ? 5.0 : 21}; // ERROR: narrowing conversion
((n == m) ? 5 : n) = 21; // ERROR: assigning to rvalue

114

https://en.cppreference.com/w/cpp/language/operator_other#Conditional_operator

Basic C++ Syntax Expressions

Precedence and Associativity (1)

How to group multiple operators in one expression?
• Operators with higher precedence bind tighter than operators with lower

precedence
• Operators with equal precedence are bound in the direction of their

associativity
• left-to-right
• right-to-left

• Often grouping is not immediately obvious: Use parentheses judiciously!

Precedence and associativity do not specify evaluation order
• Evaluation order is mostly unspecified
• Generally, it is undefined behavior to refer to and change the same object

within one expression

115

https://en.cppreference.com/w/cpp/language/operator_precedence

Basic C++ Syntax Expressions

Precedence and Associativity (2)

In some situations grouping is obvious

int a = 1 + 2 * 3; // 1 + (2 * 3), i.e. a == 7

However, things can get confusing really quickly

int b = 50 - 6 - 2; // (50 - 6) - 2, i.e. b == 42
int c = b & 1 << 4 - 1; // b & (1 << (4 - 1)), i.e. c == 8

// real-world examples from libdcraw
diff = ((getbits(len-shl) << 1) + 1) << shl >> 1; // ???
yuv[c] = (bitbuf >> c * 12 & 0xfff) - (c >> 1 << 11); // ???

Bugs like to hide in expressions without parentheses

// shift should be 4 if sizeof(long) == 4, 6 otherwise
unsigned shift = 2 + sizeof(long) == 4 ? 2 : 4; // buggy

116

Basic C++ Syntax Expressions

Operator Precedence Table (1)

Prec. Operator Description Associativity

1 :: Scope resolution left-to-right

2

a++ a-- Postfix increment/decrement

left-to-right
<type>()
<type>{}

Functional Cast

a() Function Call
a[] Subscript
. -> Member Access

3

++a --a Prefix increment/decrement

right-to-left

+a -a Unary plus/minus
! ~ Logical/Bitwise NOT
(<type>) C-style cast
*a Dereference
&a Address-of
sizeof Size-of
new new[] Dynamic memory allocation
delete delete[] Dynamic memory deallocation

117

https://en.cppreference.com/w/cpp/language/operator_precedence

Basic C++ Syntax Expressions

Operator Precedence Table (2)

Prec. Operator Description Associativity

4 .* ->* Pointer-to-member left-to-right

5 a*b a/b a%b Multiplication/Division/Remain-
der

left-to-right

6 a+b a-b Addition/Subtraction left-to-right

7 << >> Bitwise shift left-to-right

8 <=> Three-way comparison left-to-right

9 < <= Relational < and ≤ left-to-right
> >= Relational > and ≥

10 == != Relational = and 6= left-to-right

118

https://en.cppreference.com/w/cpp/language/operator_precedence

Basic C++ Syntax Expressions

Operator Precedence Table (3)

Prec. Operator Description Associativity

11 & Bitwise AND left-to-right

12 ^ Bitwise XOR left-to-right

13 | Bitwise OR left-to-right

14 && Logical AND left-to-right

15 || Logical OR left-to-right

16

a?b:c Ternary conditional

right-to-left

throw throw operator
= Direct assignment
+= -= Compound assignment
*= /= %= Compound assignment
<<= >>= Compound assignment
&= ^= |= Compound assignment

17 , Comma left-to-right

119

https://en.cppreference.com/w/cpp/language/operator_precedence

Basic C++ Syntax Statements

Simple Statements

Declaration statement: Declaration followed by a semicolon

int i = 0;

Expression statement: Any expression followed by a semicolon

i + 5; // valid, but rather useless expression statement
foo(); // valid and possibly useful expression statement

Compound statement (blocks): Brace-enclosed sequence of statements

{ // start of block
int i = 0; // declaration statement

} // end of block, i goes out of scope
int i = 1; // declaration statement

120

https://en.cppreference.com/w/cpp/language/statements

Basic C++ Syntax Statements

Scope

Names in a C++ program are valid only within their scope
• The scope of a name begins at its point of declaration
• The scope of a name ends at the end of the relevant block
• Scopes may be shadowed resulting in discontiguous scopes (bad practice)

int a = 21;
int b = 0;
{

int a = 1; // scope of the first a is interrupted
int c = 2;
b = a + c + 39; // a refers to the second a, b == 42

} // scope of the second a and c ends
b = a; // a refers to the first a, b == 21
b += c; // ERROR: c is not in scope

121

https://en.cppreference.com/w/cpp/language/scope

Basic C++ Syntax Statements

If Statement (1)

Conditionally executes another statement

if (init-statement; condition)
then-statement

else
else-statement

Explanation
• If condition evaluates to true after conversion to bool, then-statement is

executed, otherwise else-statement is executed
• Both init-statement and the else branch can be omitted
• If present, init-statement must be an expression or declaration statement
• condition must be an expression statement or a single declaration
• then-statement and else-statement can be arbitrary (compound) statements

122

https://en.cppreference.com/w/cpp/language/if

Basic C++ Syntax Statements

If Statement (2)
The init-statement form is useful for local variables only needed inside the if

if (unsigned value = computeValue(); value < 42) {
// do something

} else {
// do something else

}

Equivalent formulation

{
unsigned value = computeValue();
if (value < 42) {

// do something
} else {

// do something else
}

}

123

Basic C++ Syntax Statements

If Statement (3)
In nested if-statements, the else is associated with the closest if that does not
have an else

// INTENTIONALLY BUGGY!
if (condition0)

if (condition1)
// do something if (condition0 && condition1) == true

else
// do something if condition0 == false

When in doubt, use curly braces to make scopes explicit

// Working as intended
if (condition0) {

if (condition1)
// do something if (condition0 && condition1) == true

} else {
// do something if condition0 == false

}

124

Basic C++ Syntax Statements

Switch Statement (1)

Conditionally transfer control to one of several statements

switch (init-statement; condition)
statement

Explanation
• condition may be an expression or single declaration that is convertible to an

enumeration or integral type
• The body of a switch statement may contain an arbitrary number of
case constant: labels and up to one default: label

• The constant values for all case: labels must be unique
• If condition evaluates to a value for which a case: label is present, control is

passed to the labelled statement
• Otherwise, control is passed to the statement labelled with default:
• The break; statement can be used to exit the switch

125

https://en.cppreference.com/w/cpp/language/switch

Basic C++ Syntax Statements

Switch Statement (2)

Regular example

switch (computeValue()) {
case 21:

// do something if computeValue() was 21
break;

case 42:
// do something if computeValue() was 42
break;

default:
// do something if computeValue() was != 21 and != 42
break;

}

126

Basic C++ Syntax Statements

Switch Statement (3)

The body is executed sequentially until a break; statement is encountered

switch (computeValue()) {
case 21:
case 42:

// do something if computeValue() was 21 or 42
break;

default:
// do something if computeValue() was != 21 and != 42
break;

}

Compilers may generate warnings when encountering such fall-through behavior
• Use special [[fallthrough]]; statement to mark intentional fall-through

127

Basic C++ Syntax Statements

While Loop

Repeatedly executes a statement

while (condition)
statement

Explanation
• Executes statement repeatedly until the value of condition becomes false.

The test takes place before each iteration.
• condition may be an expression that can be converted to bool or a single

declaration
• statement may be an arbitrary statement
• The break; statement may be used to exit the loop
• The continue; statement may be used to skip the remainder of the body

128

https://en.cppreference.com/w/cpp/language/while

Basic C++ Syntax Statements

Do-While Loop

Repeatedly executes a statement

do
statement

while (condition);

Explanation
• Executes statement repeatedly until the value of condition becomes false.

The test takes place after each iteration.
• condition may be an expression that can be converted to bool or a single

declaration
• statement may be an arbitrary statement
• The break; statement may be used to exit the loop
• The continue; statement may be used to skip the remainder of the body

129

https://en.cppreference.com/w/cpp/language/do

Basic C++ Syntax Statements

While vs. Do-While

The body of a do-while loop is executed at least once

unsigned i = 42;

do {
// executed once

} while (i < 42);

while (i < 42) {
// never executed

}

130

Basic C++ Syntax Statements

For Loop (1)

Repeatedly executes a statement

for (init-statement; condition; iteration-expression)
statement

Explanation
• Executes init-statement once, then executes statement and

iteration-expression repeatedly until condition becomes false
• init-statement may either be an expression or declaration
• condition may either be an expression that can be converted to bool or a

single declaration
• iteration-expression may be an arbitrary expression
• All three of the above statements may be omitted
• The break; statement may be used to exit the loop
• The continue; statement may be used to skip the remainder of the body

131

https://en.cppreference.com/w/cpp/language/for

Basic C++ Syntax Statements

For Loop (2)

for (unsigned i = 0; i < 10; ++i) {
// do something

}

for (unsigned i = 0, limit = 10; i != limit; ++i) {
// do something

}

Beware of integral overflows (signed overflows are undefined behavior!)

for (uint8_t i = 0; i < 256; ++i) {
// infinite loop

}

for (unsigned i = 42; i >= 0; --i) {
// infinite loop

}

132

Basic C++ Syntax Functions

Basic Functions (1)

Functions in C++

• Associate a sequence of statements (the function body) with a name
• Functions may have zero or more function parameters
• Functions can be invoked using a function-call expression which initializes the

parameters from the provided arguments

Informal function definition syntax

return-type name (parameter-list) {
statement

}

Informal function call syntax

name (argument-list);

133

https://en.cppreference.com/w/cpp/language/function

Basic C++ Syntax Functions

Basic Functions (2)
Function may have void return type

void procedure(unsigned parameter0, double parameter1) {
// do something with parameter0 and parameter1

}

Functions with non-void return type must contain a return statement

unsigned meaningOfLife() {
// extremely complex computation
return 42;

}

The return statement may be omitted in the main-function of a program (in
which case zero is implicitly returned)

int main() {
// run the program

}

134

Basic C++ Syntax Functions

Basic Functions (3)

Function parameters may be unnamed, in which case they cannot be used

unsigned meaningOfLife(unsigned /*unused*/) {
return 42;

}

An argument must still be supplied when invoking the function

unsigned v = meaningOfLife(); // ERROR: expected argument
unsigned w = meaningOfLife(123); // OK

135

Basic C++ Syntax Functions

Argument Passing

Argument to a function are passed by value in C++

unsigned square(unsigned v) {
v = v * v;
return v;

}

int main() {
unsigned v = 8;
unsigned w = square(v); // w == 64, v == 8

}

C++ differs from other programming languages (e.g. Java) in this respect
• Parameters can explicitly be passed by reference
• Essential to keep argument-passing semantics in mind, especially when

used-defined classes are involved

136

Basic C++ Syntax Functions

Default Arguments

A function definition can include default values for some of its parameters
• Indicated by including an initializer for the parameter
• After a parameter with a default value, all subsequent parameters must have

default values as well
• Parameters with default values may be omitted when invoking the function

int foo(int a, int b = 2, int c = 3) {
return a + b + c;

}

int main() {
int x = foo(1); // x == 6
int y = foo(1, 1); // y == 5
int z = foo(1, 1, 1); // z == 3

}

137

https://en.cppreference.com/w/cpp/language/default_arguments

Basic C++ Syntax Functions

Function Overloading (1)

Several functions may have the same name (overloaded)
• Overloaded functions must have distinguishable parameter lists
• Calls to overloaded functions are subject to overload resolution
• Overload resolution selects which overloaded function is called based on a set

of complex rules

Informally, parameter lists are distinguishable
• If they have a different number of non-defaulted parameters
• If they have at least one parameter with different type

138

https://en.cppreference.com/w/cpp/language/overload_resolution

Basic C++ Syntax Functions

Function Overloading (2)

Indistinguishable parameter lists

void foo(unsigned i);
void foo(unsigned j); // parameter names do not matter
void foo(unsigned i, unsigned j = 1);
void foo(uint32_t i); // on x86_64

Valid example

void foo(unsigned i) { /* do something */ }
void foo(float f) { /* do something */ }

int main() {
foo(1u); // calls foo(unsigned)
foo(1.0f); // calls foo(float)

}

139

Basic C++ Syntax Basic IO

Basic IO (1)

Facilities for printing to and reading from the console
• Use stream objects defined in <iostream> header
• std::cout is used for printing to console
• std::cin is used for reading from console

The left-shift operator can be used to write to std::cout

#include <iostream>
// ----------------------------------
int main() {

unsigned i = 42;
std::cout << "The value of i is " << i << std::endl;

}

140

https://en.cppreference.com/w/cpp/header/iostream

Basic C++ Syntax Basic IO

Basic IO (2)

The right-shift operator can be used to read from std::cin

#include <iostream>
// ----------------------------------
int main() {

std::cout << "Please enter a value: ";
unsigned v;
std::cin >> v;
std::cout << "You entered " << v << std::endl;

}

The <iostream> header is part of the C++ standard library
• Many more interesting and useful features
• More details later
• In the meantime: Read the documentation!

141

Basic C++ Syntax Code Style

Code Formatting (1)

Projects should always use a uniform code style
• Consistent conventions for naming, documentation, etc.
• Some aspects of a uniform code style have to be implemented manually (e.g.

naming conventions)

Automated code formatting can for example be performed with clang-format
• Widely available through package manager
• Highly configurable code formatting tool
• Configuration possible through .clang-format file
• Integrated in CLion

142

Basic C++ Syntax Code Style

Code Formatting (2)

Basic clang-format usage

> clang-format -i <path-to-file>

Reformats a source file in-place
• Reads formatting rules from .clang-format file in the current directory
• Should usually reside in the source root for project-wide formatting rules
• CLion detects .clang-format files and uses them for formatting
• Can be verified by looking for “ClangFormat” in the status bar of CLion

143

Basic C++ Syntax Code Style

Code Formatting (3)

We will provide you with a .clang-format file for now
• Contains (in our opinion) sensible formatting rules
• Please make sure that your submissions are formatted according to these rules
• But our formatting rules should not be seen as the single source of truth

Some high-level formatting guidelines should be universally followed
• Descriptive names for variables and functions
• Comments for complicated sections of code
• ...

144

Compiling C++ files

Compiling C++ files

145

Compiling C++ files Hello World 2.0

Hello World 2.0

In C++ the code is usually separated into header files (.h/.hpp) and
implementation files (.cpp/.cc):

sayhello.hpp
#include <string_view>
void sayhello(std::string_view name);

sayhello.cpp
#include "sayhello.hpp"
#include <iostream>
void sayhello(std::string_view name) {

std::cout << "Hello " << name << '!' << std::endl;
}

Other code that wants to use this function only has to include sayhello.hpp.

146

Compiling C++ files Compiler

Compiler
Reminder: Internally, the compiler is divided into Preprocessor, Compiler, and
Linker.
Preprocessor:
• Takes an input file of (almost) any programming language
• Handles all preprocessor directives (i.e., all lines starting with #) and macros
• Outputs the file without any preprocessor directives or macros

Compiler:
• Takes a preprocessed C++ (or C) file, called translation unit
• Generates and optimizes the machine code
• Outputs an object file

Linker:
• Takes multiple object files
• Can also take references to other libraries
• Finds the address of all symbols (e.g., functions, global variables)
• Outputs an executable file or a shared library

147

Compiling C++ files Compiler

Preprocessor (1)

Preprocessor directive #include: Copies (!) the contents of a file into the
current file.

Syntax:
• #include "path" where path is a relative path to the header file
• #include <path> like the first version but only system directories are

searched for the path
In C++ usually only header files are included, never .cpp files!

148

Compiling C++ files Compiler

Preprocessor (2)

Preprocessor directive #define: Defines a macro.

Syntax:
• #define FOO: Defines the macro FOO with no content
• #define BAR 1: Defines the macro BAR as 1

Before the compiler sees the file, all occurrences of FOO will be removed, BAR will
be replaced with 1.

Note: Don’t use this as “constant variables”, use constexpr global variables
instead!

149

Compiling C++ files Compiler

Preprocessor (3)

Preprocessor directives #ifdef/#ifndef/#else/#endif: Removes all code up
to the next #else/#endif if a macro is set (#ifdef) or not set (#ifndef)

Example:
#ifdef FOO
...
#endif

Mainly used for header guards.

150

Compiling C++ files Compiler

Compiler
• Every translation unit (usually a .cpp file) results in exactly one object file

(usually .o)
• References to external symbols (e.g., functions that are defined in another
.cpp) are not resolved

mul.cpp
int add(int a, int b);
int mul(int a, int b) {

if (a > 0) { return add(a, mul(a - 1, b)); }
else { return 0; }

}

Assembly generated by the compiler:
_Z3mulii:

testl %edi, %edi
jle .L2
pushq %rbx
movl %edi, %ebx
leal -1(%rdi), %edi
call _Z3mulii

movl %ebx, %edi
popq %rbx
movl %eax, %esi
jmp _Z3addii@PLT

.L2:
xorl %eax, %eax
ret

You can try this out yourself at https://compiler.db.in.tum.de
151

https://compiler.db.in.tum.de

Compiling C++ files Compiler

Linker

• The linker usually does not have to know about any programming language
• Still, some problems with your C++ code will only be found by the linker and

not by the compiler (e.g., ODR violations)
• Most common error are missing symbols, happens either because you forgot

to define a function or global variable, or forgot to add a library
• Popular linkers are: GNU ld, GNU gold, lld (by the LLVM project)

152

Compiling C++ files Compiler

Compiler Flags (2)

• Preprocessor and linker are usually executed by the compiler
• There are additional compiler flags that can influence the preprocessor or the

linker
Advanced flags:

-E Run only preprocessor (outputs C++ file without prepro-
cessor directives)

-c Run only preprocessor and compiler (outputs object file)
-S Run only preprocessor and compiler (outputs assembly as

text)
-g Add debug symbols to the generated binary
-DFOO Defines the macro FOO
-DFOO=42 Defines the macro FOO with value 42
-l<lib> Link library <lib> into executable
-I<path> Also search <path> for #included files
-L<path> Also search <path> for libraries specified with -l

153

Compiling C++ files Debugging

Debugging C++ Programs with gdb

• Debugging by printing text is easy but most of the time not very useful
• Especially for multi-threaded programs a real debugger is essential
• For C++ the most used debugger is gdb (“GNU debugger”)
• It is free and open-source (GPLv2)
• For the best debugging experience a program should be compiled without

optimizations (-O0) and with debug symbols (-g)
• The debug symbols help the debugger to map assembly instructions to the

source code that generated them
• The documentation for gdb can be found here:
https://sourceware.org/gdb/current/onlinedocs/gdb/

154

https://sourceware.org/gdb/current/onlinedocs/gdb/

Compiling C++ files Debugging

gdb commands (1)

To start debugging run the command gdb myprogram. This starts a
command-line interface wich expects one of the following commands:
help Show general help or help about a command.
run Start the debugged program.
break Set a breakpoint. When the breakpoint is reached, the

debugger stops the program and accepts new commands.
delete Remove a breakpoint.
continue Continue running the program after it stopped at a break-

point or by pressing Ctrl + C .
next Continue running the program until the next source line of

the current function.
step Continue running the program until the source line

changes.
nexti Continue running the program until the next instruction of

the current function.
stepi Execute the next instrution.
print Print the value of a variable, expression or CPU register.

155

Compiling C++ files Debugging

gdb commands (2)

frame Show the currently selected stack frame, i.e. the current
stack with its local variables. Usually includes the function
name and the current source line. Can also be used to
switch to another frame.

backtrace Show all stack frames.
up Select the frame from the next higher function.
down Select the frame from the next lower function.
watch Set a watchpoint. When the memory address that is

watched is read or written, the debugger stops.
thread Show the currently selected thread in a multi-threaded pro-

gram. Can also be used to switch to another thread.

Most commands also have a short version, e.g., r for run, c for continue, etc.

156

Compiling C++ files Debugging

Runtime Checks for Debugging
• Stepping though a buggy part of the program is often enough to identify the

bug
• At least, it can help to narrow down the location of a bug
• Sometimes it is better to write code that checks if an invariant holds

The assert macro can be used for that:
• Defined in the <cassert> header
• Can be used to check a boolean expression
• Only enabled when the NDEBUG macro is not defined
• Automatically enabled in debug builds when using CMake

div.cpp
#include <cassert>
double div(double a, int b) {

assert(b != 0);
return a / b;

}

When this function is called with b==0, the program will crash with a useful error
message.

157

Compiling C++ files Debugging

Automatic Runtime Checks (“Sanitizers”)

• Modern compilers can automatically add several runtime checks, they are
usually called sanitizers

• Most important ones:
• Address Sanitizer (ASAN): Instruments memory access instructions to check

for common bugs
• Undefined-Behavior Sanitizer (UBSAN): Adds runtime checks to guard against

many kinds of undefined behavior
• Because sanitizers add overhead, they are not enabled by default
• Should normally be used in conjunction with -g for debug builds
• Compiler option for gcc/clang: -fsanitize=<sanitizer>

• -fsanitize=address for ASAN
• -fsanitize=undefined for UBSAN

• Should be enabled by default in your debug builds, unless there is a very
compelling reason against it

158

Compiling C++ files Debugging

UBSAN Example

foo.cpp
#include <iostream>
int main() {

int a; int b;
std::cin >> a >> b;
int c = a * b;
std::cout << c << std::endl;
return 0;

}

$ g++ -std=c++20 -g -fsanitize=undefined foo.cpp -o foo
$./foo
123456
789123
foo.cpp:7:9: runtime error: signed integer overflow: 123456 *

789123 cannot be represented in type 'int'↪→

-1362278720

159

Declarations and Definitions

Declarations and Definitions

160

Declarations and Definitions Objects

Objects

One of the core concepts of C++ are objects.
• The main purpose of C++ programs is to interact with objects in order to

achieve some goal
• Examples of objects are local and global variables
• Examples of concepts that are not objects are functions, references, and

values

An object in C++ is a region of storage with certain properties:
• Size
• Alignment
• Storage duration
• Lifetime
• Type
• Value
• Optionally, a name

161

https://en.cppreference.com/w/cpp/language/object

Declarations and Definitions Objects

Storage Duration (1)

Every object has one of the following storage durations:
automatic:
• Objects with automatic storage duration are allocated at the beginning of the

enclosing scope and deallocated automatically (i.e., it is not necessary to
write code for this) at its end

• Local variables have automatic storage duration
static:
• Objects with static storage duration are allocated when the program begins

(usually even before main() is executed!)
• They are deallocated automatically when the program ends
• All global variables have static storage duration
• The order of construction of different variables is not guaranteed → can

easily lead to unexpected bugs. (See also: Static Initialization Order Fiasco).

162

https://en.cppreference.com/w/cpp/language/storage_duration#Storage_duration
https://en.cppreference.com/w/cpp/language/siof

Declarations and Definitions Objects

Storage Duration (2)
thread:
• Objects with thread storage duration are allocated when a thread starts and

deallocated automatically when it ends
• In contrast to objects with static storage duration, each thread gets its own

copy of objects with thread storage duration
dynamic:
• Objects with dynamic storage duration are allocated and deallocated by using

dynamic memory management
• Note: Deallocation must be done manually!

int foo = 1; // static storage duration
static int bar = 2; // static storage duration
thread_local int baz = 3; // thread storage duration
void f() {

int x = 4; // automatic storage duration
static int y = 5; // static storage duration

}

163

Declarations and Definitions Objects

Lifetime

In addition to their storage duration objects also have a lifetime which is closely
related. References also have a lifetime.
• The lifetime of an object or reference starts when it was fully initialized
• The lifetime of an object ends when its destructor is called (for objects of

class types) or when its storage is deallocated or reused (for all other types)
• The lifetime of an object never exceeds its storage duration.
• The lifetime of a reference ends as if it were a “scalar” object (e.g. an int

variable)
Generally, using an object outside of its lifetime leads to undefined behavior.

Lifetime issues are the main source of memory bugs!
• A C++ compiler can only warn about very basic lifetime errors
• If the compiler warns, always fix your code so that the warning disappears

164

https://en.cppreference.com/w/cpp/language/lifetime

Declarations and Definitions Namespaces

Namespaces (1)

Larger projects may contain many names (functions, classes, etc.)
• Should be organized into logical units
• May incur name clashes
• C++ provides namespaces for this purpose

Namespace definitions

namespace identifier {
namespace-body

}

Explanation
• identifier may be a previously unused identifier, or the name of a namespace
• namespace-body may be a sequence of declarations
• A name declared inside a namespace must be qualified when accessed from

outside the namespace (:: operator)

165

https://en.cppreference.com/w/cpp/language/namespace

Declarations and Definitions Namespaces

Namespaces (2)

Qualified name lookup

namespace A {
void foo() { /* do something */ }
void bar() {

foo(); // refers to A::foo
}
}
namespace B {
void foo() { /* do something */ }
}
int main() {

A::foo(); // qualified name lookup
B::foo(); // qualified name lookup

foo(); // ERROR: foo was not declared in this scope
}

166

Declarations and Definitions Namespaces

Namespaces (3)

Namespaces may be nested

namespace A { namespace B {
void foo() { /* do something */ }
}}

// equivalent definition
namespace A::B {
void bar() {

foo(); // refers to A::B::foo
}
}

int main() {
A::B::bar();

}

167

Declarations and Definitions Namespaces

Namespaces (4)
Code can become rather confusing due to large number of braces
• Use visual separators (comments) at sensible points
• (Optionally) add comments to closing namespace braces

//----------------------------------
namespace A::B {
//----------------------------------
void foo() {

// do something
}
//----------------------------------
void bar() {

// do something else
}
//----------------------------------
} // namespace A::B
//----------------------------------

168

Declarations and Definitions Namespaces

Namespaces (5)
• Always using fully qualified names makes code easier to read
• Sometimes it is obvious from which namespace the names come from in

which case one prefers to use unqalified names
• For this using and using namespace can be used
• using namespace X imports all names from namespace X
• using X::a only imports the name a from X into the current namespace
• Should not be used in header files to not influence other implementation files

namespace A { int x; }
namespace B { int y; int z; }
using namespace A;
using B::y;
int main() {

x = 1; // Refers to A::x
y = 2; // Refers to B::y
z = 3; // ERROR: z was not declared in this scope
B::z = 3; // OK

}

169

Declarations and Definitions Declarations

Declarations

C++ code that introduces a name that can then be referred to is called
declaration. There are many different kinds of declarations:
• variable declarations: int a;
• function declarations: void foo();
• namespace declarations: namespace A { }
• using declarations: using A::x;
• class declarations: class C;
• template declarations: template <typename T> void foo();
• . . .

170

https://en.cppreference.com/w/cpp/language/declarations

Declarations and Definitions Declarations

Declaration Specifiers

Some declarations can also contain additional specifiers. The following lists shows
a few common ones and where they can be used. We will see some more specifiers
in future lectures.

static Can be used for variable and function declarations, affects the
declaration’s linkage (see next slide). Also, objects declared with
static have static storage duration.

extern Can be used for variable declarations in which case it also affects
their linkage. Objects declared with extern also have static
storage duration.

inline Can be used for variable and function declarations. Despite the
name, has (almost) nothing to do with the inlining optimization.
See the slides about the “One Definition Rule” for more
information.

171

Declarations and Definitions Declarations

Linkage
Most declarations have a (conceptual) property called linkage. This property
determines how the name of the declaration will be visible in the current and in
other translation units. There are three types of linkage:

no linkage:
• Names can only be referenced from the scope they are in
• Local variables

internal linkage:
• Names can only be referenced from the same translation unit
• Global functions and variables declared with static
• Global variables that are not declared with extern
• All declarations in namespaces without name (“anonymous namespaces”)

external linkage:
• Names can be referenced from other translation units
• Global functions (without static)
• Global variables with extern

172

https://en.cppreference.com/w/cpp/language/storage_duration#Linkage

Declarations and Definitions Definitions

Definitions

When a name is declared it can be referenced by other code. However, most uses
of a name also require the name to be defined in addition to be declared.
Formally, this is called odr-use and covers the following cases:
• The value of a variable declaration is read or written
• The address of a variable or function declaration is taken
• A function is called
• An object of a class declaration is used

Most declarations are also definitions, with some exceptions such as
• Any declaration with an extern specifier and no initializer
• Function declarations without function bodies
• Declaration of a class name (“forward declaration”)

173

https://en.cppreference.com/w/cpp/language/definition

Declarations and Definitions Definitions

One Definition Rule (1)

One Definition Rule (ODR)
• At most one definition of a name is allowed within one translation unit
• Exactly one definition of every non-inline function or variable that is odr-used

must appear within the entire program
• Exactly one definition of an inline-function must appear within each

translation unit where it is odr-used
• Exactly one definition of a class must appear within each translation unit

where the class is used and required to be complete

For subtleties and exceptions to these rules: See reference documentation

174

https://en.cppreference.com/w/cpp/language/definition#One_Definition_Rule

Declarations and Definitions Definitions

One Definition Rule (2)

a.cpp
int i = 5; // OK: declares and defines i
int i = 6; // ERROR: redefinition of i

extern int j; // OK: declares j
int j = 7; // OK: (re-)declares and defines j

Separate declaration and definition is required to break circular dependencies
b.cpp

void bar(); // declares bar
void foo() { // declares and defines foo

bar();
}
void bar() { // (re-)declares and defines bar

foo();
}

175

Declarations and Definitions Definitions

One Definition Rule (3)

a.cpp
int foo() {

return 1;
}

b.cpp
int foo() {

return 2;
}

Trying to link a program consisting of a.cpp and b.cpp will fail

$ g++ -c -o a.o a.cpp
$ g++ -c -o b.o b.cpp
$ g++ a.o b.o
/usr/bin/ld: b.o: in function `foo()':
b.cpp:(.text+0x0): multiple definition of `foo()'; a.o:a.cpp:(.text+0x0): first

defined here↪→
collect2: error: ld returned 1 exit status

176

Declarations and Definitions Definitions

One Definition Rule (4)
What about helper functions/variables local to translation units? → Internal
linkage!
• Option A: Use static (only works for variables and functions)

a.cpp
static int foo = 1;
static int bar() {

return foo;
}

• Option B: Use anonymous namespaces
b.cpp

namespace {
//----------------------------------
int foo = 1;
int bar() {

return foo;
}
//----------------------------------
}

177

Declarations and Definitions Header and Implementation Files

Header and Implementation Files (1)

When distributing code over several files it is usually split into header and
implementation files
• Header and implementation files have the same name, but different suffixes

(e.g. .hpp for headers, .cpp for implementation files)
• Header files contain only declarations that should be visible and usable in

other parts of the program
• Implementation files contain definitions of the names declared in the

corresponding header
• At least the header files should include some documentation

178

https://en.cppreference.com/w/cpp/preprocessor/include

Declarations and Definitions Header and Implementation Files

Header and Implementation Files (2)

Why do we separate headers and implementation files?
• A .cpp file usually uses “external” functions and variables that are defined in

another translation unit
• To compile a translation unit to an object file, the compiler needs to know

the declarations of the external names
• Often it does not need to know the definitions
• Interdependent .cpp files can be compiled independently and simultaneously
• When only the definition and not the declaration of a function changes, no

other translation units have to be recompiled
• Conceptual separation between “API” (in header files) and “Implementation”

(in implementation files)
Note: In some cases the compiler does need the full definition of a name
→ Have to put definitions in headers in that case.

179

Declarations and Definitions Header and Implementation Files

Header Guards (1)

A file may transitively include the same header multiple times
• May lead to unintentional redefinitions
• It is infeasible (and often impossible) to avoid duplicating transitive includes

entirely
• Instead: Header files themselves ensure that they are included at most once

in a single translation unit
path/A.hpp

inline int foo() { return 1; }

path/B.hpp
#include "path/A.hpp"
inline int bar() { return foo(); }

main.cpp
#include "path/A.hpp"
#include "path/B.hpp" // ERROR: foo is defined twice

180

Declarations and Definitions Header and Implementation Files

Header Guards (2)

Solution: Use header guards
path/A.hpp

// use any unique name, usually composed from the path
#ifndef H_path_A
#define H_path_A
inline int foo() { return 1; }
#endif

path/B.hpp
#ifndef H_path_B
#define H_path_B
#include "path/A.hpp"
inline int bar() { return foo(); }
#endif

Most compilers also support the non-standard #pragma once preprocessor
directive. We recommend: Always use header guards.

181

Declarations and Definitions Header and Implementation Files

Example: Header and Implementation Files (1)

The example CMake project from last lecture shows how header and
implementation files are used. These are the header files:

sayhello.hpp
#ifndef H_exampleproject_sayhello
#define H_exampleproject_sayhello
#include <string_view>
/// Print a greeting for `name`
void sayhello(std::string_view name);
#endif

saybye.hpp
#ifndef H_exampleproject_saybye
#define H_exampleproject_saybye
#include <string_view>
/// Say bye to `name`
void saybye(std::string_view name);
#endif

182

Declarations and Definitions Header and Implementation Files

Example: Header and Implementation Files (2)
The two header files have the following associated implementation files:

sayhello.cpp
#include "sayhello.hpp"
#include <iostream>

/// Print a greeting for `name`
void sayhello(std::string_view name) {

std::cout << "Hello " << name << '!' << std::endl;
}

saybye.cpp
#include "saybye.hpp"
#include <iostream>

/// Say bye to `name`
void saybye(std::string_view name) {

std::cout << "Bye " << name << '!' << std::endl;
}

183

Declarations and Definitions Header and Implementation Files

Example: Header and Implementation Files (3)

The “main” file, in the example print_greetings.cpp only includes the
headers:

print_greetings.cpp
#include <iostream>
#include "sayhello.hpp"
#include "saybye.hpp"

int main(int argc, const char** argv) {
if (argc != 2) {

std::cerr << "Please write: ./print_greetings name"
<< std::endl;↪→

return 1;
}
sayhello(argv[1]);
saybye(argv[1]);
return 0;

}

184

References, Arrays, and Pointers

References, Arrays, and Pointers

185

References, Arrays, and Pointers

Overview

So far, we have mostly worked with fundamental types
• void
• Arithmetic types such as int, float, etc.

Much of the power of C++ comes from the ability to define compound types
• Functions
• Classes (covered in the next lecture)
• References
• Arrays
• Pointers

186

https://en.cppreference.com/w/cpp/language/type

References, Arrays, and Pointers References

Reference Declaration (1)

A reference declaration declares an alias to an already-existing object or function
• Lvalue reference: type& declarator
• Rvalue reference: type&& declarator
• Most of the time, declarator will simply be a name

References have some peculiarities
• There are no references to void
• References are immutable (although the referenced object may be mutable)
• References are not objects, i.e. they do not necessarily occupy storage

Since references are not objects
• There are no references or pointers to references
• There are no arrays of references

187

https://en.cppreference.com/w/cpp/language/reference

References, Arrays, and Pointers References

Reference Declaration (2)

The & or && tokens are part of the declarator, not the type

int i = 10;
int& j = i, k = i; // j is reference to int, k is int

However, we may omit or insert whitespaces before and after the & or && tokens
• Both int& j = i; and int &j = i; are valid C++

• By convention, we use the former notation (int& j = i;)
• To avoid confusion, statements should declare only one identifier at a time
• Very rarely, exceptions to this rule are necessary in the init-statements of if

and switch statements as well as for loops

188

References, Arrays, and Pointers References

Reference Initialization

Definitions of references to a type T must be initialized to refer to a valid object
or function
• An object of type T
• A function of type T
• An object implicitly convertible to T

Declarations of references do not need intializers:
• Function parameter declarations
• Function return type declarations
• Class member declarations
• With the extern specifier

189

https://en.cppreference.com/w/cpp/language/reference_initialization

References, Arrays, and Pointers References

Lvalue References (1)

As an alias for existing objects

unsigned i = 10;
unsigned j = 42;
unsigned& r = i; // r is an alias for i

r = 21; // modifies i to be 21
r = j; // modifies i to be 42

i = 123;
j = r; // modifies j to be 123

190

References, Arrays, and Pointers References

Lvalue References (2)

To implement pass-by-reference semantics for function calls

void foo(int& value) {
value += 42;

}

int main() {
int i = 10;
foo(i); // i == 52
foo(i); // i == 94

}

191

References, Arrays, and Pointers References

Lvalue References (3)

To turn a function call into an lvalue expression

int global0 = 0;
int global1 = 0;

int& foo(unsigned which) {
if (!which)

return global0;
else

return global1;
}

int main() {
foo(0) = 42; // global0 == 42
foo(1) = 14; // global1 == 14

}

192

References, Arrays, and Pointers References

Rvalue References (1)

Can not (directly) bind to lvalues

int i = 10;
int&& j = i; // ERROR: Cannot bind rvalue reference to lvalue
int&& k = 42; // OK

Extend the lifetimes of temporary objects

int i = 10;
int j = 32;

int&& k = i + j; // k == 42
k += 42; // k == 84;

193

References, Arrays, and Pointers References

Rvalue References (2)
Allow overload resolution to distinguish between lvalues and rvalues

void foo(int& x);
void foo(const int& x);
void foo(int&& x);

int& bar();
int baz();

int main() {
int i = 42;
const int j = 84;

foo(i); // calls foo(int&)
foo(j); // calls foo(const int&)
foo(123); // calls foo(int&&)

foo(bar()) // calls foo(int&)
foo(baz()) // calls foo(int&&)

}

194

References, Arrays, and Pointers References

References and CV-Qualifiers

References themselves cannot be cv-qualified
• However, the referenced type may be cv-qualified
• A reference to T can be initialized from a type that is less cv-qualified than T

(e.g. const int& can be initialized from int&)

int i = 10;
const int& j = i;
int& k = j; // ERROR: binding reference of type int& to

// const int discards cv-qualifiers
j = 42; // ERROR: assignment of read-only reference

Lvalue references to const also extend the lifetime of temporary objects

int i = 10;
int j = 32;
const int& k = i + j; // OK, but k is immutable

195

References, Arrays, and Pointers References

Dangling references

It is possible to write programs where the lifetime of a referenced object ends
while references to it still exist.
• This can already happen when referencing objects with automatic storage

duration
• Results in dangling reference and undefined behavior

Example

int& foo() {
int i = 42;
return i; // ERROR: Returns dangling reference

}

196

https://en.cppreference.com/w/cpp/language/reference#Dangling_references

References, Arrays, and Pointers Arrays

Array Declaration (1)

An array declaration declares an object of array type (also: C-style array)
• type declarator[expression]
• expression must be an expression which evaluates to an integral constant

at compile time
• Again, due to weird parsing rules [expression] is part of the declarator
• type[expression] can be used as a type outside of declarators

For example: T a[N]; for some type T and compile-time constant N
• a consists of N contiguously allocated elements of type T
• Elements are numbered 0, …, N - 1
• Elements can be accessed with the subscript operator [], e.g. a[0], …,
a[N - 1]

• Without an initializer, every element of a is uninitialized

197

https://en.cppreference.com/w/cpp/language/array

References, Arrays, and Pointers Arrays

Array Declaration (2)

Example

unsigned short a[10];

for (unsigned i = 0; i < 10; ++i)
a[i] = i + 1;

Array objects are lvalues, but they cannot be assigned to

unsigned short a[10];
unsigned short b[10];

a = b; // ERROR: a is an array

Arrays cannot be returned from functions

int[] foo(); // ERROR

198

References, Arrays, and Pointers Arrays

Array Declaration (3)

Elements of an array are allocated contiguously in memory
• Given unsigned short a[10]; containing the integers 1 through 10
• Assuming a 2-byte unsigned short type
• Assuming little-endian byte ordering

Address
02 04 0600

00 00 00 00 00 00 00 00 00 0001 05040302 080706 0a09
08 100e0c0a 12

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

Arrays are just dumb chunks of memory
• Out-of-bounds accesses are not automatically detected, and do not

necessarily lead to a crash
• May lead to rather weird bugs
• Exist mainly due to compatibility requirements with C

199

References, Arrays, and Pointers Arrays

Array Declaration (4)

The elements of an array can be arrays themselves

unsigned short b[3][2];

for (unsigned i = 0; i < 3; ++i)
for (unsigned j = 0; j < 2; ++j)

b[i][j] = 3 * i + j;

Elements are still allocated contiguously in memory
• b can be thought of as a 3 × 2 matrix in row-major format
• The subscript operator simply returns an array object on the first level, to

which the subscript operator can be applied again ((b[i])[j])

200

References, Arrays, and Pointers Arrays

Array Initialization

Arrays can be default-initialized, in which case every element is default-initialized

unsigned short a[10] = {}; // a contains 10 zeros

Arrays can be list-initialized, in which case the size may be omitted

unsigned short a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

Multi-dimensional arrays may also be list-initialized, but only the first dimension
may have unknown bound

unsigned short b[][2] = {
{0, 1},
{2, 3},
{4, 5}

}

201

References, Arrays, and Pointers Arrays

size_t

C++ has a designated type for indexes and sizes: std::size_t from <cstddef>
• size_t is an unsigned integer type that is large enough to represent sizes

and all possible array indexes on the target architecture
• The C++ language and standard library use size_t when handling indexes or

sizes
• Generally, use size_t for array indexes and sizes
• Sometimes you can also use smaller integer types (e.g. unsigned) when

working with small arrays

202

https://en.cppreference.com/w/cpp/types/size_t

References, Arrays, and Pointers Arrays

std::array

C-style arrays should be avoided whenever possible
• Use the std::array type defined in the <array> standard header instead
• Same semantics as a C-style array
• Optional bounds-checking and other useful features
• std::array is a template type with two template parameters (the element

type and count)

Example

#include <array>

int main() {
std::array<unsigned short, 10> a;
for (size_t i = 0; i < a.size(); ++i)

a[i] = i + 1; // no bounds checking
}

203

https://en.cppreference.com/w/cpp/container/array

References, Arrays, and Pointers Arrays

std::vector (1)

std::array is inflexible due to compile-time fixed size
• The std::vector type defined in the <vector> standard header provides

dynamically-sized arrays
• Storage is automatically expanded and contracted as needed
• Elements are still stored contiguously in memory

Useful functions
• push_back – inserts an element at the end of the vector
• size – queries the current size
• clear – clears the contents
• resize – change the number of stored elements
• The subscript operator can be used with similar semantics as for C-style

arrays

Familiarize yourself with the reference documentation on std::vector

204

https://en.cppreference.com/w/cpp/container/vector

References, Arrays, and Pointers Arrays

std::vector (2)
Example

#include <iostream>
#include <vector>

int main() {
std::vector<unsigned short> a;
for (size_t i = 0; i < 10; ++i)

a.push_back(i + 1);

std::cout << a.size() << std::endl; // prints 10
a.clear();
std::cout << a.size() << std::endl; // prints 0

a.resize(10); // a now contains 10 zeros
std::cout << a.size() << std::endl; // prints 10

for (unsigned i = 0; i < 10; ++i)
a[i] = i + 1;

}

205

References, Arrays, and Pointers Arrays

Range-For (1)

Execute a for-loop over a range

for (init-statement; range-declaration : range-expression)
loop-statement

Explanation
• Executes init-statement once, then executes loop-statement once for

each element in the range defined by range-expression
• range-expression may be an expression that represents a sequence (e.g.

an array or an object for which begin and end functions are defined, such as
std::vector)

• range-declaration should declare a named variable of the element type
of the sequence, or a reference to that type

• init-statement may be omitted

206

https://en.cppreference.com/w/cpp/language/range-for

References, Arrays, and Pointers Arrays

Range-For (2)

Example

#include <iostream>
#include <vector>

int main() {
std::vector<unsigned short> a;

// no range-for, we need the index
for (size_t i = 0; i < 10; ++i)

a.push_back(i + 1);

// range-for
for (const unsigned short& e : a)

std::cout << e << std::endl;
}

207

References, Arrays, and Pointers Pointers

Storage of Objects

A “region of storage” has a physical equivalent
• Typically, objects reside in main memory, either on the stack or on the heap
• Up to now (and for some lectures to come), we have almost exclusively dealt

with objects residing on the stack

Objects reside at some specific location in main memory
• As we have seen in the first lecture, this location can be identified by an

address in main memory
• It is convenient to think of addresses as simple offsets from the beginning of

the address space
• Pointers are a feature of C++ to obtain and interact with these addresses

208

References, Arrays, and Pointers Pointers

Pointer Declaration (1)

A pointer declaration declares a variable of pointer type
• type* cv declarator
• declarator may be any other declarator, except for a reference declarator
• cv specifies the cv-qualifiers of the pointer (not the pointed-to type), and

may be omitted
• Analogous to reference declarations, the * token is part of the declarator, not

the type

Notes
• A pointer to an object represents the address of the first byte in memory that

is occupied by that object
• As opposed to references, pointers are themselves objects
• Consequently, pointers to pointers are allowed

209

https://en.cppreference.com/w/cpp/language/pointer

References, Arrays, and Pointers Pointers

Pointer Declaration (2)

Examples of valid pointer declarations

int* a; // pointer to int
const int* b; // pointer to const int
int* const c; // const pointer to int
const int* const d; // const pointer to const int

Pointer-to-pointer declarations

int** e; // pointer to pointer to int
const int* const* const f; // const pointer to const pointer

// to const int

Contraptions like the declaration of f are very rarely (if at all) necessary

210

References, Arrays, and Pointers Pointers

The Address-Of Operator

In general, there exists no implicit conversion from a pointed-to type (e.g. int) to
its pointer type (e.g. int*)
• In order to obtain a pointer to an object, the built-in unary address-of

operator & has to be used
• Given an lvalue expression a, &a returns a pointer to the value of the

expression
• The cv-qualification of a is retained

Example

int a = 10;
const int b = 42;
int* c = &a; // OK: c points to a
const int* d = &b; // OK: d points to b
int* e = &b; // ERROR: invalid conversion from

// const int* to int*

211

https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_address-of_operator

References, Arrays, and Pointers Pointers

The Indirection Operator

In general, there exists no implicit conversion from a pointer type (e.g. int*) to
its pointed-to type (e.g. int)
• In order to access the pointed-to object, the built-in unary indirection

operator * has to be used
• Given an expression expr of pointer type, *expr returns an lvalue reference

to the pointed-to object
• The cv-qualifiers of the pointed-to type are retained
• Applying the indirection operator is also called dereferencing a pointer

Example

int a = 10;
int* c = &a;
int& d = *c; // reference to a
d = 123; // a == 123
*c = 42; // a == 42

212

https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_indirection_operator

References, Arrays, and Pointers Pointers

What is Happening? (1)

int main() {

}

0x00001234
0x00001230

00 01 02 03
unknown

return address

Stack Memory

213

References, Arrays, and Pointers Pointers

What is Happening? (2)

int main() {
int a = 10;

}

0x00001234
0x00001230

00 01 02 03

0a 00 00 00

unknown
return address

a = 100x0000122c

Stack Memory

214

References, Arrays, and Pointers Pointers

What is Happening? (3)

int main() {
int a = 10;
int b = 123;

}

0x00001234
0x00001230
0x0000122c
0x00001228

00 01 02 03

7b 00 00 00
0a 00 00 00

unknown
return address

a = 10

b = 123

Stack Memory

215

References, Arrays, and Pointers Pointers

What is Happening? (4)

int main() {
int a = 10;
int b = 123;
int* c = &a;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

2c 12 00 00
7b 00 00 00
0a 00 00 00

unknown
return address

a = 10

b = 123

c = 0x122c

Stack Memory

216

References, Arrays, and Pointers Pointers

What is Happening? (5)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

2c 12 00 00
7b 00 00 00
2a 00 00 00

unknown
return address

a = 42

b = 123

c = 0x122c

Stack Memory

217

References, Arrays, and Pointers Pointers

What is Happening? (6)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

2c 12 00 00
7b 00 00 00
2a 00 00 00

24 12 00 000x00001220

unknown
return address

a = 42

b = 123

c = 0x122c

d = 0x1224

Stack Memory

218

References, Arrays, and Pointers Pointers

What is Happening? (7)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;
**d = 321;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

2c 12 00 00
7b 00 00 00
41 01 00 00

24 12 00 000x00001220

unknown
return address

a = 321

b = 123

c = 0x122c

d = 0x1224

Stack Memory

219

References, Arrays, and Pointers Pointers

What is Happening? (8)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;
**d = 321;
*d = &b;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

28 12 00 00
7b 00 00 00
41 01 00 00

24 12 00 000x00001220

unknown
return address

a = 321

b = 123

c = 0x1228

d = 0x1224

Stack Memory

220

References, Arrays, and Pointers Pointers

What is Happening? (9)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;
**d = 321;
*d = &b;
**d = 24;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

28 12 00 00
18 00 00 00
41 01 00 00

24 12 00 000x00001220

unknown
return address

a = 321

b = 24

c = 0x1228

d = 0x1224

Stack Memory

221

References, Arrays, and Pointers Pointers

What is Happening? (10)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;
**d = 321;
*d = &b;
**d = 24;

return 0;
}

0x00001234
00 01 02 03

unknown

Stack Memory

222

References, Arrays, and Pointers Pointers

Null Pointers

A pointer may not point to any object at all
• Indicated by the special value and corresponding literal nullptr
• Pointers of the same type which are both null pointers are considered equal
• It is undefined behavior to dereference a null pointer

Undefined behavior can lead to surprising results
foo.cpp

int foo(const int* ptr) {
int v = *ptr;

if (ptr == nullptr)
return 42;

return v;
}

foo.o
foo(int*):

movl (%rdi), %eax
ret

223

https://en.cppreference.com/w/cpp/language/pointer#Null_pointers

References, Arrays, and Pointers Pointer Arithmetic

Array to Pointer Decay

Arrays and pointers have many similarities
• There is an implicit conversion from values of array type to values of pointer

type
• The conversion constructs a pointer to the first element of an array
• The pointer type must be at least as cv-qualified as the array type

Example

#include <iostream>

int main() {
int array[3] = {123, 456, 789};
const int* ptr = array;

std::cout << "The first element of array is ";
std::cout << *ptr << std::endl;

}

224

https://en.cppreference.com/w/cpp/language/array#Array-to-pointer_decay

References, Arrays, and Pointers Pointer Arithmetic

The Subscript Operator

The subscript operator is defined on pointer types
• Treats the pointer as a pointer to the first element of an array
• Follows the same semantics as the subscript operator on array types

Example

#include <iostream>

int main() {
int array[3] = {123, 456, 789};
const int* ptr = array;

std::cout << "The elements of array are";
for (unsigned i = 0; i < 3; ++i)

std::cout << " " << ptr[i];
std::cout << std::endl;

}

225

https://en.cppreference.com/w/cpp/language/operator_member_access#Build-in_subscript_operator

References, Arrays, and Pointers Pointer Arithmetic

Special Case: String Literals

String literals are another artifact of C compatibility
• String literals are immutable null-terminated character arrays
• That is, the type of a string literal with N characters is const char[N + 1]
• Most of the time, programmers take advantage of array-to-pointer decay and

write const char* str = "foo";
• The character type can be controlled by the prefixes known from character

literals (i.e. u8"string", u"string", or U"string")

C-style strings should never be used!
• The C++ standard library provides the much safer std::string and
std::string_view types

• Unfortunately, libraries or syscalls often require C-style string parameters
• If required, the standard library types can expose the C-style string

representation

226

https://en.cppreference.com/w/cpp/language/string_literal

References, Arrays, and Pointers Pointer Arithmetic

Arithmetic on Pointers (1)
Some arithmetic operators are defined between pointers and integral types
• Treats the pointer as a pointer to some element of an array
• Adding i to a pointer moves the it i elements to the right
• Subtracting i from a pointer moves it i elements to the left
• In general, for a pointer p the expressions p[i] and *(p + i) are equivalent

Example

#include <iostream>

int main() {
int array[3] = {123, 456, 789};
const int* ptr = &array[1];

std::cout << "The previous element is ";
std::cout << *(ptr - 1) << std::endl;
std::cout << "The next element is ";
std::cout << *(ptr + 1) << std::endl;

}

227

https://en.cppreference.com/w/cpp/language/operator_arithmetic#Additive_operators

References, Arrays, and Pointers Pointer Arithmetic

Arithmetic on Pointers (2)

Special care has to be taken to only dereference valid pointers
• Especially important since it is valid to take the past-the-end pointer of an

array or std::vector

Example

int main() {
std::vector<int> v;
v.resize(10);

const int* firstPtr = &v[0]; // OK: valid pointer
const int* lastPtr = &v[10]; // OK: past-the-end pointer

int last1 = *lastPtr; // ERROR, might segfault
int last2 = v[10]; // ERROR, might segfault

}

228

References, Arrays, and Pointers Pointer Arithmetic

Arithmetic on Pointers (3)

Subtraction is defined between pointers
• Treats both pointers as pointers to some elements of an array
• Computes the number of elements between these two pointers

Example

#include <iostream>

int main() {
int array[3] = {123, 456, 789};
const int* ptr1 = &array[0];
const int* ptr2 = &array[3]; // past-the-end pointer

std::cout << "There are " << (ptr2 - ptr1) << " elements ";
std::cout << "in array" << std::endl;

}

229

References, Arrays, and Pointers Pointer Arithmetic

Comparisons on Pointers

The comparison operators are defined between pointers
• Interprets the addresses represented by the pointers as integers and compares

them
• Only defined if the pointers point to elements of the same array

Example

#include <iostream>

int main() {
int array[3] = {123, 456, 789};

std::cout << "The elements of array are"
for (const int* it = &array[0]; it < &array[3]; ++it)

std::cout << " " << *it;
std::cout << std::endl;

}

230

https://en.cppreference.com/w/cpp/language/operator_comparison#Pointer_comparison_operators

References, Arrays, and Pointers Pointer Conversions

Void Pointers

Pointers to void are allowed
• A pointer to an object of any type can implicitly be converted to a pointer to
void

• The void pointer must be at least as cv-qualified as the original pointer
• The pointer value (i.e. the address) is unchanged

Usage
• Used to pass objects of unknown type
• Extensively used in C interfaces (e.g. malloc, qsort, ...)
• Only few operations are defined on void pointers (mainly assignment)
• In order to use the pointed-to object, one must cast the void pointer to the

required type

231

https://en.cppreference.com/w/cpp/language/pointer#Pointers_to_void

References, Arrays, and Pointers Pointer Conversions

static_cast (1)

The static_cast conversion is used to cast between related types

static_cast< new_type > (expression)

Explanation
• Converts the value of expression to a value of new_type
• new_type must be at least as cv-qualified as the type of expression
• Can be used to convert void pointers to pointers of another type
• Many more use cases (see reference documentation)

232

https://en.cppreference.com/w/cpp/language/static_cast

References, Arrays, and Pointers Pointer Conversions

static_cast (2)
Void pointers

int i = 42;
void* vp = &i;
int* ip = static_cast<int*>(vp);

Other related types

int sum(int a, int b);
double sum(double a, double b);

int main() {
int a = 42;
double b = 3.14;

double x = sum(a, b); // ERROR: ambiguous
double y = sum(static_cast<double>(a), b); // OK
int z = sum(a, static_cast<int>(b)); // OK

}

233

References, Arrays, and Pointers Pointer Conversions

reinterpret_cast

The reinterpret_cast conversion is used to convert between unrelated types

reinterpret_cast < new_type > (expression)

Explanation
• Interprets the underlying bit pattern of the value of expression as a value

of new_type
• new_type must be at least as cv-qualified as the type of expression
• Usually does not generate any CPU instructions

Only a very restricted set of conversions is allowed
• A pointer to an object can be converted to a pointer to std::byte, char or
unsigned char

• A pointer can be converted to an integral type (typically uintptr_t)
• Invalid conversions usually lead to undefined behavior

234

https://en.cppreference.com/w/cpp/language/reinterpret_cast

References, Arrays, and Pointers Pointer Conversions

Strict Aliasing Rule (1)

It is undefined behavior to access an object using an expression of different type
• In particular, we are not allowed to access an object through a pointer to

another type (pointer aliasing)
• Consequently, compilers typically assume that pointers to different types

cannot have the same value
• There are very few exceptions to this rule

235

https://en.cppreference.com/w/cpp/language/object#Strict_aliasing

References, Arrays, and Pointers Pointer Conversions

Strict Aliasing Rule (2)
foo.cpp

static int foo(int* x, double* y) {
*x = 42;
*y = 3.0;
return *x;

}

int main() {
int a = 0;
double* y = reinterpret_cast<double*>(&a);
return foo(&a, y);

}

Compiling this with g++ -O1 will result in the following assembly
foo.o

main:
movl $0, %eax
ret

236

References, Arrays, and Pointers Pointer Conversions

Strict Aliasing Rule (3)
foo.cpp

static int foo(int* x, double* y) {
*x = 42;
*y = 3.0;
return *x;

}

int main() {
int a = 0;
double* y = reinterpret_cast<double*>(&a);
return foo(&a, y);

}

Compiling this with g++ -O2 will result in the following assembly
foo.o

main:
movl $42, %eax
ret

237

References, Arrays, and Pointers Pointer Conversions

Examining the Object Representation (1)

Important exception to the strict aliasing rule
• Any pointer may legally be converted to a pointer to char, or
unsigned char

• Any pointer may legally be converted to a pointer to std::byte (defined in
<cstddef> header, requires C++17),

• Permits the examination of the object representation of any object as an
array of bytes

std::byte behaves similarly to unsigned char
• Represents a raw byte without any integer or character semantics
• Only bitwise operators are defined on bytes

238

https://en.cppreference.com/w/cpp/language/object#Object_representation_and_value_representation

References, Arrays, and Pointers Pointer Conversions

Examining the Object Representation (2)

Example (compile with g++ -std=c++20)

#include <iostream>
#include <iomanip>
#include <cstddef>

int main() {
double a = 3.14;
const std::byte* bytes = reinterpret_cast<const std::byte*>(&a);

std::cout << "The object representation of 3.14 is 0x";
std::cout << std::hex << std::setfill('0') << std::setw(2);

for (unsigned i = 0; i < sizeof(double); ++i)
std::cout << static_cast<unsigned>(bytes[i]);

std::cout << std::endl;
}

239

References, Arrays, and Pointers Pointer Conversions

uintptr_t

Any pointer may legally be converted to an integral type
• The integral type must be large enough to hold all values of the pointer
• Usually, uintptr_t should be used (defined in <cstdint> header)
• Useful in some cases, especially when building custom data structures

Example

#include <cstddint>
#include <iostream>

int main() {
int x = 42;
uintptr_t addr = reinterpret_cast<uintptr_t>(&x);

std::cout << "The address of x is " << addr << std::endl;
}

240

https://en.cppreference.com/w/cpp/types/integer

References, Arrays, and Pointers Pointer Conversions

The sizeof Operator (1)

The sizeof operator queries the size of the object representation of a type

sizeof(type)

Explanation
• The size of a type is given in bytes
• sizeof(std::byte), sizeof(char), and sizeof(unsigned char)

return 1 by definition
• Depending on the computer architecture, there may be 8 or more bits in one

byte (as defined by C++)

241

https://en.cppreference.com/w/cpp/language/sizeof

References, Arrays, and Pointers Pointer Conversions

The sizeof Operator (2)

The size of an object and pointer arithmetics are closely related
foo.cpp

#include <iostream>

int main() {
int array[3] = {123, 456, 789};

std::cout << "sizeof(int) = " << sizeof(int) << std::endl;

int* ptr0 = &array[0];
int* ptr1 = &array[1];

uintptr_t uptr0 = reinterpret_cast<uintptr_t>(ptr0);
uintptr_t uptr1 = reinterpret_cast<uintptr_t>(ptr1);

std::cout << "(ptr1 - ptr0) = " << (ptr1 - ptr0) << std::endl;
std::cout << "(uptr1 - uptr0) = " << (uptr1 - uptr0) << std::endl;

}

242

References, Arrays, and Pointers Pointer Conversions

The sizeof Operator (3)

On an x86-64 machine, the program might produce the following output

$./foo
sizeof(int) = 4
(ptr1 - ptr0) = 1
(uptr1 - uptr0) = 4

Interpretation
• One int occupies 4 bytes
• There is one int between ptr0 and ptr1
• There are 4 bytes (i.e. exactly one int) between ptr0 and ptr1

243

References, Arrays, and Pointers Pointer Conversions

The alignof Operator

Queries the alignment requirements of a type

alignof(type)

Explanation
• Depending on the computer architecture, certain types must have addresses

aligned to specific byte boundaries
• The alignof operator returns the number of bytes between successive

addresses where an object of type can be allocated
• The alignment requirement of a type is always a power of two
• Important (e.g.) for SIMD instructions, where the programmer must

explicitly ensure correct alignment
• Memory accesses with incorrect alignment leads to undefined behavior, e.g.

SIGSEGV or SIGBUS (depending on architecture)

244

https://en.cppreference.com/w/cpp/language/alignof

References, Arrays, and Pointers Guidelines

Usage Guidelines

When to use references
• Pass-by-reference function call semantics
• When it is guaranteed that the referenced object will always be valid
• When object that should be referenced is always the same

When to use pointers
• Only when absolutely necessary!
• When there may not be a pointed-to object (i.e. nullptr)
• When the pointer may change to a different object
• When pointer arithmetic is desired

We will revisit this discussion later during the lecture
• Decision is intricately related to ownership semantics
• We would actually like to avoid using raw pointers as much as possible
• There are standard library classes which encapsulate pointers

245

References, Arrays, and Pointers Troubleshooting

Troubleshooting

Pointers have a reputation of being highly error-prone
• It is very easy to obtain pointers that point to invalid locations
• Once such a pointer is dereferenced, a number of bad things can happen

Bad things that may happen
• The pointer pointed outside of the program’s address space

• The program will likely segfault immediately
• The pointer pointed outside of the intended memory region, but still inside

the program’s address space
• The program might segfault immediately
• ...or simply corrupt some memory, which might lead to problems later

With the right tools, debugging is not as daunting as it may seem

246

References, Arrays, and Pointers Troubleshooting

The Infamous Segfault (1)

Every C++ programmer will encounter a segfault eventually
• Raised by hardware in response to a memory access violation
• In most cases caused by invalid pointers or memory corruption

Obvious example
foo.cpp

int main() {
int* a;
return *a; // ERROR: Dereferencing an uninitialized pointer

}

Executing this program might result in the following

$./foo
[1] 5128 segmentation fault (core dumped) ./foo

247

References, Arrays, and Pointers Troubleshooting

The Infamous Segfault (2)

Sometimes, the root cause may be (much) more difficult to determine
bar.cpp

int main() {
long* ptr;
long array[3] = {123, 456, 789};
ptr = &array[0];
array[3] = 987; // ERROR: off-by-one access

return *ptr;
}

When compiled with g++ -fno-stack-protector, this will also segfault
• The off-by-one access array[3] = 987 actually changes the value of ptr
• Dereferencing this pointer in the return statement will result in a segfault
• The -fno-stack-protector option is required, because g++ will by

default emit extra code to prevent such buffer overflows

248

References, Arrays, and Pointers Troubleshooting

The Infamous Segfault (3)
Use the address sanitizer!
$ g++ -g -fno-stack-protector -obar bar.cpp
$./bar
[1] 4199 segmentation fault (core dumped) ./bar
$ g++ -g -fno-stack-protector -fsanitize=address -obar bar.cpp
$./bar
===
==4229==ERROR: AddressSanitizer: stack-buffer-overflow on address [...]
WRITE of size 8 at 0x7fff536479d8 thread T0

#0 0x5617976d529f in main (/tmp/bar+0x129f)
#1 0x7f6a0fcc3022 in __libc_start_main (/usr/lib/libc.so.6+0x27022)
#2 0x5617976d50ad in _start (/tmp/bar+0x10ad)

Address 0x7fff536479d8 is located in stack of thread T0 at offset 56 in
frame↪→

#0 0x5617976d5188 in main (/tmp/bar+0x1188)

This frame has 1 object(s):
[32, 56) 'array' (line 3) <== Memory access at offset 56 overflows

this variable↪→

[...]
==4229==ABORTING

249

Classes

Classes

250

Classes

Classes

In C++ classes are the main kind of user-defined type.
Informal specification of a class definition:
class-keyword name {

member-specification
};

• class-keyword is either struct or class
• name can be any valid identifier (like for variables, functions, etc.)
• member-specification is a list of declarations, mainly variables (“data

members”), functions (“member functions”), and types (“nested types”)
• The trailing semicolon is mandatory!

251

https://en.cppreference.com/w/cpp/language/class

Classes Members

Data Members
• Declarations of data members are variable declarations
• extern is not allowed
• Declarations without static are called non-static data members, otherwise

they are static data members
• thread_local is only allowed for static data members
• Declaration must have a complete type (see later slide)
• Name of the declaration must differ from the class name and must be unique

within the class
• Non-static data members can have a default value

struct Foo {
// non-static data members:
int a = 123;
float& b;
const char c;
// static data members:
static int s;
thread_local static int t;

};

252

https://en.cppreference.com/w/cpp/language/data_members

Classes Members

Memory Layout of Data Members

• Every type has a size and an alignment requirement
• To be compatible between different compilers and programming languages

(mainly C), the memory layout of objects of class type is fixed
• Non-static data members appear in memory by the order of their declarations
• Size and alignment of each data-member is accounted for → leads to “gaps”

in the object, called padding bytes
• Alignment of a class type is equal to the largest alignment of all non-static

data members
• Size of a class type is at least the sum of all sizes of all non-static data

members and at least 1
• static data members are stored separately

253

Classes Members

Size, Alignment and Padding

struct C {
int i;
int* p;
char b;
short s;

};

sizeof(i) == 4
alignof(i) == 4

sizeof(p) == 8
alignof(p) == 8

sizeof(b) == 1
alignof(b) == 1

sizeof(s) == 2
alignof(s) == 2

sizeof(C) == 24
alignof(C) == 8

i padding
p

b s padding

00 01 02 03 04 05 06 07
00
08
10

offset

Reordering the member variables in the order p, i, s, b would lead to
sizeof(C) == 16!
In general: Order member variables by decreasing alignment to get the fewest
padding bytes.

254

Classes Members

Member Functions
• Declarations of member functions are like regular function declarations
• Just like for data members, there are non-static and static (with the static

specifier) member functions
• Non-static member functions can be const-qualified (with const) or

ref-qualified (with const&, &, or &&)
• Non-static member functions can be virtual
• There are some member functions with special functions:

• Constructor and destructor
• Overloaded operators

struct Foo {
void foo(); // non-static member function
void cfoo() const; // const-qualified non-static member function
void rfoo() &; // ref-qualified non-static member function
static void bar(); // static member function
Foo(); // Constructor
~Foo(); // Destructor
bool operator==(const Foo& f); // Overloaded operator ==

};

255

https://en.cppreference.com/w/cpp/language/member_functions

Classes Members

Accessing Members

Given the following code:
struct C {

int i;
static int si;

};
C o; // o is variable of type C
C* p = &o; // p is pointer to o

the members of the object can be accessed as follows:
• non-static and static member variables and functions can be accessed with

the member-of operator: o.i, o.si
• As a shorthand, instead of writing (*p).i, it is possible to write p->i
• Static member variables and functions can also be accessed with the scope

resolution operator: C::si

256

https://en.cppreference.com/w/cpp/language/operator_member_access

Classes Members

Writing Member Functions

• In a non-static member function members can be accessed implicitly without
using the member-of operator (preferred)

• Every non-static member function has the implicit parameter this
• In member functions without qualifiers and ref-qualified ones this has the

type C*
• In const-qualified or const-ref-qualified member functions this has the type
const C*

struct C {
int i;
int foo() {

this->i; // Explicit member access, this has type C*
return i; // Implicit member access

}
int foo() const { return this->i; /* this has type const C* */ }
int bar() & { return i; /* this (implicit) has type C* */ }
int bar() const& { return this->i; /* this has type const C* */ }

};

257

https://en.cppreference.com/w/cpp/language/this

Classes Members

Out-of-line Definitions
• Just like regular functions member functions can have separate declarations

and definitions
• A member function that is defined in the class body is said to have an inline

definition
• A member function that is defined outside of the class body is said to have

an out-of-line definition
• Member functions with inline definitions implicitly have the inline specifier
• Out-of-line definitions must have the same qualifiers as their declaration

struct Foo {
void foo1() { /* ... */ } // Inline definition
void foo2();
void foo_const() const;
static void foo_static();

};
// Out-of-line definitions
void Foo::foo2() { /* ... */ }
void Foo::foo_const() const { /* ... */ }
void Foo::foo_static() { /* ... */ }

258

Classes Forward Declarations

Forward Declarations (1)

Classes can be forward-declared
• Syntax: class-keyword name ;
• Declares a class type which will be defined later in the scope
• The class name has incomplete type until it is defined
• The forward-declared class name may still be used in some situations (more

details next)

Use Cases
• Allows classes to refer to each other
• Can reduce compilation time (significantly) by avoiding transitive includes of

an expensive-to-compile header
• Commonly used in header files

259

https://en.cppreference.com/w/cpp/language/class#Forward_declaration

Classes Forward Declarations

Forward Declarations (2)

Example
foo.hpp

class A;
class ClassFromExpensiveHeader;

class B {
ClassFromExpensiveHeader* member;

void foo(A& a);
};
class A {

void foo(B& b);
};

foo.cpp
#include "expensive_header.hpp"

/* implementation */

260

Classes Forward Declarations

Incomplete Types

A forward-declared class type is incomplete until it is defined

• In general, no operations that require the size and layout of a type to be
known can be performed on an incomplete type

• E.g. pointer arithmetics on a pointer to an incomplete type
• E.g. Definition or call (but not declaration) of a function with incomplete

return or argument type

• However, some declarations can involve incomplete types
• E.g. pointer declarations to incomplete types
• E.g. member function declarations with incomplete parameter types

• For details: See the reference documentation

261

https://en.cppreference.com/w/cpp/language/types#Incomplete_type

Classes Constructors and Destructors

Constructors

• Constructors are special functions that are called when an object is initialized
• Constructors have no return type, no const- or ref-qualifiers, and their name

is equal to the class name
• The definition of a constructor can have an initializer list
• Constructors can have arguments, a constructor without arguments is called

default constructor
• Constructors are sometimes implicitly defined by the compiler

struct Foo {
Foo() {

std::cout << "Hello\n";
}

};

struct Foo {
int a;
Bar b;
// Default constructor is
// implicitly defined, does
// nothing with a, calls
// default constructor of b

};

262

https://en.cppreference.com/w/cpp/language/initializer_list

Classes Constructors and Destructors

Initializer List
• The initializer list specifies how member variables are initialized before the

body of the constructor is executed
• Other constructors can be called in the initializer list
• Members should be initialized in the order of their definition
• Members are initialized to their default value if not specified in the list
• const member variables can only be initialized in the initializer list

struct Foo {
int a = 123; float b; const char c;
// default constructor initializes a (to 123), b, and c
Foo() : b(2.5), c(7) {}
// initializes a and b to the given values
Foo(int a, float b, char c) : a(a), b(b), c(c) {}
Foo(float f) : Foo() {

// First the default constructor is called, then the body
// of this constructor is executed
b *= f;

}
};

263

Classes Constructors and Destructors

Initializing Objects

• When an object of class type is initialized, an appropriate constructor is
executed

• Arguments given in the initialization are passed to the constructor
• C++ has several types of initialization that are very similar but unfortunately

have subtle differences:
• default initialization (Foo f;)
• value initialization (Foo f{}; and Foo())
• direct initialization (Foo f(1, 2, 3);)
• list initialization (Foo f{1, 2, 3};)
• copy initialization (Foo f = g;)

• Simplified syntax: class-type identifier(arguments); or
class-type identifier{arguments};

264

https://en.cppreference.com/w/cpp/language/initialization

Classes Constructors and Destructors

Converting and Explicit Constructors

• Constructors with exactly one argument are treated specially: They are used
for explicit and implicit conversions

• If implicit conversion with such constructors is not desired, the keyword
explicit can be used to disallow it

• Generally, you should use explicit unless you have a good reason not to

struct Foo {
Foo(int i);

};
void print_foo(Foo f);
// Implicit conversion,
// calls Foo::Foo(int)
print_foo(123);
// Explicit conversion,
// calls Foo::Foo(int)
static_cast<Foo>(123);

struct Bar {
explicit Bar(int i);

};
void print_bar(Bar f);
// Implicit conversion,
// compiler error!
print_bar(123);
// Explicit conversion,
// calls Bar::Bar(int)
static_cast<Bar>(123);

265

https://en.cppreference.com/w/cpp/language/converting_constructor

Classes Constructors and Destructors

Copy Constructors

• Constructors of a class C that have a single argument of type C& or
const C& (preferred) are called copy constructors

• They are often called implicitly by the compiler whenever it is necessary to
copy an object

• The copy constructor if often implicitly defined by the compiler

struct Foo {
Foo(const Foo& other) { /* ... */ }

};
void doFoo(Foo f);
Foo f;
Foo g(f); // Call copy constructor explicitly
doFoo(g); // Copy constructor is called implicitly

266

https://en.cppreference.com/w/cpp/language/copy_constructor

Classes Constructors and Destructors

Destructors

• The destructor is a special function that is called when the lifetime of an
object ends

• The destructor has no return type, no arguments, no const- or ref-qualifiers,
and its name is ~class-name

• For objects with automatic storage duration (e.g. local variables) the
destructor is called implicitly at the end of the scope in reverse order of their
definition

Foo a;
Bar b;
{

Baz c;
// c.~Baz() is called;

}
// b.~Bar() is called
// a.~Foo() is called

267

https://en.cppreference.com/w/cpp/language/destructor

Classes Constructors and Destructors

Writing Destructors

• The destructor is a regular function that can contain any code
• Most of the time the destructor is used to explicitly free resources
• Destructors of member variables are called automatically at the end in reverse

order

struct Foo {
Bar a;
Bar b;
~Foo() {

std::cout << "Bye\n";
// b.~Bar() is called
// a.~Bar() is called

}
};

268

Classes Member Access Control

Member Access Control
• Every member of a class has public, protected, or private access
• When the class is defined with class, the default access is private
• When the class is defined with struct, the default access is public
• public members can be accessed by everyone, protected members only by

the class itself and its subclasses, private members only by the class itself

class Foo {
int a; // a is private
public:
// All following declarations are public
int b;
int getA() const { return a; }
protected:
// All following declarations are protected
int c;
public:
// All following declarations are public
static int getX() { return 123; }

};

269

https://en.cppreference.com/w/cpp/language/access

Classes Member Access Control

Friend Declarations (1)

A class body can contain friend declarations
• A friend declaration grants a function or another class access to the private

and protected members of the class which contains the declaration
• Syntax: friend function-declaration ;

• Declares a function as a friend of the class
• Syntax: friend function-definition ;

• Defines a non-member function and declares it as a friend of the class
• Syntax: friend class-specifier ;

• Declares another class as a friend of this class

Notes
• Friendship is non-transitive and cannot be inherited
• Access specifiers have no influence on friend declarations (i.e. they can

appear in private: or public: sections)

270

https://en.cppreference.com/w/cpp/language/friend

Classes Member Access Control

Friend Declarations (2)

Example

class A {
int a;
friend class B;
friend void foo(A&);

};
class B {

friend class C;
void bar(A& a) {

a.a = 42; // OK
}

};
class C {

void foo(A& a) {
a.a = 42; // ERROR

}
};
void foo(A& a) {

a.a = 42; // OK
}

271

Classes Member Access Control

Nested Types

• For nested types classes behave just like a namespace
• Nested types are accessed with the scope resolution operator ::
• Nested types are friends of their parent

struct A {
struct B {

int getI(const A& a) {
return a.i; // OK, B is friend of A

}
};
private:
int i;

};
A::B b; // reference nested type B of class A

272

Classes Constness of Members

Constness of Member Variables

• Accessing a member variable through a non-const lvalue yields a non-const
lvalue if the member is non-const and a const lvalue otherwise

• Accessing a member variable through a const lvalue yields a const lvalue
• Exception: Member variables declared with mutable yield a non-const lvalue

even when accessed through a const lvalue

struct Foo {
int i;
const int c;
mutable int m;

}
Foo& foo = /* ... */;
const Foo& cfoo = /* ... */;

Expression Value Category
foo.i non-const lvalue
foo.c const lvalue
foo.m non-const lvalue
cfoo.i const lvalue
cfoo.c const lvalue
cfoo.m non-const lvalue

273

Classes Constness of Members

Constness and Member Functions

• The value category through which a non-static member function is accessed
is taken into account for overload resolution

• For non-const lvalues non-const overloads are preferred over const ones
• For const lvalues only const-(ref-)qualified functions are selected

struct Foo {
int getA() { return 1; }
int getA() const { return 2; }
int getB() & { return getA(); }
int getB() const& { return getA(); }
int getC() const { return getA(); }
int getD() { return 3; }

};
Foo& foo = /* ... */;
const Foo& cfoo = /* ... */;

Expression Value
foo.getA() 1
foo.getB() 1
foo.getC() 2
foo.getD() 3
cfoo.getA() 2
cfoo.getB() 2
cfoo.getC() 2
cfoo.getD() error

274

Classes Constness of Members

Casting and CV-qualifiers
• When using static_cast, reinterpret_cast, or dynamic_cast,

cv-qualifiers cannot be “casted away”
• const_cast must be used instead
• Syntax: const_cast < new_type > (expression)
• new_type may be a pointer or reference to a class type
• expression and new_type must have same type ignoring their cv-qualifiers
• The result of const_cast is a value of type new_type
• Modifying a const object through a non-const access path is undefined

behavior!

struct Foo {
int a;

};
const Foo f{123};
Foo& fref = const_cast<Foo&>(f); // OK, cast is allowed
int b = fref.a; // OK, accessing value is allowed
fref.a = 42; // undefined behavior

275

https://en.cppreference.com/w/cpp/language/const_cast

Classes Constness of Members

Use Cases for const_cast
Most common use case of const_cast: Avoid code duplication in member
function overloads.
• A class may contain a const and non-const overload of the same function

with identical code
• Should only be used when absolutely necessary (i.e. not for simple overloads)

class A {
int* numbers;
int& foo() {

int i = /* ... */;
// do some incredibly complicated computation to
// get a value for i
return numbers[i]

}
const int& foo() const {

// OK as long as foo() does not modify the object
return const_cast<A&>(*this).foo();

}
};

276

Classes Operator Overloading

Operator Overloading

• Classes can have special member functions to overload built-in operators like
+, ==, etc.

• Many overloaded operators can also be written as non-member functions
• Syntax: return-type operator op (arguments)
• Overloaded operator functions are selected with the regular overload

resolution
• Overloaded operators are not required to have meaningful semantics
• Almost all operators can be overloaded, exceptions are: :: (scope

resolution), . (member access), .* (member pointer access), ?: (ternary
operator)

• This includes “unusual” operators like: = (assignment), () (call),
* (dereference), & (address-of), , (comma)

277

https://en.cppreference.com/w/cpp/language/operators

Classes Operator Overloading

Arithmetic Operators
The expression lhs op rhs is mostly equivalent to lhs.operator op(rhs) or
operator op(lhs, rhs) for binary operators.
• As calls to overloaded operators are treated like regular function calls, the

overloaded versions of || and && lose their special behaviors
• Should be const and take const references
• Usually return a value and not a reference
• The unary + and − operators can be overloaded as well

struct Int {
int i;
Int operator+(const Int& other) const { return Int{i + other.i}; }
Int operator-() const { return Int{-i}; };

};
Int operator*(const Int& a, const Int& b) { return Int{a.i * b.i}; }

Int a{123}; Int b{456};

a + b; /* is equivalent to */ a.operator+(b);
a * b; /* is equivalent to */ operator*(a, b);
-a; /* is equivalent to */ a.operator-();

278

https://en.cppreference.com/w/cpp/language/operator_arithmetic

Classes Operator Overloading

Comparison Operators

All binary comparison operators (<, <=, >, >=, ==, !=, <=>) can be overloaded.
• Should be const and take const references
• Return bool, except for <=> (see next slide)
• If only operator<=> is implemented, <, <=, >, and >= work as well
• operator== must be implemented separately
• If operator== is implemented, != works as well

struct Int {
int i;
std::strong_ordering operator<=>(const Int& a) const {

return i <=> a.i;
}
bool operator==(const Int& a) const { return i == a.i; }

};
Int a{123}; Int b{456};
a < b; /* is equivalent to */ (a.operator<=>(b)) < 0;
a == b; /* is equivalent to */ a.operator==(b);

279

https://en.cppreference.com/w/cpp/language/operator_comparison

Classes Operator Overloading

Three-Way Comparison (1)

The overloaded operator<=> should return one of the following three types from
<compare>: std::partial_ordering, std::weak_ordering,
std::strong_ordering.
• When comparing two values a and b with ord = (a <=> b), then ord has

one of the three types and can be compared to 0:
• ord == 0 ⇔ a == b
• ord < 0 ⇔ a < b
• ord > 0 ⇔ a > b
• std::strong_ordering can be converted to std::weak_ordering and
std::partial_ordering

• std::weak_ordering can be converted to std::partial_ordering

280

https://en.cppreference.com/w/cpp/utility/compare/partial_ordering

Classes Operator Overloading

Three-Way Comparison (2)

std::partial_ordering should be used when two values can potentially be
unordered, i.e. a <= b and a >= b could be false.
Possible values:
• std::partial_ordering::less
• std::partial_ordering::equivalent
• std::partial_ordering::greater
• std::partial_ordering::unordered

281

Classes Operator Overloading

Three-Way Comparison (3)

std::weak_ordering or std::strong_ordering should be used when two
values are always ordered (i.e. we have total order).
Possible values:
• std::weak_ordering::less
• std::weak_ordering::equivalent
• std::weak_ordering::greater
• std::strong_ordering::less
• std::strong_ordering::equivalent
• std::strong_ordering::greater
• With std::strong_odering equal values must also be “indistinguishable”,

i.e. behave the same in all aspects

282

Classes Operator Overloading

Increment and Decrement Operators
Overloaded pre- and post-increment and -decrement operators are distinguished
by an (unused) int argument.
• C& operator++(); C& operator--(); overloads the pre-increment or

-decrement operator, usually modifies the object and then returns *this
• C operator++(int); C operator--(int); overloads the

post-increment or -decrement operator, usually copies the object before
modifying it and then returns the unmodified copy

struct Int {
int i;
Int& operator++() { ++i; return *this; }
Int operator--(int) { Int copy{*this}; --i; return copy; }

};
Int a{123};
++a; // a.i is now 124
a++; // ERROR: post-increment is not overloaded
Int b = a--; // b.i is 124, a.i is 123
--b; // ERROR: pre-decrement is not overloaded

283

https://en.cppreference.com/w/cpp/language/operator_incdec

Classes Operator Overloading

Subscript Operator

Classes that behave like containers or pointers usually override the subscript
operator [].
• a[b] is equivalent to a.operator[](b)
• Type of b can be anything, for array-like containers it is usually size_t

struct Foo { /* ... */ };
struct FooContainer {

Foo* fooArray;
Foo& operator[](size_t n) { return fooArray[n]; }
const Foo& operator[](size_t n) const { return fooArray[n]; }

};

284

https://en.cppreference.com/w/cpp/language/operator_member_access

Classes Operator Overloading

Dereference Operators

Classes that behave like pointers usually override the operators * (dereference)
and -> (member of pointer).
• operator*() usually returns a reference
• operator->() should return a pointer or an object that itself has an

overloaded -> operator

struct Foo { /* ... */ };
struct FooPtr {

Foo* ptr;
Foo& operator*() { return *ptr; }
const Foo& operator*() const { return *ptr; }
Foo* operator->() { return ptr; }
const Foo* operator->() const { return ptr; }

};

285

https://en.cppreference.com/w/cpp/language/operator_member_access

Classes Operator Overloading

Assignment Operators

• The simple assignment operator is often used together with the copy
constructor and should have the same semantics

• All assignment operators usually return *this

struct Int {
int i;
Foo& operator=(const Foo& other) { i = other.i; return *this; }
Foo& operator+=(const Foo& other) { i += other.i; return *this; }

};
Foo a{123};
a = Foo{456}; // a.i is now 456
a += Foo{1}; // a.i is now 457

286

https://en.cppreference.com/w/cpp/language/operator_assignment

Classes Operator Overloading

Conversion Operators
A class C can use converting constructors to convert values of other types to type
C. Similarly, conversion operators can be used to convert objects of type C to
other types.
Syntax: operator type ()
• Conversion operators have the implicit return type type
• They are usually declared as const
• The explicit keyword can be used to prevent implicit conversions
• Explicit conversions are done with static_cast
• operator bool() is usually overloaded to be able to use objects in an if

statement

struct Int {
int i;
operator int() const {

return i;
}

};
Int a{123};
int x = a; // OK, x is 123

struct Float {
float f;
explicit operator float() const {

return f;
}

};
Float b{1.0};
float y = b; // ERROR, implicit conversion
float y = static_cast<float>(b); // OK

287

https://en.cppreference.com/w/cpp/language/cast_operator

Classes Operator Overloading

Argument-Dependent Lookup

• Overloaded operators are usually defined in the same namespace as the type
of one of their arguments

• Regular unqualified lookup would not allow the following example to compile
• To fix this, unqualified names of functions are also looked up in the

namespaces of all arguments
• This is called Argument Dependent Lookup (ADL)

namespace A { class X {}; X operator+(const X&, const X&); }
int main() {

A::X x, y;
operator+(x, y); // Need operator+ from namespace A
A::operator+(x, y); // OK
x + y; // How to specify namespace here?

// -> ADL finds A::operator+()
}

288

https://en.cppreference.com/w/cpp/language/adl

Classes Defaulted and Deleted Member Functions

Defaulted Member Functions
• Most of the time the implementation of default constructors, copy

constructors, copy assignment operators, and destructors is trivial
• To let the compiler generate the trivial implementation automatically,
= default; can be used instead of a function body

struct Foo {
Bar b;
Foo() = default; /* equivalent to: */ Foo() {}
~Foo() = default; /* equivalent to: */ ~Foo() {}

Foo(const Foo& f) = default;
/* equivalent to: */
Foo(const Foo& f) : b(f.b) {}

Foo& operator=(const Foo& f) = default;
/* equivalent to: */
Foo& operator=(const Foo& f) {

b = f.b; return *this;
}

};
289

https://en.cppreference.com/w/cpp/language/member_functions#Special_member_functions

Classes Defaulted and Deleted Member Functions

Defaulted Comparison Operators
All comparison operators can be defaulted.
• Defaulted comparison operators must return bool, except <=>
• Defaulted operator== compares each member for equality, members must

define operator==
• Defaulted operator<=> lexicographically compares members by using <=>,

members must define operator<=>
• Defaulting operator<=> also defaults operator==
• Defaulted <, <=, >, or >= use operator<=>

struct Int128 {
int64_t x; int64_t y;
std::strong_ordering operator<=>(const Int&) const = default;

};
Int128 a{0, 123}; Int128 b{1, 0};
a < b; // true
a == b; // false
a <=> b; // std::strong_ordering::less

290

https://en.cppreference.com/w/cpp/language/default_comparisons

Classes Defaulted and Deleted Member Functions

Deleted Member Functions

• Sometimes, implicitly generated constructors or assignment operators are not
wanted

• Writing = delete; instead of a function body explicitly forbids implicit
definitions

• In other cases the compiler implicitly deletes a constructor in which case
writing = default; enables it again

struct Foo {
Foo(const Foo&) = delete;

};
Foo f; // Default constructor is defined implicitly
Foo g(f); // ERROR: copy constructor is deleted

291

https://en.cppreference.com/w/cpp/language/function#Deleted_functions

Other User-Defined Types

Other User-Defined Types

292

Other User-Defined Types Unions

Unions
• In addition to regular classes declared with class or struct, there is

another special class type declared with union
• In a union only one member may be “active”, all members use the same

storage
• Size of the union is equal to size of largest member
• Alignment of the union is equal to largest alignment among members
• Strict aliasing rule still applies with unions!
• Most of the time there are better alternatives to unions, e.g.
std::array<char, N> or std::variant

union Foo {
int a;
double b;

};
sizeof(Foo) == 8;
alignof(Foo) == 8;

Foo f; // No member is active
f.a = 1; // a is active
std::cout << f.b; // Undefined behavior!
f.b = 12.34; // Now, b is active
std::cout << f.b; // OK

293

https://en.cppreference.com/w/cpp/language/union

Other User-Defined Types Enums

Enums
• C++ also has user-defined enumeration types
• Typically used like integral types with a restricted range of values
• Also used to be able to use descriptive names instead of “magic” integer

values
• Syntax: enum-key name { enum-list };
• enum-key can be enum, enum class, or enum struct
• enum-list consists of comma-separated entries with the following syntax:
name [= value]

• When value is not specified, it is automatically chosen starting from 0

enum Color {
Red, // Red == 0
Blue, // Blue == 1
Green, // Green == 2
White = 10,
Black, // Black == 11
Transparent = White // Transparent == 10

};

294

https://en.cppreference.com/w/cpp/language/enum

Other User-Defined Types Enums

Using Enum Values

• Names from the enum list can be accessed with the scope resolution operator
• When enum is used as keyword, names are also introduced in the enclosing

namespace
• Enums declared with enum can be converted implicitly to int
• Enums can be converted to integers and vice versa with static_cast
• enum class and enum struct are equivalent
• Guideline: Use enum class unless you have a good reason not to

Color::Red; // Access with scope resolution operator
Blue; // Access from enclosing namespace
int i = Color::Green; // i == 2, implicit conversion
int j = static_cast<int>(Color::White); // j == 10
Color c = static_cast<Color>(11); // c == Color::Black

295

Other User-Defined Types Type Aliases

Type Aliases
• Names of types that are nested deeply in multiple namespaces or classes can

become very long
• Sometimes it is useful to declare a nested type that refers to another, existing

type
• For this type aliases can be used
• Syntax: using name = type;
• name is the name of the alias, type must be an existing type
• For compatibility with C type aliases can also be defined with typedef with

a different syntax but this should never be used in modern C++ code

namespace A::B::C { struct D { struct E {}; }; }
using E = A::B::C::D::E;
E e; // e has type A::B::C::D::E
struct MyContainer {

using value_type = int;
};
MyContainer::value_type i = 123; // i is an int

296

https://en.cppreference.com/w/cpp/language/type_alias

Other User-Defined Types Type Aliases

Common Type Aliases

In C++ the following aliases are defined in the std namespace and are commonly
used:

intN_t: Integer types with exactly N bits, usually defined for 8, 16, 32, and
64 bits

uintN_t: Similar to intN_t but unsigned
size_t: Used by the standard library containers everywhere a size or index

is needed, also result type of sizeof and alignof
uintptr_t: An integer type that is guaranteed to be able to hold all possible

values that result from a reinterpret_cast from any pointer
intptr_t: Similar to uintptr_t but signed

ptrdiff_t: Result type of expressions that subtract two pointers
max_align_t: Type which has alignment as least as large as all other scalar

types

297

Dynamic Memory Management

Dynamic Memory Management

298

Dynamic Memory Management Process Memory Layout

Process Memory Layout (1)

Each Linux process runs within its own virtual address space
• The kernel pretends that each process has access to a (huge) continuous

range of addresses (≈ 256 TiB on x86-64)
• Virtual addresses are mapped to physical addresses by the kernel using page

tables and the MMU (if available)
• Greatly simplifies memory management code in the kernel and improves

security due to memory isolation
• Allows for useful “tricks” such as memory-mapping files

299

Dynamic Memory Management Process Memory Layout

Process Memory Layout (2)

The kernel also uses virtual memory
• Part of the address space has to be

reserved for kernel memory
• This kernel-space memory is

mapped to the same physical
addresses for each process

• Access to this memory is restricted

Most of the address space is unused
• MMUs on x86-64 platforms only

support 48 bit pointers at the
moment

• Might change in the future (Linux
already supports 56 bit pointers)

0xffffffffffffffff

0xffff800000000000

0x0000800000000000

0x0000000000000000

kernel-space
(128 TiB)

user-space
(128 TiB)

unused
(16 EiB)

300

Dynamic Memory Management Process Memory Layout

Process Memory Layout (3)

User-space memory is organized in seg-
ments
• Stack segment
• Memory mapping segment
• Heap segment
• BSS, data and text segments

Segments can grow
• Stack and memory mapping

segments usually grow down (i.e.
addresses decrease)

• Heap segment usually grows up (i.e.
addresses increase)

stack

text
data
bss

heap

mmap

100s of GiB

10s of TiB

up to some GiB

0x0000800000000000

0x0000000000000000

301

Dynamic Memory Management Process Memory Layout

Stack Segment (1)

Stack memory is typically used for objects with automatic storage duration
• The compiler can statically decide when allocations and deallocations must

happen
• The memory layout is known at compile-time
• Allows for highly optimized code (allocations and deallocations simply

increase/decrease a pointer)

Fast, but inflexible memory
• Array sizes must be known at compile-time
• No dynamic data structures are possible (trees, graphs, etc.)

302

Dynamic Memory Management Process Memory Layout

Stack Segment (2)

Example
foo.cpp

int foo() {
int c = 2;
int d = 21;

return c * d;
}

int main() {
int a[100];
int b = foo();

return b;
}

foo.o
foo():

pushq %rbp
movq %rsp, %rbp
movl $2, -4(%rbp)
movl $21, -8(%rbp)
movl -4(%rbp), %eax
imull -8(%rbp), %eax
popq %rbp
ret

main:
pushq %rbp
movq %rsp, %rbp
subq $416, %rsp
call foo()
movl %eax, -4(%rbp)
movl -4(%rbp), %eax
leave
ret

303

Dynamic Memory Management Process Memory Layout

Heap Segment

The heap is typically used for objects with dynamic storage duration
• The programmer must explicitly manage allocations and deallocations
• Allows much more flexible programs

Disadvantages
• Performance impact due to non-trivial implementation of heap-based memory

allocation
• Memory fragmentation
• Dynamic memory allocation is error-prone

• Memory leaks
• Double free (deallocation)
• Make use of debugging tools (GDB, ASAN (!))

304

Dynamic Memory Management Dynamic Memory Management in C++

Dynamic Memory Management in C++

C++ provides several mechanisms for dynamic memory management
• Through new and delete expressions (discouraged)
• Through the C functions malloc and free (discouraged)
• Through smart pointers and ownership semantics (preferred)

Mechanisms give control over the storage duration and possibly lifetime of objects
• Level of control varies by method
• In all cases: Manual intervention required

305

Dynamic Memory Management Dynamic Memory Management in C++

The new Expression

Creates and initializes objects with dynamic storage duration
• Syntax: new type initializer
• type must be a type
• type can be an array type
• initializer can be omitted

Explanation
• Allocates heap storage for a single object or an array of objects
• Constructs and initializes a single object or an array of objects in the newly

allocated storage
• If initializer is absent, the object is default-initialized
• Returns a pointer to the object or the initial element of the array

306

https://en.cppreference.com/w/cpp/language/new

Dynamic Memory Management Dynamic Memory Management in C++

The delete Expression

Every object allocated through new must be destroyed through delete
• Syntax (single object): delete expression
• expression must be a pointer created by the single-object form of the new

expression
• Syntax (array): delete[] expression
• expression must be a pointer created by the array form of the new

expression
• In both cases expression may be nullptr

Explanation
• If expression is nullptr nothing is done
• Invokes the destructor of the object that is being destroyed, or of every object

in the array that is being destroyed
• Deallocates the memory previously occupied by the object(s)

307

https://en.cppreference.com/w/cpp/language/delete

Dynamic Memory Management Dynamic Memory Management in C++

new & delete Example
class IntList {

struct Node {
int value;
Node* next;

};

Node* first;
Node* last;

public:
~IntList() {

while (first != nullptr) {
Node* next = first->next;
delete first;
first = next;

}
}

void push_back(int i) {
Node* node = new Node{i, nullptr};
if (!last)

first = node;
else

last->next = node;
last = node;

}
};

308

Dynamic Memory Management Dynamic Memory Management in C++

Memory Leaks

Memory leaks can happen easily

int foo(unsigned length) {
int* buffer = new int[length];

/* ... do something ... */

if (condition)
return 42; // MEMORY LEAK

/* ... do something else ... */

delete[] buffer;
return 123;

}

Avoid explicit memory management through new and delete whenever possible

309

https://en.cppreference.com/w/cpp/language/new#Memory_leaks

Dynamic Memory Management Dynamic Memory Management in C++

Placement new (1)

Constructs objects in already allocated storage
• Syntax: new (placement_params) type initializer
• placement_params must be a pointer to a region of storage large enough

to hold an object of type type
• The strict aliasing rule must not be violated
• Alignment must be ensured manually
• Only rarely required (e.g. for custom memory management)
• Requires that the <new> standard header is included

310

https://en.cppreference.com/w/cpp/language/new#Placement_new

Dynamic Memory Management Dynamic Memory Management in C++

Placement new (2)

Example

#include <cstddef>
#include <new>

struct A { };

int main() {
std::byte* buffer = new std::byte[sizeof(A)];
A* a = new (buffer) A();
/* ... do something with a ... */
a->~A(); // we must explicitly call the destructor
delete[] buffer;

}

311

Dynamic Memory Management Dynamic Memory Management in C++

Lifetimes and Storage Duration (1)

The lifetime of an object is equal to or nested within the lifetime of its storage
• Equal for regular new and delete
• Possibly nested for placement new

Example

struct A { };

int main() {
A* a1 = new A(); // lifetime of a1 begins, storage begins
a1->~A(); // lifetime of a1 ends
A* a2 = new (a1) A(); // lifetime of a2 begins
delete a2; // lifetime of a2 ends, storage ends

}

312

https://en.cppreference.com/w/cpp/language/lifetime

Dynamic Memory Management Dynamic Memory Management in C++

Lifetimes and Storage Duration (2)

Lifetime and storage duration of objects have real-world implications
• Accessing objects outside of their lifetime is undefined behavior and will often

lead to segmentation faults
• Important to always keep track of lifetimes (if necessary through suitable

comments)
• Use debugging tools (in particular ASAN) to find such bugs!

Examples of common bugs
• Returning pointers/references to local variables from functions
• Using a pointer/reference to access memory that has already been freed
• Using a pointer/reference to access an object that has already been

destructed
• Maintaining pointers/references to objects in an std::vector after its

internal storage has been reallocated (e.g. through a call to push_back)
• ...

313

https://en.cppreference.com/w/cpp/language/lifetime

Dynamic Memory Management Memory Manipulation Primitives

std::memcpy (1)

std::memcpy copies bytes between non-overlapping memory regions
• Defined in <cstring> standard header
• Syntax: void* memcpy(void* dest, const void* src, std::size_t count);

• Copies count bytes from the object pointed to by src to the object pointed
to by dest

• Can be used to work around strict aliasing rules without causing undefined
behavior

Restrictions (undefined behavior if violated)
• Objects must not overlap
• src and dest must not be nullptr
• Objects must be trivially copyable
• dest must be aligned suitably

314

https://en.cppreference.com/w/cpp/string/byte/memcpy

Dynamic Memory Management Memory Manipulation Primitives

std::memcpy (2)
Example (straightforward copy)

#include <cstring>
#include <vector>

int main() {
std::vector<int> buffer = {1, 2, 3, 4};
buffer.resize(8);
std::memcpy(&buffer[4], &buffer[0], 4 * sizeof(int));

}

Example (work around strict aliasing)

#include <cstring>
#include <cstdint>

int main() {
int64_t i = 42;
double j;
std::memcpy(&j, &i, sizeof(double)); // OK

}

315

Dynamic Memory Management Memory Manipulation Primitives

std::memmove (1)

std::memmove copies bytes between possibly overlapping memory regions
• Defined in <cstring> standard header
• Syntax: void* memmove(void* dest, const void* src, std::size_t count);

• Copies count bytes from the object pointed to by src to the object pointed
to by dest

• Acts as if the bytes were copied to a temporary buffer

Restrictions (undefined behavior if violated)
• src and dest must not be nullptr
• Objects must be trivially copyable
• dest must be suitably aligned

316

https://en.cppreference.com/w/cpp/string/byte/memmove

Dynamic Memory Management Memory Manipulation Primitives

std::memmove (2)

Example (straightforward copy)

#include <cstring>
#include <vector>

int main() {
std::vector<int> buffer = {1, 2, 3, 4};
buffer.resize(6);
std::memmove(&buffer[2], &buffer[0], 4 * sizeof(int));
// buffer is now {1, 2, 1, 2, 3, 4}

}

317

Copy and Move Semantics

Copy and Move Semantics

318

Copy and Move Semantics Copy Semantics

Copy Semantics

Assignment and construction of classes employs copy semantics in most cases
• By default, a shallow copy is created
• Usually not particularly relevant for fundamental types
• Very relevant for user-defined class types

Considerations for user-defined class types
• Copying may be expensive
• Copying may be unnecessary or even unwanted
• An object on the left-hand side of an assignment might manage dynamic

resources

319

Copy and Move Semantics Copy Semantics

Copy Constructor (1)

Invoked whenever an object is initialized from an object of the same type
• Syntax: class_name (const class_name&)
• class_name must be the name of the current class

For a class type T and objects a, b, the copy constructor is invoked on
• Copy initialization: T a = b;
• Direct initialization: T a(b);
• Function argument passing: f(a); where f is void f(T t);
• Function return: return a; inside a function T f(); if T has no move

constructor (more details next)

320

https://en.cppreference.com/w/cpp/language/copy_constructor

Copy and Move Semantics Copy Semantics

Copy Constructor (2)

Example

class A {
private:
int v;

public:
explicit A(int v) : v(v) { }
A(const A& other) : v(other.v) { }

};

int main() {
A a1(42); // calls A(int)

A a2(a1); // calls copy constructor
A a3 = a2; // calls copy constructor

}

321

Copy and Move Semantics Copy Semantics

Copy Assignment (1)

Typically invoked if an object appears on the left-hand side of an assignment with
an lvalue on the right-hand side
• Syntax (1): class_name& operator=(class_name)
• Syntax (2): class_name& operator=(const class_name&)
• class_name must be the name of the current class
• Usually, option (2) is preferred unless the copy-and-swap idiom is used (more

details next)

Explanation
• Called whenever selected by overload resolution
• Returns a reference to the object itself (i.e. *this) to allow for chaining

assignments

322

https://en.cppreference.com/w/cpp/language/copy_assignment

Copy and Move Semantics Copy Semantics

Copy Assignment (2)
Example

class A {
private:
int v;

public:
explicit A(int v) : v(v) { }
A(const A& other) : v(other.v) { }

A& operator=(const A& other) {
v = other.v;
return *this;

}
};

int main() {
A a1(42); // calls A(int)
A a2 = a1; // calls copy constructor

a1 = a2; // calls copy assignment operator
}

323

Copy and Move Semantics Copy Semantics

Implicit Declaration (1)

The compiler will implicitly declare a copy constructor if no user-defined copy
constructor is provided
• The implicitly declared copy constructor will be a public member of the

class
• The implicitly declared copy constructor may or may not be defined

The implicitly declared copy constructor is defined as deleted if one of the
following is true
• The class has non-static data members that cannot be copy-constructed
• The class has a base class which cannot be copy-constructed
• The class has a base class with a deleted or inaccessible destructor
• The class has a user-defined move constructor or assignment operator
• See the reference documentation for more details

In some cases, this can be circumvented by explicitly defaulting the constructor.

324

https://en.cppreference.com/w/cpp/language/copy_constructor#Implicitly-declared_copy_constructor

Copy and Move Semantics Copy Semantics

Implicit Declaration (2)

The compiler will implicitly declare a copy assignment operator if no user-defined
copy assignment operator is provided
• The implicitly declared copy assignment operator will be a public member

of the class
• The implicitly declared copy assignment operator may or may not be defined

The implicitly declared copy assignment operator is defined as deleted if one of
the following is true
• The class has non-static data members that cannot be copy-assigned
• The class has a base class which cannot be copy-assigned
• The class has a non-static data member of reference type
• The class has a user-defined move constructor or assignment operator
• See the reference documentation for more details

In some cases, this can be circumvented by explicitly defaulting the assignment
operator.

325

https://en.cppreference.com/w/cpp/language/copy_assignment#Implicitly-declared_copy_assignment_operator

Copy and Move Semantics Copy Semantics

Implicit Definition

If it is not deleted, the compiler defines the implicitly-declared copy constructor
• Only if it is actually used (odr-used)
• Performs a full member-wise copy of the object’s bases and members in their

initialization order
• Uses direct initialization

If it is not deleted, the compiler defines the implicitly-declared copy assignment
operator
• Only if it is actually used (odr-used)
• Performs a full member-wise copy assignment of the object’s bases and

members in their initialization order
• Uses built-in assignment for scalar types and copy assignment for class types

326

https://en.cppreference.com/w/cpp/language/copy_constructor#Implicitly-defined_copy_constructor

Copy and Move Semantics Copy Semantics

Example: Implicit Declaration & Definition

Example

struct A {
const int v;

explicit A(int v) : v(v) { }
};

int main() {
A a1(42);

A a2(a1); // OK: calls the generated copy constructor
a1 = a2; // ERROR: the implicitly-declared copy assignment

// operator is deleted
}

327

Copy and Move Semantics Copy Semantics

Trivial Copy Constructor and Assignment Operator (1)

The copy constructor/assignment operator may be trivial
• It must not be user-provided (explicitily defaulting does not count as

user-provided)
• The class has no virtual member functions
• The copy constructor/assignment operator for all direct bases and non-static

data members of class type is trivial

A trivial copy constructor/assignment operator behaves similar to std::memcpy
• Every scalar subobject is copied recursively and no further action is performed
• The object representation of the copied object is not necessarily identical to

the source object
• Trivially copyable objects may legally be copied using std::memcpy
• All data types compatible with C are trivially copyable

328

https://en.cppreference.com/w/cpp/language/copy_constructor#Trivial_copy_constructor

Copy and Move Semantics Copy Semantics

Trivial Copy Constructor and Assignment Operator (2)

Example

#include <vector>

struct A {
int b;
double c;

};

int main() {
std::vector<A> buffer1;
buffer1.resize(10);

std::vector<A> buffer2; // copy buffer1 using copy-constructor
for (const A& a : buffer1)

buffer2.push_back(a);

std::vector<A> buffer3; // copy buffer1 using memcpy
buffer3.resize(10);
std::memcpy(&buffer3[0], &buffer1[0], 10 * sizeof(A));

}

329

Copy and Move Semantics Copy Semantics

Implementing Custom Copy Operations (1)

Custom copy constructors/assignment operators are only occasionally necessary
• Often, a class should not be copyable anyway if the implicitly generated

versions do not make sense
• Exceptions include classes which manage some kind of resource (e.g. dynamic

memory)

Guidelines for implementing custom copy operations
• The programmer should either provide neither a copy constructor nor a copy

assignment operator, or both
• The copy assignment operator should usually include a check to detect

self-assignment
• If possible, resources should be reused
• If resources cannot be reused, they have to be cleaned up properly

330

Copy and Move Semantics Copy Semantics

Implementing Custom Copy Operations (2)
Example
struct A {

unsigned capacity;
int* memory;

explicit A(unsigned capacity) : capacity(capacity), memory(new int[capacity]) { }
A(const A& other) : A(other.capacity) {

std::memcpy(memory, other.memory, capacity * sizeof(int));
}
~A() { delete[] memory; }

A& operator=(const A& other) {
if (this == &other) // check for self-assignment

return *this;

if (capacity != other.capacity) { // attempt to reuse resources
delete[] memory;
capacity = other.capacity;
memory = new int[capacity];

}

std::memcpy(memory, other.memory, capacity * sizeof(int));

return *this;
}

};

331

Copy and Move Semantics Move Semantics

Move Semantics

Copy semantics often incur unnecessary overhead or are unwanted
• An object may be immediately destroyed after it is copied
• An object might not want to share a resource it is holding

Move semantics provide a solution to such issues
• Move constructors/assignment operators typically “steal” the resources of the

argument
• Leave the argument in a valid but indeterminate state
• Greatly enhances performance in some cases

332

Copy and Move Semantics Move Semantics

Move Construction (1)

Typically called when an object is initialized from an rvalue of the same type
• Syntax: class_name (class_name&&) noexcept
• class_name must be the name of the current class
• The noexcept keyword should be added to indicate that the constructor

never throws an exception

Explanation
• Overload resolution decides if the copy or move constructor of an object

should be called
• Temporary values and calls to functions that return an object are rvalues
• The std::move function in the <utility> header may be used to convert

an lvalue to an rvalue
• We know that the argument does not need its resources anymore, so we can

simply steal them

333

https://en.cppreference.com/w/cpp/language/move_constructor

Copy and Move Semantics Move Semantics

Move Construction (2)
For a class type T and objects a, b, the move constructor is invoked on
• Direct initialization: T a(std::move(b));
• Copy initialization: T a = std::move(b);
• Function argument passing: f(std::move(b)); with void f(T t);
• Function return: return a; inside T f();

Example

struct A {
A(const A& other);
A(A&& other);

};
A getA();
int main() {

A a1;
A a2(a1); // calls copy constructor
A a3(std::move(a1)); // calls move constructor
A a4(getA()); // calls move constructor

}

334

Copy and Move Semantics Move Semantics

Move Assignment (1)

Typically called if an object appears on the left-hand side of an assignment with
an rvalue on the right-hand side
• Syntax: class_name& operator=(class_name&&) noexcept
• class_name must be the name of the current class
• The noexcept keyword should be added to indicate that the assignment

operator never throws an exception

Explanation
• Overload resolution decides if the copy or move assignment operator of an

object should be called
• We know that the argument does not need its resources anymore, so we can

simply steal them
• The move assignment operator returns a reference to the object itself (i.e.
*this) to allow for chaining

335

https://en.cppreference.com/w/cpp/language/move_assignment

Copy and Move Semantics Move Semantics

Move Assignment (2)
Example

struct A {
A();
A(const A&);
A(A&&) noexcept;

A& operator=(const A&);
A& operator=(A&&) noexcept;

};

int main() {
A a1;
A a2 = a1; // calls copy-constructor
A a3 = std::move(a1); // calls move-constructor

a3 = a2; // calls copy-assignment
a2 = std::move(a3); // calls move-assignment

}

336

Copy and Move Semantics Move Semantics

Implicit Declaration (1)

The compiler will implicitly declare a public move constructor if all the following
conditions hold
• There are no user-declared copy constructors
• There are no user-declared copy assignment operators
• There are no user-declared move assignment operators
• There are no user-declared destructors

The implicitly declared move constructor is defined as deleted if one of the
following is true
• The class has non-static data members that cannot be moved
• The class has a base class which cannot be moved
• The class has a base class with a deleted or inaccessible destructor
• See the reference documentation for more details

In some cases, this can be circumvented by explicitly defaulting the constructor.

337

https://en.cppreference.com/w/cpp/language/move_constructor#Implicitly-declared_move_constructor

Copy and Move Semantics Move Semantics

Implicit Declaration (2)
The compiler will implicitly declare a public move assignment operator if all the
following conditions hold
• There are no user-declared copy constructors
• There are no user-declared copy assignment operators
• There are no user-declared move constructors
• There are no user-declared destructors

The implicitly declared move assignment operator is defined as deleted if one of
the following is true
• The class has non-static data members that cannot be moved
• The class has non-static data members of reference type
• The class has a base class which cannot be moved
• The class has a base class with a deleted or inaccessible destructor
• See the reference documentation for more details

In some cases, this can be circumvented by explicitly defaulting the assignment
operator.

338

https://en.cppreference.com/w/cpp/language/move_assignment#Implicitly-declared_move_assignment

Copy and Move Semantics Move Semantics

Implicit Definition

If it is not deleted, the compiler defines the implicitly-declared move constructor
• Only if it is actually used (odr-used)
• Performs a full member-wise move of the object’s bases and members in their

initialization order
• Uses direct initialization

If it is not deleted, the compiler defines the implicitly-declared move assignment
operator
• Only if it is actually used (odr-used)
• Performs a full member-wise move assignment of the object’s bases and

members in their initialization order
• Uses built-in assignment for scalar types and move assignment for class types

339

https://en.cppreference.com/w/cpp/language/copy_constructor#Implicitly-defined_copy_constructor

Copy and Move Semantics Move Semantics

Example: Implicit Declaration & Definition

Example

struct A {
const int v;

explicit A(int v) : v(v) { }
};

int main() {
A a1(42);

A a2(std::move(a1)); // OK: calls the generated move constructor
a1 = std::move(a2); // ERROR: the implicitly-declared move

// assignment operator is deleted
}

340

Copy and Move Semantics Move Semantics

Trivial Move Constructor and Assignment Operator

The move constructor/assignment operator may be trivial
• It must not be user-provided (explicitily defaulting does not count as

user-provided)
• The class has no virtual member functions
• The move constructor/assignment operator for all direct bases and non-static

data members of class type is trivial

A trivial move constructor/assignment operator acts similar to std::memcpy
• Every scalar subobject is copied recursively and no further action is performed
• The object representation of the copied object is not necessarily identical to

the source object
• Trivially movable objects may legally be moved using std::memcpy
• All data types compatible with C are trivially movable

341

https://en.cppreference.com/w/cpp/language/move_constructor#Trivial_move_constructor

Copy and Move Semantics Move Semantics

Implementing Custom Move Operations (1)

Custom move constructors/assignment operators are often necessary
• A class that manages some kind of resource almost always requires custom

move constructors and assignment operators

Guidelines for implementing custom move operations
• The programmer should either provide neither a move constructor nor a move

assignment operator, or both
• The move assignment operator should usually include a check to detect

self-assignment
• The move operations should typically not allocate new resources, but steal

the resources from the argument
• The move operations should leave the argument in a valid state
• Any previously held resources must be cleaned up properly

342

Copy and Move Semantics Move Semantics

Implementing Custom Move Operations (2)
Example
struct A {

unsigned capacity;
int* memory;

explicit A(unsigned capacity) : capacity(capacity), memory(new int[capacity]) { }
A(A&& other) noexcept : capacity(other.capacity), memory(other.memory) {

other.capacity = 0;
other.memory = nullptr;

}
~A() { delete[] memory; }

A& operator=(A&& other) noexcept {
if (this == &other) // check for self-assignment

return *this;

delete[] memory;
capacity = other.capacity;
memory = other.memory;

other.capacity = 0;
other.memory = nullptr;

return *this;
}

};

343

Copy and Move Semantics Move Semantics

Copy Elision (1)

Compilers must omit copy and move constructors under certain circumstances
• Objects are instead directly constructed in the storage into which they would

be copied/moved
• Results in zero-copy pass-by-value semantics
• Most importantly in return statements and variable initialization from a

temporary
• More optimizations allowed, but not required

This is one of very few optimizations which is allowed to change observable
side-effects
• Not all compilers perform the same optional optimizations
• Programs that rely on side-effects of copy/move constructors and destructors

are not portable

344

https://en.cppreference.com/w/cpp/language/copy_elision

Copy and Move Semantics Move Semantics

Copy Elision (2)
Example
#include <iostream>

struct A {
int a;

A(int a) : a(a) {
std::cout << "constructed" << std::endl;

}

A(const A& other) : a(other.a) {
std::cout << "copy-constructed" << std::endl;

}
};

A foo() {
return A(42);

}

int main() {
A a = foo(); // prints only "constructed"

}

345

Copy and Move Semantics Move Semantics

Value Categories

Move semantics and copy elision require a more sophisticated taxonomy of
expressions

• glvalues identify objects
• xvalues identify an object whose

resources can be reused
• prvalues compute the value of an

operand or initialize an object

glvalue

rv
alu

e can
m

ove
cannot
m

ove

has
identity

no
identity

lvalue

xvalue prvalue

In particular, std::move just converts its argument to an xvalue expression
• std::move is exactly equivalent to a static_cast to an rvalue reference
• std::move is exclusively syntactic sugar (to guide overload resolution)

346

https://en.cppreference.com/w/cpp/language/value_category

Copy and Move Semantics Idioms

Copy-And-Swap (1)

The copy-and-swap idiom is convenient if copy assignment cannot benefit from
resource reuse
• The class defines only the class_type& operator=(class_type)

copy-and-swap assignment operator
• Acts both as copy and move assignment operator depending on the value

category of the argument

Implementation
• Exchange the resources between the argument and *this;
• Let the destructor clean up the resources of the argument

347

https://en.cppreference.com/w/cpp/language/operators#Assignment_operator

Copy and Move Semantics Idioms

Copy-And-Swap (2)

Example

#include <algorithm>
#include <cstring>

struct A {
unsigned capacity;
int* memory;

explicit A(unsigned capacity) : capacity(capacity), memory(new int[capacity]) { }
A(const A& other) : A(other.capacity) {

std::memcpy(memory, other.memory, capacity * sizeof(int));
}
~A() { delete[] memory; }

A& operator=(A other) { // copy/move constructor is called to create other
std::swap(capacity, other.capacity);
std::swap(memory, other.memory);

return *this;
} // destructor cleans up resources formerly held by *this

};

Temporarily uses more resources than strictly required

348

Copy and Move Semantics Idioms

The Rule of Three

If a class requires one of the following, it almost certainly requires all three
• A user-defined destructor
• A user-defined copy constructor
• A user-defined copy assignment operator

Explanation
• Having a user-defined copy constructor usually implies some custom setup

logic which needs to be executed by copy assignment and vice-versa
• Having a user-defined destructor usually implies some custom cleanup logic

which needs to be executed by copy assignment and vice-versa
• The implicitly-defined versions are usually incorrect if a class manages a

resource of non-class type (e.g. a raw pointer, POSIX file descriptor, etc.)

349

https://en.cppreference.com/w/cpp/language/rule_of_three

Copy and Move Semantics Idioms

The Rule of Five

If a class follows the rule of three, move operations are defined as deleted
• If move semantics are desired for a class, it has to define all five special

member functions
• If only move semantics are desired for a class, it still has to define all five

special member functions, but define the copy operations as deleted

Explanation
• Not adhering to the rule of five usually does not lead to incorrect code
• However, many optimization opportunities may be inaccessible to the

compiler if no move operations are defined

350

https://en.cppreference.com/w/cpp/language/rule_of_three#Rule_of_five

Copy and Move Semantics Idioms

Resource Acquisition is Initialization (1)

Bind the lifetime of a resource that has to be allocated to the lifetime of an object
• Resources can be allocated heap memory, sockets, files, mutexes, disk space,

database connections, etc.
• Guarantees availability of the resource during the lifetime of the object
• Guarantees that resources are released when the lifetime of the object ends
• Object should have automatic storage duration
• Known as the Resource Acquisition is Initialization (RAII) idiom

One of the most important and powerful idioms in C++!
• One consequence: Never use new and delete outside of an RAII class
• C++ already defines smart pointers that are RAII wrappers for new and
delete

• Thus we almost never need to use new and delete in our code

351

https://en.cppreference.com/w/cpp/language/raii

Copy and Move Semantics Idioms

Resource Acquisition is Initialization (2)

Implementation of RAII
• Encapsulate each resource into a class whose sole responsibility is managing

the resource
• The constructor acquires the resource and establishes all class invariants
• The destructor releases the resource
• Typically, copy operations should be deleted and custom move operations

need to be implemented

Usage of RAII classes
• RAII classes should only be used with automatic or temporary storage

duration
• Ensures that the compiler manages the lifetime of the RAII object and thus

indirectly manages the lifetime of the resource

352

Copy and Move Semantics Idioms

Resource Acquisition is Initialization (3)
Example

class CustomIntBuffer {
private:

int* memory;
public:

explicit CustomIntBuffer(unsigned size) : memory(new int[size]) { }
CustomIntBuffer(const CustomIntBuffer&) = delete;
CustomIntBuffer(CustomIntBuffer&& other) noexcept : memory(other.memory) {

other.memory = nullptr;
}
~CustomIntBuffer() { delete[] memory; }

CustomIntBuffer& operator=(const CustomIntBuffer&) = delete;
CustomIntBuffer& operator=(CustomIntBuffer&& other) noexcept {

if (this != &other) {
delete[] memory;
memory = other.memory;
other.memory = nullptr;

}
return *this;

}

int* getMemory() { return memory; }
const int* getMemory() const { return memory; }

};

353

Copy and Move Semantics Idioms

Resource Acquisition is Initialization (4)
Example usage of the CustomIntBuffer class

#include <utility>

bool foo(CustomIntBuffer buffer) {
/* do something */

if (condition)
return false; // no worries about forgetting to free memory

/* do something more */

return true; // no worries about forgetting to free memory
}

int main() {
CustomIntBuffer buffer(5);

return foo(std::move(buffer));
}

354

Ownership

Ownership

355

Ownership

Ownership Semantics

One of the main challenges in manual memory management is tracking ownership
• Traditionally, owners can be, e.g., functions or classes
• Only the owner of some dynamically allocated memory may safely free it
• Multiple objects may have a pointer to the same dynamically allocated

memory

The RAII idiom and move semantics together enable ownership semantics
• A resource should be “owned”, i.e. encapsulated, by exactly one C++ object

at all times
• Ownership can only be transferred explicitly by moving the respective object
• E.g., the CustomIntBuffer class implements ownership semantics for a

dynamically allocated int-array

356

Ownership Smart Pointers

std::unique_ptr (1)

std::unique_ptr is a so-called smart pointer
• Essentially implements RAII/ownership semantics for arbitrary pointers
• Assumes unique ownership of another C++ object through a pointer
• Automatically disposes of that object when the std::unique_ptr goes out

of scope
• A std::unique_ptr may own no object, in which case it is empty
• Can be used (almost) exactly like a raw pointer
• But: std::unique_ptr can only be moved, not copied

std::unique_ptr is defined in the <memory> standard header
• It is a template class, and can be used for arbitrary types
• Syntax: std::unique_ptr< type > where one would otherwise

use type*

std::unique_ptr should always be preferred over raw pointers!

357

https://en.cppreference.com/w/cpp/memory/unique_ptr

Ownership Smart Pointers

std::unique_ptr (2)
Usage of std::unique_ptr (for details: see reference documentation)

Creation
• std::make_unique<type>(arg0, ..., argN), where arg0, ...,
argN are passed to the constructor of type

Indirection, subscript, and member access
• The indirection, subscript, and member access operators *, [] and -> can be

used in the same way as for raw pointers

Conversion to bool
• std::unique_ptr is contextually convertible to bool, i.e. it can be used in
if statements in the same way as raw pointers

Accessing the raw pointer
• The get() member function returns the raw pointer
• The release() member function returns the raw pointer and releases

ownership
358

https://en.cppreference.com/w/cpp/memory/unique_ptr

Ownership Smart Pointers

std::unique_ptr (3)
Example

#include <memory>

struct A {
int a;
int b;

A(int a, int b) : a(a), b(b) { }
};
void foo(std::unique_ptr<A> aptr) { // assumes ownership

/* do something */
}
void bar(const A& a) { // does not assume ownership

/* do something */
}
int main() {

std::unique_ptr<A> aptr = std::make_unique<A>(42, 123);
int a = aptr->a;
bar(*aptr); // retain ownership
foo(std::move(aptr)); // transfer ownership

}

359

Ownership Smart Pointers

std::unique_ptr (4)

std::unique_ptr can also be used for heap-based arrays

std::unique_ptr<int[]> foo(unsigned size) {
std::unique_ptr<int[]> buffer = std::make_unique<int[]>(size);

for (unsigned i = 0; i < size; ++i)
buffer[i] = i;

return buffer; // transfer ownership to caller
}

int main() {
std::unique_ptr<int[]> buffer = foo(42);

/* do something */
}

360

Ownership Smart Pointers

std::shared_ptr (1)

Rarely, true shared ownership is desired
• A resource may be simultaneously have several owners
• The resource should only be released once the last owner releases it
• std::shared_ptr defined in the <memory> standard header can be used

for this
• Multiple std::shared_ptr objects may own the same raw pointer

(implemented through reference counting)
• std::shared_ptr may be copied and moved

Usage of std::shared_ptr
• Use std::make_shared for creation
• Remaining operations analogous to std::unique_ptr
• For details: See the reference documentation

std::shared_ptr is rather expensive and should be avoided when possible

361

Ownership Smart Pointers

std::shared_ptr (2)

Example

#include <memory>
#include <vector>

struct Node {
std::vector<std::shared_ptr<Node>> children;

void addChild(std::shared_ptr<Node> child);
void removeChild(unsigned index);

};

int main() {
Node root;
root.addChild(std::make_shared<Node>());
root.addChild(std::make_shared<Node>());
root.children[0]->addChild(root.children[1]);

root.removeChild(1); // does not free memory yet
root.removeChild(0); // frees memory of both children

}

362

Ownership Smart Pointers

Usage Guidelines: Pointers (1)

std::unique_ptr represents ownership
• Used for dynamically allocated objects

• Frequently required for polymorphic objects
• Useful to obtain a movable handle to an immovable object

• std::unique_ptr as a function parameter or return type indicates a
transfer of ownership

• std::unique_ptr should almost always be passed by value

Raw pointers represent resources
• Should almost always be encapsulated in RAII classes (mostly
std::unique_ptr)

• Very occasionally, raw pointers are desired as function parameters or return
types

• If ownership is not transferred, but there might be no object (i.e. nullptr)
• If ownership is not transferred, but pointer arithmetic is required

363

Ownership Smart Pointers

Usage Guidelines: References (2)

References grant temporary access to an object without assuming ownership
• If necessary, a reference can be obtained from a smart pointer through the

indirection operator *

Ownership can also be relevant for other types (e.g. std::vector)
• Moving (i.e. transferring ownership) should always be preferred over copying
• Should be passed by lvalue-reference if ownership is not transferred
• Should be passed by rvalue-reference if ownership is transferred
• Should be passed by value if they should be copied

Rules can be relaxed if an object is not copyable
• Should be passed by lvalue-reference if ownership is not transferred
• Should be passed by value if ownership is transferred

364

Ownership Smart Pointers

Usage Guidelines (3)

Example

struct A { };

// reads a without assuming ownership
void readA(const A& a);
// may read and modify a but doesn't assme ownership
void readWriteA(A& a);
// assumes ownership of A
void consumeA(A&& a);
// works on a copy of A
void workOnCopyOfA(A a);

int main() {
A a;

readA(a);
readWriteA(a);
workOnCopyOfA(a);
consumeA(std::move(a)); // cannot call without std::move

}

365

Ownership Smart Pointers

Usage Guidelines: Function Arguments (1)

When dealing with an object of type T use the following rough guidelines to
decide which type to use when passing it as function argument:

Situation Type to Use
•Ownership of object should be transferred to
callee
•Potential copies are acceptable or T is not copy-
able
•Object is relatively small (at most ≈ one cache
line)

T

•Ownership of object should be transferred to
callee
•Object is relatively large (more than ≈ one cache
line), so it should live on the heap

std::unique_ptr<T>

366

Ownership Smart Pointers

Usage Guidelines: Function Arguments (2)

Situation Type to Use
•Ownership of object should not be transferred
to callee
•Callee should not modify object
•Object is larger than a pointer

const T&

•Ownership of object should not be transferred
to callee
•Callee is expected to modify the object

T&

•Same as const T&, but should be nullable const T*

•Same as T&, but should be nullable T*

367

Inheritance

Inheritance

368

Inheritance

Object-Oriented Programming

Object-oriented programming is based on three fundamental concepts

• Data abstraction
• Implemented by classes in C++
• Covered previously

• Inheritance
• Implemented by class derivation in C++
• Derived Classes inherit the members of its base class(es)
• Covered in this lecture

• Dynamic Binding (Polymorphism)
• Implemented by virtual functions in C++
• Programs need not care about the specific types of objects in an inheritance

hierarchy
• Covered in this lecture

369

Inheritance Basic Non-Polymorphic Inheritance

Derived Classes (1)

Any class type may be derived from one or more base classes
• Possible for both class and struct
• Base classes may in turn be derived from their own base classes
• Classes form an inheritance hierarchy

High-level Syntax

class class-name : base-specifier-list {
member-specification

};

struct class-name : base-specifier-list {
member-specification

};

370

https://en.cppreference.com/w/cpp/language/derived_class

Inheritance Basic Non-Polymorphic Inheritance

Derived Classes (2)

The base-specifier-list contains a comma-separated list of one or more
base-specifiers with the following syntax

access-specifier virtual-specifier base-class-name

Explanation
• access-specifier controls the inheritance mode (more details soon)
• access-specifier is optional; if present it can be one of the keywords
private, protected or public

• base-class-name is mandatory, it specifies the name of the class from
which to derive

• virtual-specifier is optional; if present it must be the keyword
virtual (only used for multiple inheritance)

371

Inheritance Basic Non-Polymorphic Inheritance

Derived Classes (3)

Examples

class Base {
int a;

};

class Derived0 : Base {
int b;

};

class Derived1 : private Base {
int c;

};

class Derived2 : public virtual Base, private Derived1 {
int d;

};

372

Inheritance Basic Non-Polymorphic Inheritance

Constructors and Initialization (1)

Constructors of derived classes account for the inheritance
1. The direct non-virtual base classes are initialized in left-to-right order as they

appear in the base-specifier-list
2. The non-static data members are initialized in the order of declaration in the

class definition
3. The body of the constructor is executed

The initialization order is independent of any order in the member initializer list

Base classes are default-initialized unless specified otherwise
• Another constructor can explicitly be invoked using the delegating

constructor syntax

373

https://en.cppreference.com/w/cpp/language/initializer_list

Inheritance Basic Non-Polymorphic Inheritance

Constructors and Initialization (2)
Consider the class definitions

foo.hpp
struct Base {

int a;

Base();
explicit Base(int a);

};

struct Derived : Base {
int b;

Derived();
Derived(int a, int b);

};

foo.cpp
#include "foo.hpp"
#include <iostream>

using namespace std;

Base::Base()
: a(42) {
cout << "Base::Base()" << endl;

}

Base::Base(int a)
: a(a) {
cout << "Base::Base(int)" << endl;

}

Derived::Derived() {
: b(42) {
cout << "Derived::Derived()" << endl;

}

Derived::Derived(int a, int b)
: Base(a), b(b) {
cout << "Derived::Derived(int, int)" << endl;

}

374

Inheritance Basic Non-Polymorphic Inheritance

Constructors and Initialization (3)

Using the above class definitions, consider the following program
main.cpp

#include "foo.hpp"

int main() {
Derived derived0;
Derived derived1(123, 456);

}

Then the output of this program would be

$./foo
Base::Base()
Derived::Derived()
Base::Base(int)
Derived::Derived(int, int)

375

Inheritance Basic Non-Polymorphic Inheritance

Destructors (1)

Similarly to constructors, destructors of derived classes account for the inheritance
1. The body of the destructor is executed
2. The destructors of all non-static members are called in reverse order of

declaration
3. The destructors of all direct non-virtual base classes are called in reverse

order of construction

The order in which the base class destructors are called is deterministic
• It depends on the order of construction, which in turn only depends on the

order of base classes in the base-specifier-list

376

https://en.cppreference.com/w/cpp/language/destructor#Destruction_sequence

Inheritance Basic Non-Polymorphic Inheritance

Destructors (2)

Consider the class definitions
foo.hpp

struct Base0 {
~Base0();

};

struct Base1 {
~Base1();

};

struct Derived : Base0, Base1 {
~Derived();

};

foo.cpp
#include "foo.hpp"
#include <iostream>

using namespace std;

Base0::~Base0() {
cout << "Base0::~Base0()" << endl;

}

Base1::~Base1() {
cout << "Base1::~Base1()" << endl;

}

Derived::~Derived() {
cout << "Derived::~Derived()" << endl;

}

377

Inheritance Basic Non-Polymorphic Inheritance

Destructors (3)

Using the above class definitions, consider the program
main.cpp

#include "foo.hpp"

int main() {
Derived derived;

}

Then the output of this program would be

$./foo
Derived::~Derived()
Base1::~Base1()
Base0::~Base0()

378

Inheritance Basic Non-Polymorphic Inheritance

Unqualified Name Lookup (1)

It is allowed (although discouraged) to use a name multiple times in an
inheritance hierarchy
• Affects unqualified name lookups (lookups without the use of the scope

resolution operator ::)
• A deterministic algorithm decides which alternative matches an unqualified

name lookup
• Rule of thumb: Declarations in the derived classes “hide” declarations in the

base classes

Multiple inheritance can lead to additional problems even without reusing a name
• In a diamond-shaped inheritance hierarchy, members of the root class appear

twice in the most derived class
• Can be solved with virtual inheritance
• Should still be avoided whenever possible

379

https://en.cppreference.com/w/cpp/language/unqualified_lookup

Inheritance Basic Non-Polymorphic Inheritance

Unqualified Name Lookup (2)

Single inheritance example

struct A {
void a();

};

struct B : A {
void a();
void b() {

a(); // calls B::a()
}

};

struct C : B {
void c() {

a(); // calls B::a()
}

};

380

Inheritance Basic Non-Polymorphic Inheritance

Unqualified Name Lookup (3)

Diamond inheritance example

struct X {
void x();

};

struct B1 : X { };
struct B2 : X { };

struct D : B1, B2 {
void d() {

x(); // ERROR: x is present in B1 and B2
}

};

381

Inheritance Basic Non-Polymorphic Inheritance

Qualified Name Lookup

Qualified name lookup can be used to explicitly resolve ambiguities
• Similar to qualified namespace lookups, a class name can appear to the left

of the scope resolution operator ::

struct A {
void a();

};

struct B : A {
void a();

};

int main() {
B b;
b.a(); // calls B::a()
b.A::a(); // calls A::a()

}

382

https://en.cppreference.com/w/cpp/language/qualified_lookup

Inheritance Basic Non-Polymorphic Inheritance

Object Representation

The object representation of derived class objects accounts for inheritance
• The base class object is stored as a subobject in the derived class object
• Thus, derived classes may still be trivially constructible, copyable, or

destructible

foo.cpp
struct A {

int a = 42;
int b = 123;

};

struct B : A {
int c = 456;

};

int main() {
B b;

}

foo.o
main:

pushq %rbp
movq %rsp, %rbp
movl $42, -12(%rbp)
movl $123, -8(%rbp)
movl $456, -4(%rbp)
movl $0, %eax
popq %rbp
ret

383

https://en.cppreference.com/w/cpp/language/object#Subobjects

Inheritance Polymorphic Inheritance

Polymorphic Inheritance

By default, inheritance in C++ is non-polymorphic
• Member definitions in a derived class can hide definitions in the base class
• For example, it matters if we call a function through a pointer to a base

object or a pointer to a derived object

#include <iostream>

struct Base {
void foo() { std::cout << "Base::foo()" << std::endl; }

};

struct Derived : Base {
void foo() { std::cout << "Derived::foo()" << std::endl; }

};

int main() {
Derived d;
Base& b = d;

d.foo(); // prints Derived::foo()
b.foo(); // prints Base::foo()

}

384

Inheritance Polymorphic Inheritance

The virtual Function Specifier (1)

Used to mark a non-static member function as virtual
• Enables dynamic dispatch for this function
• Allows the function to be overriden in derived classes
• A class with at least one virtual function is polymorphic

The overridden behavior of the function is preserved even when no compile-time
type information is available
• A call to an overridden virtual function through a pointer or reference to a

base object will invoke the behavior defined in the derived class
• This behavior is suppressed when qualified name lookup is used for the

function call

385

https://en.cppreference.com/w/cpp/language/virtual

Inheritance Polymorphic Inheritance

The virtual Function Specifier (2)
Example
#include <iostream>

struct Base {
virtual void foo() { std::cout << "Base::foo()" << std::endl; }

};
struct Derived : Base {

void foo() { std::cout << "Derived::foo()" << std::endl; }
};
int main() {

Base b;
Derived d;
Base& br = b;
Base& dr = d;

d.foo(); // prints Derived::foo()
dr.foo(); // prints Derived::foo()
d.Base::foo(); // prints Base::foo()
dr.Base::foo(); // prints Base::foo()

br.foo(); // prints Base::foo()
}

386

Inheritance Polymorphic Inheritance

Conditions for Overriding Functions (1)

A function overrides a virtual base class function if
• The function name is the same
• The parameter type list (but not the return type) is the same
• The return type must be the same or covariant
• The cv-qualifiers of the function are the same
• The ref-qualifiers of the function are the same

If these conditions are met, the function overrides the virtual base class function
• The derived function is also virtual and can be overridden by further-derived

classes
• The base class function does not need to be visible

If these conditions are not met, the function hides the virtual base class function

387

https://en.cppreference.com/w/cpp/language/virtual#In_detail

Inheritance Polymorphic Inheritance

Conditions for Overriding Functions (2)
Example

struct Base {
private:
virtual void bar();

public:
virtual void foo();

};

struct Derived : Base {
void bar(); // Overrides Base::bar()
void foo(int baz); // Hides Base::foo()

};

int main() {
Derived d;
Base& b = d;

d.foo(); // ERROR: lookup finds only Derived::foo(int)
b.foo(); // invokes Base::foo();

}

388

Inheritance Polymorphic Inheritance

The Final Overrider (1)

Every virtual function has a final overrider
• The final overrider is executed when a virtual function call is made
• A virtual member function is the final overrider unless a derived class declares

a function that overrides it

A derived class can also inherit a function that overrides a virtual base class
function through multiple inheritance
• There must only be one final overrider at all times
• Multiple inheritance should be avoided anyway

389

https://en.cppreference.com/w/cpp/language/virtual#In_detail

Inheritance Polymorphic Inheritance

The Final Overrider (2)
Example

struct A {
virtual void foo();
virtual void bar();
virtual void baz();

};
struct B : A {

void foo();
void bar();

};
struct C : B {

void foo();
};
int main() {

C c;
A& cr = c;

cr.foo(); // invokes C::foo()
cr.bar(); // invokes B::bar()
cr.baz(); // invokes A::baz()

}

390

Inheritance Polymorphic Inheritance

The Final Overrider (3)
The final overrider depends on the actual type of an object

struct A {
virtual void foo();
virtual void bar();
virtual void baz();

};
struct B : A {

void foo();
void bar();

};
struct C : B {

void foo();
};
int main() {

B b;
A& br = b;

br.foo(); // invokes B::foo()
br.bar(); // invokes B::bar()
br.baz(); // invokes A::baz()

}

391

Inheritance Polymorphic Inheritance

Covariant Return Types (1)

The overriding and base class functions can have covariant return types
• Both types must be single-level pointers or references to classes
• The referenced/pointed-to class in the base class function must be a direct or

indirect base class of the referenced/pointed-to class in the derived class
function

• The return type in the derived class function must be at most as cv-qualified
as the return type in the base class function

• Most of the time, the referenced/pointed-to class in the derived class
function is the derived class itself

392

https://en.cppreference.com/w/cpp/language/virtual#Covariant_return_types

Inheritance Polymorphic Inheritance

Covariant Return Types (2)

Example

struct Base {
virtual Base* foo();
virtual Base* bar();

};

struct Derived : Base {
Derived* foo(); // Overrides Base::foo()
int bar(); // ERROR: Overrides Base::bar() but has

// non-covariant return type
};

393

Inheritance Polymorphic Inheritance

Construction and Destruction

Virtual functions have to be used carefully during construction and destruction
• During construction and destruction, a class behaves as if no more-derived

classes exist
• I.e., virtual function calls during construction and destruction call the final

overrider in the constructor’s or destructor’s class

struct Base {
Base() { foo(); }
virtual void foo();

};

struct Derived : Base {
void foo();

};

int main() {
Derived d; // On construction, Base::foo() is called

}

394

https://en.cppreference.com/w/cpp/language/virtual#During_construction_and_destruction

Inheritance Polymorphic Inheritance

Virtual Destructors

Derived objects can be deleted through a pointer to the base class
• Undefined behavior unless the destructor in the base class is virtual
• The destructor in a base class should either be protected and non-virtual or

public and virtual

#include <memory>

struct Base {
virtual ~Base() { };

};

struct Derived : Base { };

int main() {
Base* b = new Derived();
delete b; // OK

}

395

https://en.cppreference.com/w/cpp/language/destructor#Virtual_destructors

Inheritance Polymorphic Inheritance

The override Specifier

The override specifier should be used to prevent bugs
• The override specifier can appear directly after the declarator in a member

function declaration or inline member function definition
• Ensures that the member function is virtual and overrides a base class method
• Useful to avoid bugs where a function in a derived class actually hides a base

class function instead of overriding it

struct Base {
virtual void foo(int i);
virtual void bar();

};

struct Derived : Base {
void foo(float i) override; // ERROR
void bar() const override; // ERROR

};

396

https://en.cppreference.com/w/cpp/language/override

Inheritance Polymorphic Inheritance

The final Specifier (1)

The final specifier can be used to prevent overriding a function
• The final specifier can appear directly after the declarator in a member

function declaration or inline member function definition

struct Base {
virtual void foo() final;

};

struct Derived : Base {
void foo() override; // ERROR

};

397

https://en.cppreference.com/w/cpp/language/final

Inheritance Polymorphic Inheritance

The final Specifier (2)

The final specifier can be used to prevent inheritance from a class
• The final specifier can appear in a class definition, immediately after the

class name

struct Base final {
virtual void foo();

};

struct Derived : Base { // ERROR
void foo() override;

};

398

Inheritance Polymorphic Inheritance

Abstract Classes (1)

C++ allows abstract classes which cannot be instantiated, but used as a base class
• Any class which declares or inherits at least one pure virtual function is an

abstract class
• A pure virtual member function declaration contains the sequence = 0 after

the declarator and override/final specifiers
• Pointers and references to an abstract class can be declared

A definition can still be provided for a pure virtual function
• Derived classes can call this function using qualified name lookup
• The pure specifier = 0 cannot appear in a member function definition (i.e.

the definition can not be provided inline)

Making a virtual function call to a pure virtual function in the constructor or
destructor of an abstract class is undefined behavior

399

https://en.cppreference.com/w/cpp/language/abstract_class

Inheritance Polymorphic Inheritance

Abstract Classes (2)

Example

struct Base {
virtual void foo() = 0;

};

struct Derived : Base {
void foo() override;

};

int main() {
Base b; // ERROR
Derived d;
Base& dr = d;
dr.foo(); // calls Derived::foo()

}

400

Inheritance Polymorphic Inheritance

Abstract Classes (3)

A definition may be provided for a pure virtual function

struct Base {
virtual void foo() = 0;

};

void Base::foo() { /* do something */ }

struct Derived : Base {
void foo() override { Base::foo(); }

};

401

Inheritance Polymorphic Inheritance

Abstract Classes (4)

The destructor may also be marked as pure virtual
• Useful when a class needs to be abstract, but has no suitable functions that

could be declared pure virtual
• In this case a definition must be provided

struct Base {
virtual ~Base() = 0;

};

Base::~Base() { }

int main() {
Base b; // ERROR

}

402

https://en.cppreference.com/w/cpp/language/destructor#Pure_virtual_destructors

Inheritance Polymorphic Inheritance

Abstract Classes (5)
Abstract classes cannot be instantiated
• Programs have to refer to abstract classes through pointers or references
• Smart pointers (owning), references (non-owning), or raw pointers (if
nullptr is possible)

#include <memory>

struct Base {
virtual ~Base();
virtual void foo() = 0;

};

struct Derived : Base { void foo() override; };

void bar(const Base& b) { b.foo(); }

int main() {
std::unique_ptr<Base> b = std::make_unique<Derived>();
b->foo(); // calls Derived::foo()

bar(*b); // calls Derived::foo() within bar
} // destroys b, undefined behavior unless ~Base() is virtual

403

Inheritance Conversions

dynamic_cast (1)

Converts pointers and references to classes in an inheritance hierarchy
• Syntax: dynamic_cast < new_type > (expression)
• new_type may be a pointer or reference to a class type
• expression must be an lvalue expression of reference type if new_type is a

reference type, and an rvalue expression of pointer type otherwise

Most common use case: Safe downcasts in an inheritance hierarchy
• Involves a runtime check whether new_type is a base of the actual

polymorphic type of expression
• If the check fails, returns nullptr for pointer types, and throws an

exception for reference types
• Requires runtime type information which incurs some overhead

For other use cases: See the reference documentation

404

https://en.cppreference.com/w/cpp/language/dynamic_cast

Inheritance Conversions

dynamic_cast (2)

Example

struct A {
virtual ~A() = 0;

};

struct B : A {
void foo() const;

};

struct C : A {
void bar() const;

};

void baz(const A* aptr) {
if (const B* bptr = dynamic_cast<const B*>(aptr)) {

bptr->foo();
} else if (const C* cptr = dynamic_cast<const C*>(aptr)) {

cptr->bar();
}

}

405

Inheritance Conversions

dynamic_cast (3)
dynamic_cast has a non-trivial performance overhead
• Notable impact if many casts have to be performed
• Alternative: Use a type enum in conjunction with static_cast

struct Base {
enum class Type {

Base,
Derived

};

Type type;

Base() : type(Type::Base) { }
Base(Type type) : type(type) { }

virtual ~Base();
};

struct Derived : Base {
Derived() : Base(Type::Derived) { }

};

406

Inheritance Conversions

dynamic_cast (4)

Example (continued)

void bar(const Base* basePtr) {
switch (basePtr->type) {
case Base::Type::Base:

/* do something with Base */
break;

case Base::Type::Derived:
const Derived* derivedPtr

= static_cast<const Derived*>(basePtr);

/* do something with Derived */

break;
}

}

407

Inheritance Implementation of Polymorphic Inheritance

Vtables (1)

Polymorphism does not come for free
• Dynamic dispatch has to be implemented somehow
• The C++ standard does not prescribe a specific implementation
• Compilers typically use vtables to resolve virtual function calls

Vtables setup and use
• One vtable is constructed per class with virtual functions
• The vtable contains the addresses of the virtual functions of that class
• Objects of classes with virtual functions contain an additional pointer to the

base of the vtable
• When a virtual function is invoked, the pointer to the vtable is followed and

the function that should be executed is resolved

408

Inheritance Implementation of Polymorphic Inheritance

Vtables (2)

Example
struct Base {

virtual void foo();
virtual void bar();

};

struct Derived : Base {
void foo() override;

};

int main() {
Base b;
Derived d;

Base& br = b;
Base& dr = d;

br.foo();
dr.foo();

}

Stack

Base b:
vtable pointer

Derived d:
vtable pointer

Code Segment
vtable for Base:

vtable for Derived:

Base::foo():

Base::bar():

Derived::foo():
Instructions...

Instructions...

Instructions... Base::foo()
Base::bar()

Derived::foo()
Base::bar()

409

Inheritance Implementation of Polymorphic Inheritance

Performance Implications

Virtual function calls incur an additional indirection
• The pointer to the vtable is followed
• The pointer to the actual function is followed
• Each step may incur a cache miss
• Can be very notable when invoking a virtual function millions of times

Polymorphic objects have larger size
• Each object of a polymorphic class needs to store a pointer to the vtable
• In our example, both Base and Derived occupy 8 bytes of memory despite

having no data members

410

Inheritance Inheritance Modes

Inheritance Modes

Recall the definition of a base-specifier

access-specifier virtual-specifier base-class-name

The access-specifier specifies the inheritance mode
• The inheritance mode controls the access mode of base class members in the

derived class
• If no access-specifier is given, derived classes defined with struct have
public inheritance mode by default

• If no access-specifier is given, derived classes defined with class have
private inheritance mode by default

411

https://en.cppreference.com/w/cpp/language/derived_class

Inheritance Inheritance Modes

Public Inheritance (1)

Semantics
• Public base class members are usable as public members of the derived class
• Protected base class members are usable as protected members of the

derived class

Models the subtyping (IS-A) relationship of object-oriented programming
• Pointers and references to a derived object should be usable wherever a

pointer to the a base object is expected
• A derived class must maintain the class invariants of its base classes
• A derived class must not strengthen the preconditions of any member

function it overrides
• A derived class must not weaken the postconditions of any member function

it overrides

412

https://en.cppreference.com/w/cpp/language/derived_class#Public_inheritance

Inheritance Inheritance Modes

Public Inheritance (2)
Example

class A {
protected:
int a;

public:
int b;

};

class B : public A {
public:
void foo() {

return a + 42; // OK: a is usable as protected member of B
}

};

int main() {
B b;
b.b = 42; // OK: b is usable as public member of B
b.a = 42; // ERROR: a is not visible

}

413

Inheritance Inheritance Modes

Private Inheritance (1)

Semantics
• Public base class members are usable as private members of the derived class
• Protected base class members are usable as private members of the derived

class

Some specialized use cases
• Policy-based design using templates (more details later)
• Mixins
• Model composition if some requirements are met

• The base object needs to be constructed or destructed before or after some
object in the derived object

• The derived class needs access to protected members of the base class
• The derived class needs to override virtual methods in the base class

414

https://en.cppreference.com/w/cpp/language/derived_class#Private_inheritance

Inheritance Inheritance Modes

Private Inheritance (2)

Example

class A {
protected:
A(int); // Constructor is protected for some reason

};

class C : private A {
public:
C() : A(42) { }

const A& getA() { // Act as if we have a member of type A
return *this;

}
};

415

Inheritance Inheritance Modes

Protected Inheritance (1)

Semantics
• Public base class members are usable as protected members of the derived

class
• Protected base class members are usable as protected members of the

derived class
• Within the derived class and all further-derived classes, pointers and

references to a derived object may be used where a pointer or reference to
the base object is expected

Models “controlled polymorphism”
• Mainly used for the same purposes as private inheritance, where inheritance

should be shared with subclasses
• Rarely seen in practice

416

https://en.cppreference.com/w/cpp/language/derived_class#Protected_inheritance

Inheritance Inheritance Modes

Protected Inheritance (2)
Example

class A {
protected:
int a;

public:
int b;

};

class B : protected A {
public:
void foo() {

return a + 42; // OK: a is usable as protected member of B
}

};

int main() {
B b;
b.b = 42; // ERROR: b is not visible
b.a = 42; // ERROR: a is not visible

}

417

Inheritance Multiple Inheritance

Multiple Inheritance

C++ supports multiple inheritance
• Rarely required
• Easy to produce convoluted code
• Leads to implementation issues (e.g. diamond-inheritance)

There are C++ language features to address such issues
• You will likely never need multiple inheritance during this lecture
• For details: Check the reference documentation
• Multiple inheritance should be avoided whenever possible

418

https://en.cppreference.com/w/cpp/language/derived_class

Inheritance Exceptions

Exceptions in C++

C++ supports exceptions with similar semantics as other languages
• Exceptions transfer control and information up the call stack
• Can be thrown by throw-expressions, dynamic_cast, new-expressions and

some standard library functions

While transferring control up the call stack, C++ performs stack unwinding
• Properly cleans up all objects with automatic storage duration
• Ensures correct behavior e.g. of RAII classes

Exceptions do not have to be handled
• Can be handled in try-catch blocks
• Unhandled exceptions lead to termination of the program though
• Errors during exception handling also lead to termination of the program

419

https://en.cppreference.com/w/cpp/language/exceptions

Inheritance Exceptions

Throwing Exceptions

Objects of any complete type may be thrown as exception objects
• Usually exception objects should derive directly or indirectly from
std::exception, and contain information about the error condition

• Syntax: throw expression
• Copy-initializes the exception object from expression and throws it

#include <exception>

void foo(unsigned i) {
if (i == 42)

throw 42;

throw std::exception();
}

420

https://en.cppreference.com/w/cpp/language/throw

Inheritance Exceptions

Handling Exceptions

Exceptions are handled in try-catch blocks
• Exceptions that occur while executing the try-block can be handled in the
catch-blocks

• The parameter type of the catch-block determines which type of exception
causes the block to be entered

#include <exception>

void bar() {
try {

foo(42);
} catch (int i) {

/* handle exception */
} catch (const std::exception& e) {

/* handle exception */
}

}

421

https://en.cppreference.com/w/cpp/language/try_catch

Inheritance Exceptions

Usage Guidelines

Exceptions should only be used in rare cases
• Main legitimate use case: Failure to (re)establish a class invariant (e.g.

failure to acquire a resource in an RAII constructor)
• Functions should not throw exceptions when preconditions are not met – use

assertions instead
• Exceptions should not be used for control flow

Some functions must not throw exceptions
• Destructors
• Move constructors and assignment operators
• See reference documentation for details

Generally, exceptions should be avoided where possible

422

https://en.cppreference.com/w/cpp/language/exceptions

Templates

Templates

423

Templates

Motivation

Functionality is often independent of a specific type T
• E.g. swap(T& a, T& b)
• E.g. std::vector<T>
• Many more examples (e.g. in exercises)

Functionality should be available for all suitable types T
• How to avoid massive code duplication?
• How to account for user-defined types?

424

Templates Basic Templates

Templates

A template defines a family of classes, functions, type aliases, or variables

• Templates are parameterized by one or more template parameters
• Type template parameters
• Non-type template parameters
• Template template parameters

• In order to use a template, template arguments need to be provided
• Template arguments are substituted for the template parameters
• Results in a specialization of the template

• Templates are a compile-time construct
• When used (inaccurate, more details soon), templates are instantiated
• Template instantiation actually compiles the code for the respective

specialization

425

Templates Basic Templates

Example

(Simplified) definition of std::vector

class A;
//--
template <class T> // T is a type template parameter
class vector {

public:
/* ... */
void push_back(const T& element);
/* ... */

};
//--
int main() {

vector<int> vectorOfInt; // int is substituted for T
vector<A> vectorOfA; // A is substituted for T

}

426

Templates Basic Templates

Template Syntax

Several C++ entities can be declared as templates
• Syntax: template < parameter-list > declaration

parameter-list is a comma-separated list of template parameters
• Type template parameters
• Non-type template parameters
• Template template parameters

declaration is one of the following declarations
• class, struct or union
• A nested member class or enumeration type
• A function or member function
• A static data member at namespace scope or a data member at class scope
• A type alias

427

https://en.cppreference.com/w/cpp/language/templates

Templates Basic Templates

Type Template Parameters

Type template parameters are placeholders for arbitrary types
• Syntax: typename name or class name
• name may be omitted (e.g. in forward declarations)
• There is no difference between using typename or class
• In the body of the template declaration, name is a type alias for the type

supplied during instantiation

template <class, class>
struct Baz;
//--
template <class T>
struct Foo {

T bar(T t) {
return t + 42;

}
};

428

https://en.cppreference.com/w/cpp/language/template_parameters#Type_template_parameter

Templates Basic Templates

Non-Type Template Parameters

Non-type template parameters are placeholders for certain values
• Syntax: type name
• name may be omitted (e.g. in forward declarations)
• type may be an integral type, pointer type, enumeration type or lvalue

reference type
• Within the template body, name of a non-type parameter can be used in

expressions

template <class T, size_t N>
class Array {

T storage[N];

public:
T& operator[](size_t i) {

assert(i < N);
return storage[i];

}
};

429

https://en.cppreference.com/w/cpp/language/template_parameters#Non-type_template_parameter

Templates Basic Templates

Template Template Parameters

Type template parameters can themselves be templated
• Syntax: template < parameter-list > typename name or
template < parameter-list > class name

• name may be omitted (e.g. in forward declarations)
• Within the template body, name is a template name, i.e. it needs template

arguments to be instantiated

template <template <class, size_t> class ArrayType>
class Foo {

ArrayType<int, 42> someArray;
};

Rarely used or required, should be avoided whenever possible

430

https://en.cppreference.com/w/cpp/language/template_parameters#Template_template_parameter

Templates Basic Templates

Default Template Arguments

All three types of template parameters can have default values
• Syntax: template-parameter = default
• default must be a type name for type and template template parameters,

and a literal for non-type template parameters
• Template parameters with default values may not be followed by template

parameters without default values

template <typename T = std::byte, size_t Capacity = 1024>
class Buffer {

T storage[Capacity];
};

431

https://en.cppreference.com/w/cpp/language/template_parameters#Default_template_arguments

Templates Basic Templates

Using Templates

In order to use a templated entity, template arguments need to be provided
• Syntax: template-name < parameter-list >
• template-name must be an identifier that names a template
• parameter-list is a comma-separated list of template arguments
• Results in a specialization of the template

Template arguments must match the template parameters
• At most as many arguments as parameters
• One argument for each parameter without a default value

In some cases, template arguments can be deduced automatically.

432

https://en.cppreference.com/w/cpp/language/templates#template-id

Templates Basic Templates

Type Template Arguments

Template arguments for type template parameters must name a type (which may
be incomplete)

class A;
//--
template <class T1, class T2 = int, class T3 = double>
class Foo { };
//--
int main() {

Foo<int> foo1;
Foo<A> foo2;
Foo<A*> foo3;
Foo<int, A> foo4;
Foo<int, A, A> foo5;

}

433

https://en.cppreference.com/w/cpp/language/template_parameters#Template_type_arguments

Templates Basic Templates

Non-Type Template Arguments (1)

Template arguments for non-type template parameters must be (converted)
constant expressions
• Converted constant expressions can be evaluated at compile-time
• May incur a limited set of implicit conversions
• The (possibly implicitly converted) type of the expression must match the

type of the template parameter

Restrictions for non-type template parameters of reference or pointer type
• May not refer to a subobject (non-static class member, base subobject)
• May not refer to a temporary object
• May not refer to a string literal

434

https://en.cppreference.com/w/cpp/language/template_parameters#Template_non-type_arguments

Templates Basic Templates

Non-Type Template Arguments (2)

Example

//--
template <unsigned N>
class Foo { };
//--
int main() {

Foo<42u> foo1; // OK: no conversion
Foo<42> foo2; // OK: numeric conversion

}

435

Templates Basic Templates

constexpr

Functions or variables cannot be evaluated at compile time by default
• Use the constexpr keyword to indicate that the value of a function or

variable can be evaluated at compile time
• constexpr variables must have literal type and be immediately initialized
• constexpr functions must have literal return and parameter types

#include <array>
//--
class Element { /* ... */ };
//--
class Foo {

static constexpr size_t numElements = 42;
constexpr size_t calculateBufferSize(size_t elements) {

return elements * sizeof(Element);
}

std::array<std::byte, calculateBufferSize(numElements)> array;
};

436

https://en.cppreference.com/w/cpp/language/constexpr

Templates Basic Templates

Template Template Arguments

Arguments to template template arguments must name a class template or
template alias

#include <array>
//--
template <class T, size_t N>
class MyArray { };
//--
template <template<class, size_t> class Array>
class Foo {

Array<int, 42> bar;
};
//--
int main() {

Foo<MyArray> foo1;
Foo<std::array> foo2;

}

437

https://en.cppreference.com/w/cpp/language/template_parameters#Template_template_arguments

Templates Basic Templates

Example: Class Templates

template <class T, size_t N>
class MyArray {

private:
T storage[N];

public:
/* ... */

T& operator[](size_t index) {
return storage[index];

}

const T& operator[](size_t index) const {
return storage[index];

}

/* ... */
};

438

https://en.cppreference.com/w/cpp/language/class_template

Templates Basic Templates

Example: Function Templates

class A { };
//--
template <class T>
void swap(T& a, T& b) {

T tmp = std::move(a);
a = std::move(b);
b = std::move(tmp);

}
//--
int main() {

A a1;
A a2;

swap<A>(a1, a2);
swap(a1, a2); // Also OK: Template arguments are deduced

}

439

https://en.cppreference.com/w/cpp/language/function_template

Templates Basic Templates

Example: Alias Templates

namespace something::extremely::nested {
//--
template <class T, class R>
class Handle { };
//--
} // namespace something::extremely::nested
//--
template <typename T>
using Handle = something::extremely::nested::Handle<T, void*>;
//--
int main() {

Handle<int> handle1;
Handle<double> handle2;

}

440

https://en.cppreference.com/w/cpp/language/type_alias

Templates Basic Templates

Example: Variable Templates

template <class T>
constexpr T pi = T(3.1415926535897932385L);
//--
template <class T>
T area(T radius) {

return pi<T> * radius * radius;
}
//--
int main() {

double a = area<double>(1.0);
}

441

https://en.cppreference.com/w/cpp/language/variable_template

Templates Basic Templates

Example: Class Member Templates

#include <iostream>
#include <array>
//--
struct Foo {

template <class T>
using ArrayType = std::array<T, 42>;

template <class T>
void printSize() {

std::cout << sizeof(T) << std::endl;
}

};
//--
int main() {

Foo::ArrayType<int> intArray;

Foo foo;
foo.printSize<Foo::ArrayType<int>>();

}

442

https://en.cppreference.com/w/cpp/language/member_template

Templates Basic Templates

Template Instantiation

A function or class template by itself is not a type, an object, or any other entity
• No assembly is generated from a file that contains only template definitions
• A template specialization must be instantiated for any assembly to appear

Template instantiation
• Compiler generates an actual function or class for a template specialization
• Explicit instantiation: Explicitly request instantiation of a specific

specialization
• Implicit instantiation: Use a template specialization in a context that requires

a complete type

443

https://en.cppreference.com/w/cpp/language/class_template#Class_template_instantiation

Templates Basic Templates

Explicit Template Instantiation (1)

Forces instantiation of a template specialization
• Class template syntax

• template class template-name < argument-list >;
• template struct template-name < argument-list >;

• Function template syntax
•
template return-type name < argument-list > (parameter-list);

Explanation
• Explicit instantiations have to follow the one definition rule
• Generates assembly for the function specialization or class specialization and

all its member functions
• Template definition must be visible at the point of explicit instantiation
• Template definition and explicit instantiation should usually be placed in

implementation file

444

https://en.cppreference.com/w/cpp/language/class_template#Explicit_instantiation

Templates Basic Templates

Explicit Template Instantiation (2)

Example

template <class T>
struct A {

T foo(T value) { return value + 42; }

T bar() { return 42; }
};
//--
template <class T>
T baz(T a, T b) {

return a * b;
}
//--
// Explicit instantiation of A<int>
template struct A<int>;
// Explicit instantiation of baz<float>
template float baz<float>(float, float);

445

Templates Basic Templates

Implicit Template Instantiation (1)

Using a template specialization in a context that requires a complete type triggers
implicit instantiation
• Only if the specialization has not been explicitly instantiated
• Members of a class template are only implicitly instantiated if they are

actually used

The definition of a template must be visible at the point of implicit instantiation
• Definitions must usually be provided in the header file if implicit instantiation

is desired

446

https://en.cppreference.com/w/cpp/language/class_template#Implicit_instantiation

Templates Basic Templates

Implicit Template Instantiation (2)
Example

template <class T>
struct A {

T foo(T value) {
return value + 42;

}

T bar();
};
//--
int main() {

A<int> a; // Instantiates only A<int>
int x = a.foo(32); // Instantiates A<int>::foo

// No error although A::bar is never defined

A<float>* aptr; // Does not instantiate A<float>
}

447

Templates Basic Templates

Differences between Explicit and Implicit Instantiation

Implicit instantiation
• Pro: Template can be used with any suitable type
• Pro: No unnecessary assembly is generated
• Con: Definition has to be provided in header
• Con: User of our templates has to compile them

Explicit instantiation
• Pro: Explicit instantiations can be compiled into library
• Pro: Definition can be encapsulated in source file
• Con: Limits usability of our templates

Usually, we do not need to explicitly instantiate our templates

448

Templates Basic Templates

Instantiation Caveats

The compiler actually generates code for instantiations
• Code is generated for each instantiation with different template arguments
• Conceptually, template parameters are replaced by template arguments
• If one instantiation generates 1 000 lines of assembly, 10 instantiations

generate 10 000 lines of assembly
• Can substantially increase compilation time

Instantiations are generated locally for each compilation unit
• Templates are implicitly inline
• The same instantiation can exist in different compilation units without

violating ODR

449

Templates Basic Templates

Inline vs. Out-of-Line Definition
Out-of-line definitions should be preferred even when defining class templates in
headers
• Improves readability of interface
• Requires somewhat “weird” syntax

template <class T>
struct A {

T value;

A(T value);

template <class R>
R convert();

};
//--
template <class T>
A<T>::A(T value) : value(value) { }
//--
template <class T>
template <class R>
R A<T>::convert() { return static_cast<R>(value); }

450

Templates Basic Templates

Concepts and Constraints (1)

A programmer can try to instantiate a template with any arguments
• A template might assume certain things about its parameters (e.g. presence

of a member function)
• Without further programmer intervention, these assumptions are implicit
• In this case, the behavior of templates resembles duck typing
• May lead to (horrible) compile-time errors when used with incorrect template

arguments

template <class T>
struct A {

int bar(T t) { return t.foo(); }
};
//--
int main() {

A<int> b; // OK: A<int>::bar is not instantiated
b.bar(42); // ERROR: int does not have foo member

}

451

https://en.cppreference.com/w/cpp/language/constraints

Templates Basic Templates

Concepts and Constraints (2)

Constraints and concepts explicitly specify requirements on template parameters
• Allows the compiler to check requirements
• Allows the compiler to generate much more informative error messages
• Greatly improves safety (explicit concepts instead of implicit assumptions)
• Can still only check syntactic requirements

The standard library provides a large set of useful concepts
• Defined in the <concepts> and other standard library headers
• Specify syntactic requirements on a number of types (e.g.
std::swappable_with)

• Most of the time also specify semantic requirements
• Concepts can also be user-defined (beyond the scope of this lecture)

452

https://en.cppreference.com/w/cpp/language/constraints

Templates Basic Templates

Concepts and Constraints (3)

Constraints can be applied to template arguments or function declarations

#include <concepts>

template <typename T> requires std::floating_point<T>
T fdiv1(T a, T b) {

return a / b;
}

template <typename T>
T fdiv2(T a, T b) requires std::floating_point<T> {

return a / b;
}

template <std::floating_point T>
T fdiv3(T a, T b) {

return a / b;
}

453

https://en.cppreference.com/w/cpp/language/constraints

Templates Basic Templates

Concepts and Constraints (4)

Constraints are extremely useful to make working with templates somewhat easier
• Unfortunately not used much in the standard library
• Should be used as much as possible in your code
• Any assumptions about template parameters should be made explicit

We only scratched the surface of concepts and constraints
• Many more details in the reference documentation
• We will return to concepts and constraints towards the end of this course
• Meanwhile: Learn to read the error messages produced by constraints
• E.g. through the compiler explorer at https://compiler.db.in.tum.de

454

https://en.cppreference.com/w/cpp/language/constraints
https://compiler.db.in.tum.de

Templates Basic Templates

Dependent Names (1)
Within a class template, some names may be deduced to refer to the current
instantiation
• The class name itself (without template parameters)
• The name of a member of the class template
• The name of a nested class of the class template

template <class T>
struct A {

struct B { };

B* b; // B refers to A<T>::B

A(const A& other); // A refers to A<T>

void foo();
void bar() {

foo(); // foo refers to A<T>::foo
}

};

455

https://en.cppreference.com/w/cpp/language/dependent_name#Dependent_names

Templates Basic Templates

Dependent Names (2)

Names that are members of templates are not considered to be types by default
• When using a name that is a member of a template outside of any template

declaration or definition
• When using a name that is not a member of the current instantiation within

a template declaration or definition
• If such a name should be considered as a type, the typename disambiguator

has to be used

In some context, only type names can validly appear
• Allows the typename disambiguator to be omitted
• A detailed list of such cases can be found in the reference documentation

456

https://en.cppreference.com/w/cpp/language/dependent_name#The_typename_disambiguator_for_dependent_names

Templates Basic Templates

Dependent Names (3)
Example

struct A {
using MemberTypeAlias = float;

};
//--
template <class T>
struct B {

// no disambiguator required
using AnotherMemberTypeAlias = T::MemberTypeAlias;

// disambiguator required
typename T::MemberTypeAlias* ptr;

};
//--
int main() {

// value has type float
B<A>::AnotherMemberTypeAlias value = 42.0f;

}

457

Templates Basic Templates

Dependent Names (4)
Similar rules apply to template names within template definitions
• Any name that is not a member of the current instantiation is not considered

to be a template name
• If such a name should be considered as a template name, the template

disambiguator has to be used

template <class T>
struct A {

template <class R>
R convert(T value) { return static_cast<R>(value); }

};
//--
template <class T>
T foo() {

A<int> a;

return a.template convert<T>(42);
}

458

Templates Basic Templates

Reference Collapsing

Templates and type aliases may form references to references

template <class T>
class Foo {

using Trref = T&&;
};

int main() {
Foo<int&&>::Trref x; // what is the type of x?

}

Reference collapsing rules apply
• Rvalue reference to rvalue reference collapses to rvalue reference
• Any other combination forms an lvalue reference

459

https://en.cppreference.com/w/cpp/language/reference#Reference_collapsing

Templates Template Specialization

Explicit Template Specialization

We may want to modify the behavior of templates for specific template arguments
• For example, a templated find method can employ different algorithms on

arrays (binary search) vs. linked lists (linear search)

We can explicitly specialize templates to achieve this
• Define specific implementations for certain template arguments
• All template arguments can be specified (full specialization)
• Some template arguments can be specified (partial specialization)

460

Templates Template Specialization

Full Specialization

Defines a specific implementation for a full set of template arguments
• Has to appear after the declaration of the original template
• Syntax: template <> declaration
• Most types of templates can be fully specialized

template <class T>
class MyContainer {

/* generic implementation */
};
//--
template <>
class MyContainer<long> {

/* specific implementation */
};
//--
int main() {

MyContainer<float> a; // uses generic implementation
MyContainer<long> b; // uses specific implementation

}

461

https://en.cppreference.com/w/cpp/language/template_specialization

Templates Template Specialization

Partial Specialization
Defines a specific implementation for a partial set of template arguments
• Has to appear after the declaration of the original template
• template < parameter-list > class name < argument-list >
• template < parameter-list > struct name < argument-list >
• Only class templates can be partially specialized
• Function overloads can simulate function template specialization

template <class C, class T>
class SearchAlgorithm {

void find (const C& container, const T& value) {
/* do linear search */

}
};
//--
template <class T>
class SearchAlgorithm<std::vector<T>, T> {

void find (const std::vector<T>& container, const T& value) {
/* do binary search */

}
};

462

https://en.cppreference.com/w/cpp/language/partial_specialization

Templates Template Argument Deduction

Template Argument Deduction
Some template arguments for class and function templates can be deduced
• All template arguments have to be known to instantiate a class or function

template
• Not all template arguments have to be specified for class and function

templates
• Template arguments can be omitted entirely quite frequently
• Makes it possible, for example, to use template operators

template <class T>
void swap(T& a, T& b);
//---
int main() {

int a = 0;
int b = 42;

swap(a, b); // T is deduced to be int
}

463

Templates Template Argument Deduction

Function Template Argument Deduction
Deduces template arguments in function calls
• Attempts to deduce the template arguments based on the types of the

function arguments
• Argument deduction may fail if ambiguous types are deduced
• Highly complex set of rules (see reference documentation)

template <class T>
T max(const T& a, const T& b);
//---
int main() {

int a = 0;
long b = 42;

max(a, b); // ERROR: Ambiguous deduction of T
max(a, a); // OK
max<int>(a, b); // OK
max<long>(a, b); // OK

}

464

https://en.cppreference.com/w/cpp/language/template_argument_deduction

Templates Template Argument Deduction

Class Template Argument Deduction

Deduces class template arguments in some cases
• Declarations that also specify initialization of a variable
• new-expressions
• Attempts to deduce the template arguments based on the types of the

constructor arguments

#include <memory>
//---
template <class T>
struct Foo {

Foo(T t);
};
//---
int main() {

Foo foo(12);
std::unique_ptr ptr = make_unique<int>(42);

}

465

https://en.cppreference.com/w/cpp/language/class_template_argument_deduction

Templates Placeholder Type Specifiers

The auto Type (1)

The auto placeholder can be used to deduce the type of a variable from its
initializer
• Deduction follows the same rules as function template argument deduction
• auto may be accompanied by the usual modifiers such as const, * or &
• Extremely convenient when using complex types (such as standard library

iterators)

#include <unordered_map>
//---
int main() {

std::unordered_map<int, const char*> intToStringMap;

std::unordered_map<int, const char*>::iterator it1 =
intToStringMap.begin(); // noone wants to read this

auto it2 = intToStringMap.begin(); // much better
}

466

https://en.cppreference.com/w/cpp/language/auto

Templates Placeholder Type Specifiers

The auto Type (2)

auto does not require any modifiers to work
• Can make code more error prone and hard to understand
• All known modifiers should always be added to auto

const int** foo();
//---
int main() {

// BAD:
auto f1 = foo(); // auto is const int**
const auto f2 = foo(); // auto is const int**

// f2 has type int const** const
auto** f3 = foo(); // auto is const int

// GOOD:
const auto** f4 = foo(); // auto is int

}

467

Templates Placeholder Type Specifiers

The auto Type (3)

auto is not deduced to a reference type
• Might incur unwanted copies
• All known modifiers should always be added to auto

struct A {
const A& foo() { return *this; }

};
//---
int main() {

A a;
auto a1 = a.foo(); // BAD: auto is const A, copy
const auto& a2 = a.foo() // GOOD: auto is A, no copy

}

468

Templates Placeholder Type Specifiers

Structured Bindings (1)

Binds some names to subobjects or elements of the initializer
• Syntax (1): auto [identifier-list] = expression;
• Syntax (2): auto [identifier-list](expression);
• Syntax (3): auto [identifier-list]{ expression };
• auto may be cv- or reference-qualified

Explanation
• The identifiers in identifier-list are bound to the subobjects or

elements of the initializer
• Can bind to arrays, tuple-like types and accessible data members
• Very useful during iteration, especially over associative containers

469

https://en.cppreference.com/w/cpp/language/structured_binding

Templates Placeholder Type Specifiers

Structured Bindings (2)

Example

#include <utility>
//---
struct Foo {

float y;
long z;

};
//---
std::pair<int, long> bar();
//---
int main() {

Foo foo;
int array[4];

auto [a1, a2, a3, a4] = array; // copies array, a1 - a4 refer to copy
auto& [y, z] = foo; // y refers to foo.y, z refers to foo.z
auto [l, r] = bar(); // move-constructs pair p, l refers to p.first,

// r refers to p.second
}

470

Templates Variadic Templates

Parameter Packs (1)

Parameter packs are template parameters that accept zero or more arguments
• Non-type: type ... Args
• Type: typename|class ... Args
• Template:
template < parameter-list > typename|class ... Args

• Can appear in alias, class and function template parameter lists
• Templates with at least on parameter pack are called variadic templates

Function parameter packs
• Appears in the function parameter list of a variadic function template
• Syntax: Args ... args

Parameter pack expansion
• Syntax: pattern ...
• Expands to a comma-separated list of patterns (pattern must contain at

least one parameter pack)

471

https://en.cppreference.com/w/cpp/language/parameter_pack

Templates Variadic Templates

Parameter Packs (2)

template <typename... T>
struct Tuple { };
//---
template <typename... T>
void printTuple(const Tuple<T...>& tuple);
//---
template <typename... T>
void printElements(const T&... args);
//---
int main() {

Tuple<int, int, float> tuple;

printTuple(tuple);
printElements(1, 2, 3, 4);

}

472

Templates Variadic Templates

Parameter Packs (3)

Implementation of variadic templates is somewhat involved
• Most straightforward way: Tail recursion (usually optimized away)

#include <iostream>
//---
void printElements() { }
//---
template <typename Head, typename... Tail>
void printElements(const Head& head, const Tail&... tail) {

std::cout << head;

if constexpr (sizeof...(tail) > 0)
std::cout << ", ";

printElements(tail...);
}
//---
int main() {

printElements(1, 2, 3.0, 3.14, 4);
}

473

Templates Variadic Templates

Fold Expressions (1)

Reduces a parameter pack over a binary operator op
• Syntax (1): (pack op ...)
• Syntax (2): (... op pack)
• Syntax (3): (pack op ... op init)
• Syntax (4): (init op ... op pack)
• pack must be an expression that contains an unexpanded parameter pack
• init must be an expression that does not contain a parameter pack

Semantics
• (E ◦ . . .) becomes E1 ◦ (. . . (En−1 ◦ En))

• (. . . ◦ E) becomes ((E1 ◦ E2) ◦ . . .) ◦ En

• (E ◦ . . . ◦ I) becomes E1 ◦ (. . . (En−1 ◦ (En ◦ I)))
• (I ◦ . . . ◦ E) becomes (((I ◦ E1) ◦ E2) ◦ . . .) ◦ En

474

https://en.cppreference.com/w/cpp/language/fold

Templates Variadic Templates

Fold Expressions (2)

Enables more concise implementation of variadic templates in some cases

template <typename R, typename... Args>
R reduceSum(const Args&... args) {

return (args + ...);
}
//---
int main() {

return reduceSum<int>(1, 2, 3, 4); // returns 10
}

Concise implementations quickly become concise but extremely hard to
understand
• Only used in some specialized cases

475

Templates Template Metaprogramming

Template Metaprogramming

Templates are instantiated at compile-time
• Allows “programming” at compile-time (template metaprogramming)
• Templates are actually a Turing-complete (sub-)language
• Allows for very useful but at times very involved tricks (e.g. type traits)

template <unsigned N>
struct Factorial {

static constexpr unsigned value = N * Factorial<N - 1>::value;
};
//---
template <>
struct Factorial<0> {

static constexpr unsigned value = 1;
};
//---
int main() {

return Factorial<6>::value; // computes 6! at compile time
}

476

Templates Idioms

static_assert

The static_assert declaration checks assertions at compile-time
• Syntax (1): static_assert (bool-constexpr)
• Syntax (2): static_assert (bool-constexpr, message)
• bool-constexpr must be a constant expression that evaluates to bool
• message may be a string that appears as a compiler error if
bool-constexpr is false

template <unsigned N>
class NonEmptyBuffer {

static_assert(N > 0);
};

477

https://en.cppreference.com/w/cpp/language/static_assert

Templates Idioms

Type Traits
Type traits compute information about types at compile time
• Simple form of template metaprogramming
• E.g. std::numeric_limits is a type trait

template <typename T>
struct IsUnsigned {

static constexpr bool value = false;
};
//---
template <>
struct IsUnsigned <unsigned char> {

static constexpr bool value = true;
};
/* Further specializations of IsUnsigned for all unsigned types */
//---
template <typename T>
void foo() {

static_assert(IsUnsigned<T>::value);
}

C++ provides many useful type traits (see reference documentation)
478

https://en.cppreference.com/w/cpp/types

Standard Library I

Standard Library I

479

Standard Library I Introduction

The Standard Library

Provides a collection of useful C++ classes and functions
• Is itself implemented in C++
• Part of the ISO C++ standard

• Defines interface, semantics and contracts the implementation has to abide by
(e.g. runtime complexity)

• Implementation is not part of the standard
• Multiple vendors provide their own implementations
• Best known: libstdc++ (used by gcc) and libc++ (used by llvm)

• All features are declared within the std namespace
• Functionality is divided into sub-libraries each consisting of multiple headers
• Includes parts of the C standard library

• For backward compatibility
• Headers begin with “c” (e.g. cstring)
• C++ standard library functions should always be preferred

480

https://en.cppreference.com/w/cpp/header

Standard Library I Introduction

The Standard Library - Feature Overview (1)
Most important library features:
• Utilities

• Memory management (new, delete, unique_ptr, shared_ptr)
• Error handling (exceptions, assert())
• Time (clocks, durations, timestamps, …)
• Optionals, Variants, Tuples, …

• Strings
• String class
• String views
• C-style string handling

• Containers: array, vector, lists, maps, sets
• Algorithms: (stable) sort, search, max, min, …
• Iterators
• Numerics

• Common mathematic functions (sqrt, pow, mod, log, …)
• Complex numbers
• Random number generation

481

https://en.cppreference.com/w/cpp/header

Standard Library I Introduction

The Standard Library - Feature Overview (2)

• I/O
• Input-/Output streams
• File streams
• String streams

• Threads
• Thread class
• (shared) mutexes
• futures

• And much more
• Localization
• Regex
• Atomics
• Filesystem support
• …

482

https://en.cppreference.com/w/cpp/header

Standard Library I Strings

std::string

std::string is a class encapsulating character sequences
• Manages its own memory (so no need for new/malloc/unique_ptr)
• Has a wide array of member functions, making string manipulation easier
• Knows its own length: No need to worry about null termination!
• Contents are guaranteed to be stored in memory contiguously
• Can be used like a C-style char pointer
• Access to the underlying C-style char pointer via c_str()

std::string is defined in the <string> library header
• It is a type alias to std::basic_string<char>
• std::basic_string also has specializations for 16- and 32-bit character

strings
• Specialization of std::basic_string with custom character types possible

std::string should always be preferred over char pointers!

483

https://en.cppreference.com/w/cpp/header/string

Standard Library I Strings

Creating a std::string

The default constructor creates an empty string of length 0

std::string s;
s.size(); // == 0

Creation from a string literal via constructor argument or assignment

std::string s_constructed("my literal");
std::string s_assigned = "my literal";

Take care with strings that contain null-bytes:

std::string s = "null\0byte!";
std::cout << s << std::endl; // prints "null"

std::string s_with_size("null\0byte!", 10);
std::cout << s_with_size << std::endl; // prints "nullbyte!"

484

https://en.cppreference.com/w/cpp/string/basic_string/basic_string

Standard Library I Strings

Accessing contents of std::string (1)

Single characters can be accessed with the subscript operator

std::string s = "Hello World!";
std::cout << s[4] << s[6] << std::endl; // prints "oW"

Since it returns a reference, this can be used to modify the string

std::string s = "Hello World!";
s[4] = 'x';
s[6] = 'Y';
s[10] = s[9];
std::cout << s << std::endl; // prints "Hellx Yorll!"

Out of bounds access with array notation results in undefined behavior

485

https://en.cppreference.com/w/cpp/string/basic_string

Standard Library I Strings

Accessing contents of std::string (2)

Iterators allow iteration over contents

std::string s = "Hello World!";
for (auto iter = s.begin(); iter != s.end(); ++iter) {

++(*iter);
}
std::cout << s << std::endl; // prints "Ifmmp!Xpsme"

For backwards compatibility: c_str() returns null-terminated char pointer

int i_only_know_c(const char* str) {
int len = 0;
while (str) { str++; len++; }
return len;

}

std::string i_am_modern_cpp = "Hello World!";
int len = i_only_know_c(i_am_modern_cpp.c_str()); // 12

486

https://en.cppreference.com/w/cpp/string/basic_string

Standard Library I Strings

Comparing std::string (1)

The std::string class provides a compare() function
• Compares two strings (or substrings) lexicographically
• Implements a three-way comparison returning -1, 0, or 1
• Should only be used when a three-way comparison is required

Example

std::string s1 = "Hello World!";
std::string s2 = "Goodbye World!";

std::cout << s1.compare(s2); // 1, G before H
// For substrings:
std::cout << s1.compare(6, 5, s2, 8, 5); // 0, both are "World"

487

https://en.cppreference.com/w/cpp/string/basic_string

Standard Library I Strings

Comparing std::string (2)

Usually, the standard relational operators are used for string comparisons
• <, ==, <=, …perform lexicographical comparisons
• Can only compare full strings
• Usually slightly more efficient than compare()

Example

std::string u0510 = "breezy badger";
std::string u1804 = "bionic beaver";
std::string u1904 = "disco dingo";

assert(u0510 == u0510); // obvious
assert(u1904 > u1804); // okay, d after b
assert(u1804 > u0510); // fails, bi before br. Why, Ubuntu?!

488

Standard Library I Strings

std::string Operations

The standard library provides additional operations on std::string
• size() or length(): The number of characters in the string
• empty(): Returns true if the string has no characters
• append() and +=: Appends another string or character. May incur memory

allocations.
• Binary + concatenates two strings
• find(): Returns the offset of thie first occurence of the substring, or the

constant std::string::npos if not found
• substr(): Returns a new std::string that is a substring at the given

offset and length. Be careful! Most of the times, you probably want a string
view instead of a substring!

489

https://en.cppreference.com/w/cpp/string/basic_string

Standard Library I Strings

std::string_view (1)

Copying strings and creating substrings is expensive
• Whenever a substring is created, data is essentially duplicated
• Huge overhead when handling large amounts of data (e.g. parsing large

JSON files)

std::string_view helps avoiding expensive copying
• Read-only views on already existing strings
• Internally: Just a pointer and a length
• Creation, substring and copying in constant time (vs. linear for strings)

std::string_view is defined in the <string_view> library header
• Creation: std::string (and optionally size) as constructor argument, from

a char pointer with a length, or from a string literal
• Also has all (read-only) member functions of std::string
• Substring creates another string view in O(1)

Use std::string_view over std::string whenever possible!

490

https://en.cppreference.com/w/cpp/string/basic_string

Standard Library I Strings

std::string_view (2)
Example
std::string s = "garbage garbage garbage interesting garbage";

std::string sub = s.substr(24,11); // With string: O(n)

// With string view:
std::string_view s_view = s; // O(1)
std::string_view sub_view = s_view.substr(24,11); // O(1)

// Or in place:
s_view.remove_prefix(24); // O(1)
s_view.remove_suffix(s_view.size() - 11); // O(1)

// Also useful for function calls:
bool is_eq_naive(std::string a, std::string b) {return a == b; }
bool is_eq_views(std::string_view a, std::string_view b) {

return a == b; }

is_eq_naive("abc", "def"); // 2 allocations at runtime
is_eq_with_views("abc", "def"); // no allocation at runtime

491

https://en.cppreference.com/w/cpp/string/basic_string_view

Standard Library I Strings

String Literals

Regular string literals do not handle null byte content correctly (see above)
• The standard library provides special literals (“suffixes”) to construct
std::string_view and std::string objects that deal with null bytes
correctly.

• To use them, you have to use
using namespace std::literals::string_view_literals or
using namespace std::literals::string_literals.

Example

using namespace std::literals::string_view_literals;
using namespace std::literals::string_literals;

auto s1 = "string_view\0with\0nulls"sv; // s1 is a string_view
auto s2 = "string\0with\0nulls"s; // s2 is a string

std::cout << s1; // prints "string_viewwithnulls"
std::cout << s2; // prints "stringwithnulls"

492

https://en.cppreference.com/w/cpp/string/basic_string_view/operator""sv

Standard Library I Optional, Pair, Tuple

std::optional (1)

Functions might fail or return without a valid result
• E.g. querying the size of a non-existent file
• We could naively try to encode such failures with a value of the function

domain (e.g. zero size for non-existent files)
• Suboptimal, as there is no clear distinction between valid and invalid values

std::optional is a class encapsulating a value that might or might not exist
• Template class defined in the header <optional>
• Can either be empty, holding no value, or non-empty, holding an arbitrary

value of its value type
• Provides a clean way to encode potentially missing values

493

https://en.cppreference.com/w/cpp/utility/optional

Standard Library I Optional, Pair, Tuple

std::optional (2)

Usage of std::optional
• std::optional<T>, where T can be an arbitrary type
• Guarantees to not dynamically allocate any memory when being assigned a

value
• Internally implemented as an object with a member of type T and a boolean

Useful member functions
• has_value() or implicit conversion to bool: Check whether the optional

contains a value
• Dereference operators * and ->: Access or interact with the contained value

(undefined behavior if the optional is empty)
• value_or(): Return the contained value if the optional is non-empty, or a

default value otherwise
• reset(): Clear the optional

494

https://en.cppreference.com/w/cpp/utility/optional

Standard Library I Optional, Pair, Tuple

std::optional (3)

An optional is created through its constructor or with std::make_optional:

std::optional<std::string> might_fail(int arg) {
if (arg == 0) {

return std::optional<std::string>("zero");
} else if (arg == 1) {

return "one"; // equivalent to the case above
} else if (arg < 7) {

//std::make_optional takes constructor arguments of type T
return std::make_optional<std::string>("less than 7");

} else {
return std::nullopt; // alternatively: return {}

}
}

495

https://en.cppreference.com/w/cpp/utility/optional

Standard Library I Optional, Pair, Tuple

std::optional (4)

Checking the contents of an std::optional

might_fail(3).has_value(); // true
might_fail(8).has_value(); // false

// Or even simpler:
std::optional<std::string> opt5 = might_fail(5)
if (opt5) { //contextual conversion to bool

opt5->size(); // 11
}

Accessing the value of an std::optional

might_fail(3).value(); // "less than 7"
*might_fail(3); // "less than 7"
might_fail(6)->size(); // 11
might_fail(7)->empty(); // undefined behavior

496

https://en.cppreference.com/w/cpp/utility/optional

Standard Library I Optional, Pair, Tuple

std::optional (5)

Providing a default value without boilerplate

might_fail(42).value_or("default"); // "default"

Clearing an optional

std::optional<std::string> opt5 = might_fail(5)
opt5.has_value(); // true
opt5.reset(); // Clears the value
opt5.has_value(); // false

497

https://en.cppreference.com/w/cpp/utility/optional

Standard Library I Optional, Pair, Tuple

std::pair

std::pair<T, U> is a template class that stores exactly one object of type T
and one of type U.
• Defined in the header <utility>
• Constructor takes object of T and U
• Pairs can also be constructed with std::make_pair()
• Objects can be accessed with first and second
• Can be compared for equality and inequality
• Can be compared lexicographically with <, <=, >, and >=

std::pair<int, double> p1(123, 4.56);
p1.first; // == 123
p1.second; // == 4.56
auto p2 = std::make_pair(456, 1.23);
// p2 has type std::pair<double, int>
p1 < p2; // true

498

https://en.cppreference.com/w/cpp/utility/pair

Standard Library I Optional, Pair, Tuple

std::tuple

std::tuple is a template class with n type template parameters that stores
exactly one object of each of the n types.
• Defined in the header <tuple>
• Constructor takes all objects
• Tuples can also be constructed with std::make_tuple()
• The ith object can be accessed with std::get<i>()
• Just like pairs, tuples define all relational comparison operators

std::tuple<int, double, char> t1(123, 4.56, 'x');
std::get<1>(t1); // == 4.56
auto p2 = std::make_tuple(456, 1.23, 'y');
// p2 has type std::tuple<int, double, char>
p1 < p2; // true

499

https://en.cppreference.com/w/cpp/utility/tuple

Standard Library I Optional, Pair, Tuple

std::tie()

Tuples can also contain values of reference type. They can be constructed with
std::tie().
• Can be used to easily “decompose” a tuple into existing variables
• Can also be used to quickly do lexicographic comparison on different objects

auto t = std::make_tuple(123, 4.56);
int a; double b;
std::tie(a, b) = t; // "decompose" t into a and b
// a is now 123, b is 4.56
int x = 456; double y = 1.23;
// Lexicographic comparison on (a, b) and (x, y):
std::tie(a, b) < std::tie(x, y); // true

500

https://en.cppreference.com/w/cpp/utility/tuple/tie

Standard Library I Optional, Pair, Tuple

Structured Bindings and Tuples

• Often, using structured bindings is easier than using std::tie()
• For tuples, auto [a, b, c] = t; initializes a, b, and c with
std::get<0>(t), std::get<1>(t), and std::get<2>(t), respectively

• Also works with auto& and const auto& in which case a, b, and c become
references

• Also works with std::pair

auto t = std::make_tuple(1, 2, 3);
auto [a, b, c] = t; // a, b, c have type int
auto p = std::make_pair(4, 5);
auto& [x, y] = p; // x, y have type int&
x = 123; // p.first is now 123

501

https://en.cppreference.com/w/cpp/language/structured_bindings

Standard Library I Optional, Pair, Tuple

Using Pairs and Tuples

std::pair and std::tuple should be used sparingly
• Convey no information about their intended semantics
• User-defined types can convey semantics through member names etc.
• User-defined types should almost always be preferred in public interfaces
• std::pair and std::tuple can be used internally

struct Rational {
long numerator;
long denominator;

};

std::pair<long, long> canonicalize(long, long); // BAD
Rational canonicalize(const Rational&); // BETTER

502

Standard Library I Containers

Containers - A Short Overview

A container is an object that stores a collection of other objects
• Manage the storage space for their elements
• Generic: The type(s) of elements stored are template parameter(s)
• Provide member functions for accessing elements directly, or through iterators
• (Most) member functions shared between containers
• Make guarantees about the complexity of their operations:

• Sequence containers (e.g. std::array, std::vector, std::list):
Optimized for sequential access

• Associative containers (e.g. std::set, std::map): Sorted, optimized for
search (O(log n))

• Unordered associative containers (e.g. std::unordered_set,
std::unordered_map): Hashed, optimized for search (amortized: O(1),
worst case: O(n))

Use containers whenever possible! When in doubt, use std::vector!

503

https://en.cppreference.com/w/cpp/container

Standard Library I Containers

std::vector

Vectors are arrays that can dynamically grow in size
• Defined in the header <vector>
• Elements are still stored contiguously
• Elements can be inserted and removed at any position
• Preallocates memory for a certain amount of elements
• Allocates new, larger chunk of memory and moves elements when memory is

exhausted
• Memory for a given amount of elements can be reserved with reserve()
• Time complexity:

• Random access: O(1)
• Insertion and removal at the end: Typically O(1), worst case: O(n) due to

possible reallocation
• Insertion and removal at any other position: O(n)

• Access to the underlying C-style data array with data() member function

504

https://en.cppreference.com/w/cpp/container/vector

Standard Library I Containers

std::vector<bool>

The class std::vector<bool> is an explicit specialization that works like a
dynamic bitset.
• Individual values may not be stored contiguously (most likely one bit per

value)
• Not possible to get pointers to elements
• No thread-safety guarantees for concurrent writes to different elements
• Most member functions exist and have the same complexity guarantees
• Should rarely be used because of its unusual properties

505

https://en.cppreference.com/w/cpp/container/vector_bool

Standard Library I Containers

std::vector: Accessing Elements

Vectors are constructed just like arrays:
std::vector<int> fib = {1,1,2,3};

Access elements via array notation, or through a raw pointer:
fib[1] // == 1;

int* fib_ptr = fib.data();
fib_ptr[2] // == 3;

Update elements via array notation, or through a raw pointer:
fib[3] = 43;
fib[2] = 42;
fib.data()[1] = 41; // fib is now 1, 41, 42, 43

Note: It is not possible to insert new elements this way! You can only update
existing ones.

506

https://en.cppreference.com/w/cpp/container/vector

Standard Library I Containers

std::vector: Inserting and Removing Elements
Insert or remove elements at the end in constant time:
fib.push_back(5); // fib is now 1, 1, 2, 3, 5
int my_fib = fib.back(); // my_fib is 5
fib.pop_back(); // fib is 1, 1, 2, 3

Inserted or remove elements anywhere with an iterator pointing at the element
after insertion, or the element to be erased respectively:
auto it = fib.begin(); it += 2;
fib.insert(it, 42); // fib is now 1, 1, 42, 2, 3

// insertion invalidated the iterator, get a new one
it = fib.begin(); it +=2;
fib.erase(it); // fib is now again 1, 1, 2, 3

Empty the whole vector with clear:
fib.clear();
fib.empty(); // true
fib.size(); // == 0

507

https://en.cppreference.com/w/cpp/container/vector

Standard Library I Containers

std::vector: Emplacing elements
Construct elements in place to avoid expensive moving around of data:
struct ExpensiveToCopy {

ExpensiveToCopy(int id, std::string comment) :
id(id), comment(std::move(comment)) {}

int id;
std::string comment;

};

std::vector<ExpensiveToCopy> vec;

// The expensive way:
ExpensiveToCopy e1(1,"my comment 1");
vec.push_back(e1); // need to copy e1!
// Better way, use std::move:
vec.push_back(std::move(e1));

// The best way:
vec.emplace_back(2, "my comment 2");

// Also works at any other position:
auto it = vec.begin(); it++;
vec.emplace(it, 3, "my comment 3");

508

https://en.cppreference.com/w/cpp/container/vector

Standard Library I Containers

std::vector: Reserving memory

If the final size of a vector is already known, give the vector a hint to avoid
unnecessary reallocations:
std::vector<int> vec;
vec.reserve(1000000); //enough space for 1000000 elements is allocated
vec.capacity(); // == 1000000
vec.size(); // == 0, do not mix this up with capacity!

for (int i = 0; i < 1000000; i++) {
vec.push_back(i); // no reallocations in this loop!

}

509

https://en.cppreference.com/w/cpp/container/vector

Standard Library I Containers

std::span (1)

• References to individual objects can be passed around with pointers or
references

• References to multiple objects that are stored contiguously could be passed
around “manually” by using a pair of pointer and size

• Standard library abstracts this into the class std::span<T> in the header

• Supports iteration, brackets operator, data(), size()
• Can be constructed from all contiguous containers (std::array,
std::vector, C-Style array) and with pointer and size

• Subsets can be created with subspan(), no T objects are copied
Usage guidelines:
• Prefer using std::span over references to std::array, std::vector,

etc.
• Use std::span<const T> if possible
• Pass std::span by copy in function arguments

510

https://en.cppreference.com/w/cpp/container/span

Standard Library I Containers

std::span (2)

void printValues(std::span<const int> vs) {
// Supports iteration
for (auto v : vs) std::cout << v << '\n';

}

std::vector<int> values = {1, 2, 3, 4, 5};
std::span<int> valuesRef = value; // construct from container

valuesRef.size(); // == 5
valuesRef.data() == values.data(); // true
valuesRef[1]; // == 2

// Pass by copy (implicitly convert to span<const int>)
printValues(valuesRef);
// Create sub-span
printValues(valuesRef.subspan(2, 2)); // Prints 3, 4

511

https://en.cppreference.com/w/cpp/container/span

Standard Library I Containers

std::unordered_map

Maps are associative containers consisting of key-value pairs
• Defined in the header <unordered_map>
• Keys are required to be unique
• At least two template parameters: Key and T (type of the values)
• Is internally a hash table
• Amortized O(1) complexity for random access, search, insertion, and removal
• No way to access keys or values in order (use std::map for that!)
• Accepts custom hash- and comparison functions through third and fourth

template parameter

Use std::unordered_map if you need a hash table and don’t need ordering

512

https://en.cppreference.com/w/cpp/container/unordered_map

Standard Library I Containers

std::unordered_map: Accessing Elements
Maps can be constructed pairwise:
std::unordered_map<std::string, double>

name_to_grade {{"maier", 1.3}, {"huber", 2.7}, {"schmidt", 5.0}};

Lookup the value to a key with the brackets operator:
name_to_grade["huber"]; // == 2.7

A pair can also be searched for with find:
auto search = name_to_grade.find("schmidt");

if (search != name_to_grade.end()) {
// Returns an iterator pointing to a pair!
search->first; // == "schmidt"
search->second; // == 5.0

}

To check if a key exists, use count:
name_to_grade.count("schmidt"); // == 1
name_to_grade.count("blafasel"); // == 0

count() either returns 0 or 1.
513

https://en.cppreference.com/w/cpp/container/unordered_map

Standard Library I Containers

std::unordered_map: Insertion

Update or insert elements like this. If it did not exist, the brackets operator will
insert a default-constructed value.
Note: The brackets operator has no const overload.
name_to_grade["moritz"]; // Entry {"moritz", 0.0} is inserted
// Entry {"michael", 0.0} is created, then value is set to 3.0
name_to_grade["michael"] = 3.0;

Maps also allow the direct insertion of pairs:
std::pair<std::string, double> pair("mueller", 1.0);
name_to_grade.insert(pair);

// Or simpler:
name_to_grade.insert({"mustermann", 3.7});

// Emplace also works:
name_to_grade.emplace("gruber", 1.7);

514

https://en.cppreference.com/w/cpp/container/unordered_map

Standard Library I Containers

std::unordered_map: Removal

Erase elements with erase() or empty the container with clear():
// Returns an iterator that points to the pair with "schmidt" as key
auto search = name_to_grade.find("schmidt");
// removes the element the iterator points to, returns iterator to next entry
auto newIterator = name_to_grade.erase(search);

// removes the pair with "moritz" as key, if it exists
size_t numRemoved = name_to_grade.erase("moritz");
// numRemoved is 1 if element was found and removed, 0 otherwise

name_to_grade.clear(); // removes all elements of name_to_grade

515

https://en.cppreference.com/w/cpp/container/unordered_map

Standard Library I Containers

std::map (1)

In contrast to unordered maps, the keys of std::map are sorted
• Defined in the header <map>
• Interface largely the same to std::unordered_map
• Optionally accepts a custom comparison function as template parameter
• Is internally a tree (usually AVL- or R/B-Tree)
• O(log n) complexity for random access, search, insertion, and removal

Use std::map only if you need a sorted associative container

516

https://en.cppreference.com/w/cpp/container/map

Standard Library I Containers

std::map (2)

std:map also allows to search for ranges:

upper_bound() returns an iterator pointing to the first greater element:

std::map<int, int> x_to_y = {{1, 1}, {3, 9}, {7, 49}};
auto gt3 = x_to_y.upper_bound(3);

for (; gt3 != x_to_y.end(); ++gt3) {
std::cout << gt3->first << "->" << gt3->second << ","; // 7->49,

}

lower_bound() returns an iterator pointing to the first element not lower:

auto geq3 = x_to_y.lower_bound(3);

for (; geq3 != x_to_y.end(); ++geq3) {
std::cout << geq3->first << "->" << geq3->second << ","; // 3->9, 7->49,

}

517

Standard Library I Containers

std::unordered_set

Sets are associative containers consisting of keys
• Defined in the header <unordered_set>
• Keys are required to be unique (as is expected of a set)
• Template parameter Key for the type of the elements
• Is internally a hash table
• Amortized O(1) complexity for random access, search, insertion, and removal
• No way to access keys in order (use std::set for that!)
• Elements must not be modified! If an element’s hash changes, the container

might get corrupted
• Accepts custom hash- and comparison functions through second and third

template parameter

518

https://en.cppreference.com/w/cpp/container/unordered_set

Standard Library I Containers

std::unordered_set: Checking for Elements
Sets can be constructed just like arrays:
std::unordered_set<std::string>

shopping_list {"milk", "bread", "butter"};

Look for an element with find():
auto search = shopping_list.find("milk");

if (search != shopping_list.end()) {
// Returns an iterator pointing to the element!
*search; // == "milk"

}

Or with count() (returning either 0 or 1):
shopping_list.count("bread"); // == 1
shopping_list.count("blafasel"); // == 0

Check the number of the elements with size():
shopping_list.size(); // == 3
shopping_list.empty(); // false

519

https://en.cppreference.com/w/cpp/container/unordered_set

Standard Library I Containers

std::unordered_set: Insertion

Update or insert elements like this:
shopping_list.insert("lettuce");

//Emplace also works:
shopping_list.emplace("milk");

insert returns a std::pair<iterator,bool> indicating if insertion
succeeded:
auto result = shopping_list.insert("milk");

result.second; // false, as "milk" is already an element of shopping_list
*result.first; // "milk", iterator points to element preventing insertion

result = shopping_list.insert("broccoli");
result.second; // true, "broccoli" was added
*result.first; // "broccoli", iterator points to newly inserted element

520

https://en.cppreference.com/w/cpp/container/unordered_set

Standard Library I Containers

std::unordered_set: Removal

Erase elements with erase() or empty it with clear:
// Returns an iterator that points to the "milk" element
auto search = shopping_list.find("milk");
// removes the element the iterator points to, returns iterator to next entry
auto newIterator = shopping_list.erase(search);

// removes the element "apples", if it exists
size_t numRemoved = name_to_grade.erase("apples");
// numRemoved is 1 if element was found and removed, 0 otherwise

shopping_list.clear(); // removes all elements of shopping_list

521

https://en.cppreference.com/w/cpp/container/unordered_set

Standard Library I Containers

std::set (1)

In contrast to unordered sets, the elements of std::set are sorted
• Defined in the header <set>
• Interface largely the same to std::unordered_set
• Optionally accepts a custom comparison function as template parameter
• Is internally a tree (usually AVL- or R/B-Tree)
• O(log n) complexity for random access, search, insertion, and removal

Use std::set only if you need a sorted set

522

https://en.cppreference.com/w/cpp/container/set

Standard Library I Containers

std::set (2)

std:set also allows to search for ranges:
upper_bound() returns an iterator pointing to the first greater element:

std::set<int> x = {1, 3, 7};
auto gt3 = x.upper_bound(3);

for (; gt3 != x.end(); ++gt3) {
std::cout << x << ","; // 7,

}

lower_bound() returns an iterator pointing to the first element not lower:

std::set<int> x = {1, 3, 7};
auto geq = x.lower_bound(3);

for (; geq != x.end(); ++geq) {
std::cout << x << ","; // 3, 7,

}

523

Standard Library I Containers

Containers: Thread Safety

Containers give some thread safety guarantees:
• Two different containers: All member functions can be called concurrently by

different threads (i.e. different containers don’t share state)
• The same container: All read-only member functions can be called

concurrently. E.g., const functions and [] (expect in associative
containers), data(), front()/back(), begin()/end(), find()

• Iterator operations that only read (e.g. incrementing or dereferencing an
iterator) can be run concurrently with reads of other iterators and const
member functions

• Different elements of the same container can be modified concurrently
• Be careful: As long as the standard does not explicitly require a member

function to be sequential, the standard library implementation is allowed to
parallelize it interally (see e.g. std::transform vs. std::for_each)

Rule of thumb: Simultaneous reads on the same container are always okay,
simultaneous read/writes on different containers are also okay. Everything else
requires synchronization.

524

https://en.cppreference.com/w/cpp/container

Standard Library I Iterators

Iterators: A Short Overview

Iterators are objects that can be thought of as pointer abstractions
• Problem: Different element access methods for each container
• Therefore: Container types not easily exchangable in code
• Solution: Iterators abstract over element access and provide pointer-like

interface
• Allow for easy exchange of underlying container type
• The standard library defines multiple iterator types as containers have varying

capabilities (random access, traversable in both directions, …)

Be careful: When writing to a container, all existing iterators are invalidated and
can no longer be used (some exceptions apply)!

525

https://en.cppreference.com/w/cpp/iterator

Standard Library I Iterators

Iterators: An Example (1)

All containers have a begin and an end iterator:
std::vector<std::string> vec = {"one", "two", "three", "four"};
auto it = vec.begin();
auto end = vec.end();

The begin iterator points to the first element of the container:
std::cout << *it; // prints "one"
std::cout << it->size(); // prints 3

The end iterator points to the first element after the container. Dereferencing it
results in undefined behavior:
*end; // undefined behavior

An iterator can be incremented (just like a pointer) to point at the next element:
++it; // Prefer to use pre-increment
std::cout << *it; // prints "two"

526

https://en.cppreference.com/w/cpp/iterator

Standard Library I Iterators

Iterators: An Example (2)

Iterators can be checked for equality. Comparing to the end iterator is used to
check whether iteration is done:
// prints "three,four,"
for (; it != end; ++it) {

std::cout << *it << ",";
}

This can be streamlined with a range-based for loop:
for (auto elem : vec) {

std::cout << elem << ","; // prints "one,two,three,four,"
}

Such a loop requires the range expression (here: vec) to have a begin() and
end() member.
vec.begin() is assigned to an internal iterator which is dereferenced, assigned
to the range declaration (here: auto elem), and then incremented until it equals
vec.end().

527

https://en.cppreference.com/w/cpp/iterator

Standard Library I Iterators

Iterators: An Example (3)
Iterators can also simplify dynamic insertion and deletion:
for (it = vec.begin(); it != vec.end(); ++it) {

if (it->size == 3) {
it = vec.insert(it,"foo");
// it now points to the newly inserted element
++it;

}
}
//vec == {"foo", "one", "foo", "two", "three", "four"}

for (it = vec.begin(); it != vec.end(); ++it) {
if (it->size == 3) {

it = vec.erase(it);
// erase returns a new, valid iterator
// pointing at the next element

}
}
//vec == {"three", "four"}

528

https://en.cppreference.com/w/cpp/iterator

Standard Library I Iterators

InputIterator and OutputIterator

Input- and OutputIterator are the most basic iterators. They have the following
features:
• Equality comparison: Checks if two iterators point to the same position
• Dereferencable with the * and -> operators
• Incrementable, to point at the next element in sequence
• A dereferenced InputIterator can only by read
• A dereferenced OutputIterator can only be written to

As the most restrictive iterators, they have a few limitations:
• Single-pass only: They cannot be decremented
• Only allow equality comparison, <, >=, etc. not supported
• Can only be incremented by one (i.e. it + 2 does not work)

Used in single-pass algorithms such as find() (InputIterator) or copy()
(Copying from an InputIterator to an OutputIterator)

529

https://en.cppreference.com/w/cpp/named_req/InputIterator

Standard Library I Iterators

ForwardIterator and BidirectionalIterator

ForwardIterator combines InputIterator and OutputIterator
• All the features and restrictions shared between input- and output iterator

apply
• Dereferenced iterator can be read and written to

BidirectionalIterator generalizes ForwardIterator
• Additionally allows decrementing (walking backwards)
• Therefore supports multi-pass algorithms traversing the container multiple

times
• All other restrictions of ForwardIterator still apply

530

https://en.cppreference.com/w/cpp/named_req/ForwardIterator

Standard Library I Iterators

RandomAccessIterator and ContiguousIterator

RandomAccessIterator generalizes BidirectionalIterator
• Additionally allows random access with operator[]
• Supports relational operators, such as < or >=
• Can be incremented or decremented by any amount (i.e. it + 2 does work)

ContiguousIterator
• Introduced with C++17
• Guarantees that elements are stored in memory contiguously
• Formally: For every iterator it and integral value n: if it+ n is a valid

iterator, then ∗(it+ n) ⇔ ∗(std::addressof(∗it) + n)
• Orthogonal to all other iterators (i.e. a ContiguousIterator is not

necessarily a RandomAccessIterator)
• Code predating C++17 often treats RandomAccessIterators of
std::string, std::vector, and std::array as if they were
ContiguousIterators

531

https://en.cppreference.com/w/cpp/named_req/RandomAccessIterator

Standard Library I Streams and I/O

Streams and I/O

The standard library has an entire library for I/O operations. The main concept of
the I/O library is a stream.
• Streams are organized in a class hierarchy
• std::istream is the base class for input operations (e.g. operator>>)
• std::ostream is the base class for output operations (e.g. operator<<)
• std::iostream is a subclass of std::istream and std::ostream
• std::cin is an instance of std::istream that represents stdin
• std::cout is an instance of std::ostream that represent stdout

As for strings, streams are actually templates parametrized with a character type.
• std::istream is an alias for std::basic_istream<char>
• std::ostream is an alias for std::basic_ostream<char>

532

https://en.cppreference.com/w/cpp/io

Standard Library I Streams and I/O

Common Operations on Streams

All streams are subclasses of std::basic_ios and have the following member
functions:
• good(), fail(), bad(): Checks if the stream is in a specific error state
• eof(): Checks if the stream has reached end-of-file
• operator bool(): Returns true if stream has no errors

int value;
if (std::cin >> value) {

std::cout << "value = " << value << std::endl;
} else {

std::cout << "error" << std::endl;
}

533

https://en.cppreference.com/w/cpp/io/basic_ios

Standard Library I Streams and I/O

Input Streams

Input streams (std::istream) support several input functions:
• operator>>(): Reads a value of a given type from the stream, skips

leading whitespace
• operator>>() can be overloaded for own types as second argument to

support being read from a stream
• get(): Reads single or multiple characters until a delimiter is found
• read(): Reads given number of characters

// Defined by the standard library:
std::istream& operator>>(std::istream&, int&);
int value;
std::cin >> value;

// Read (up to) 1024 chars from cin:
std::vector<char> buffer(1024);
std::cin.read(buffer.data(), 1024);

534

https://en.cppreference.com/w/cpp/io/basic_istream

Standard Library I Streams and I/O

Output Streams

Output streams (std::ostream) support several output functions:
• operator<<(): Writes a value to the stream
• operator<<() can be overloaded for own types as second argument to

support being written to a stream
• put(): Writes a single character
• write(): Writes multiple characters

// Defined by the standard library:
std::ostream& operator<<(std::ostream&, int);
std::cout << 123;

// Write 1024 chars to cout:
std::vector<char> buffer(1024);
std::cout.write(buffer.data(), 1024);

535

https://en.cppreference.com/w/cpp/io/basic_ostream

Standard Library I Streams and I/O

String Streams

std::stringstream can be used when input and output should be written and
read from a std::string.
• Defined in the header <sstream>
• Is a subclass of std::istream and std::ostream
• Initial contents can be given in the constructor
• Contents can be extracted and set with str()

std::stringstream stream("1 2 3");
int value;
stream >> value; // value == 1
stream.str("4"); // Set stream contents
stream >> value; // value == 4
stream << "foo";
stream << 123;
stream.str(); // == "foo123"

536

https://en.cppreference.com/w/cpp/io/basic_stringstream

Standard Library I Streams and I/O

File Streams
The standard library defines several streams for file I/O in the <fstream> header:

• std::ifstream: Input file stream to read to a file
• std::ofstream: Output file stream to write to a file
• std::fstream: File stream to read and write to a file

std::ifstream input("input_file");
if (!input) { std::cout << "couldn't open input_file\n"; }
std::ofstream output("output_file");
if (!output) { std::cout << "couldn't open output_file\n"; }
// Read an int from input_file and write it to output_file
int value = -1;
if (!(input >> value)) {

std::cout << "couldn't read from file\n";
}
if (!(output << value)) {

std::cout << "couldn't write to file\n";
}

537

https://en.cppreference.com/w/cpp/header/fstream

Standard Library I Streams and I/O

Disadvantage of Streams

Even though streams are nice to use, they should be avoided in many cases:
• Streams make have use of virtual functions and virtual inheritance which by

itself can sometimes be a significant performance overhead
• Streams respect the system’s locale settings (e.g. whether to use a period or

a comma for floating point numbers) which also makes them slow
• Especially parsing of integers is very inefficient

General rule: When input is typed in by a user, using streams is fine. When input
is read from files or generated automatically, better use OS-specific functions.

538

Standard Library II

Standard Library II

539

Standard Library II Function Objects

Function Objects (1)

Regular functions are not objects in C++

• Cannot be passed as parameters
• Cannot have state
• …

C++ additionally defines the FunctionObject named requirement. For a type T to
be a FunctionObject
• T has to be an object
• operator()(args) has to be defined for T for a suitable argument list
args which can be empty

• Often referred to as functors

540

https://en.cppreference.com/w/cpp/named_req/FunctionObject

Standard Library II Function Objects

Function Objects (2)

There are a number of valid function objects defined in C++

• Pointers to functions
• Lambda expressions
• Stateful function objects in form of classes

Functions and function references are not function objects
• Can still be used in the same way due to implicit function-to-pointer

conversion

541

https://en.cppreference.com/w/cpp/named_req/FunctionObject

Standard Library II Function Objects

Function Pointers (1)

While functions are not objects they do have an address
• Location in memory where the actual assembly code resides
• Allows declaration of function pointers

Function pointers to non-member functions
• Declaration: return-type (*identifier)(args)
• Allows passing functions as parameters

• E.g. passing a custom compare function to std::sort (see later)
• E.g. passing a callback to a method

• Can be invoked in the same way as a function

542

https://en.cppreference.com/w/cpp/language/pointer#Pointers_to_functions

Standard Library II Function Objects

Function Pointers (2)

Example

int callFunc(int (*func)(int, int), int arg1, int arg2) {
return (*func)(arg1, arg2);

}
//--
double callFunc(double (*func)(double), double argument) {

return func(argument); // Automatically dereferenced
}
//--
int add(int arg1, int arg2) { return arg1 + arg2; }
double add4(double argument) { return argument + 4; }
//--
int main() {

auto i = callFunc(add, 2, 4); // i = 6
auto j = callFunc(&add4, 4); // j = 8, "&" can be omitted

}

543

Standard Library II Function Objects

Lambda Expressions (1)

Function pointers can be unwieldy
• Function pointers cannot easily capture environment
• Have to pass all variables that affect function by parameter
• Cannot have “local” functions within other functions

C++ defines lambda expressions as a more flexible alternative
• Lambda expressions construct a closure
• Closures store a function together with an environment
• Lambda expressions can capture variables from the scope where they are

defined

544

https://en.cppreference.com/w/cpp/language/lambda

Standard Library II Function Objects

Lambda Expressions (2)

Lambda expression syntax
• [captures] (params) -> ret { body }
• captures specifies the parts of the environment that should be stored
• params is a comma-separated list of function parameters
• ret specifies the return type and can be omitted, in which case the return

type is deduced from return statements inside the body

The list of captures can be empty
• Results in stateless lambda expression
• Stateless lambda expressions are implicitly convertible to function pointers

Lambda expressions have unique unnamed class type
• This type cannot be named directly
• We have to rely on template argument deduction when assigning lambda

expressions to variables (i.e. use auto or a deduced template parameter)

545

Standard Library II Function Objects

Lambda Expressions (3)

Example

int callFunc(int (*func)(int, int), int arg1, int arg2) {
return func(arg1, arg2);

}
//--
int main() {

auto lambda = [](int arg1, int arg2) {
return arg1 + arg2;

};

int i = callFunc(lambda, 2, 4); // i = 6
int j = lambda(5, 6); // j = 11

}

546

Standard Library II Function Objects

Lambda Expressions (4)

All lambda expressions have unique types

// ERROR: Compilation will fail due to ambiguous return type
auto getFunction(bool first) {

if (first) {
return []() {

return 42;
};

} else {
return []() {

return 42;
};

}
}

547

Standard Library II Function Objects

Lambda Captures (1)

Lambda captures specify what constitutes the state of a lambda expression
• Can refer to automatic variables in the surrounding scopes (up to the

enclosing function)
• Can refer to the this pointer in the surrounding scope (if present)

Captures can either capture by-copy or by-reference
• Capture by-copy creates a copy of the captured variable in the lambda state
• Capture by-reference creates a reference to the captured variable in the

lambda state
• Captures can be used in the lambda expression body like regular variables or

references

548

https://en.cppreference.com/w/cpp/language/lambda#Lambda_capture

Standard Library II Function Objects

Lambda Captures (2)

Lambda captures are provided as a comma-separated list of captures
• By-copy: identifier or identifier initializer
• By-reference: &identifier or &identifier initializer
• identifier must refer to automatic variables in the surrounding scopes
• identifier can be used as an identifier in the lambda body
• Each variable may be captured only once

First capture can optionally be a capture-default
• By-copy: =
• By-reference: &
• Allows any variable in the surrounding scopes to be used in the lambda body
• Specifies the capture type for all variables without explicit captures
• If present, only diverging capture types can be specified afterwards

549

Standard Library II Function Objects

Lambda Captures (3)

Capture types

int main() {
int i = 0;
int j = 42;

auto lambda1 = [i](){}; // i by-copy
auto lambda2 = [&i](){}; // i by-reference

auto lambda2 = [&, i](){}; // j by-reference, i by-copy
auto lambda3 = [=, &i](){}; // j by-copy, i by-reference

auto lambda4 = [&, &i](){}; // ERROR: non-diverging capture types
auto lambda5 = [=, i](){}; // ERROR: non-diverging capture types

}

550

Standard Library II Function Objects

Lambda Captures (4)

Capture by-copy vs. by-reference

int main() {
int i = 42;

auto lambda1 = [i]() { return i + 42; };
auto lambda2 = [&i]() { return i + 42; };

i = 0;

int a = lambda1(); // a = 84
int b = lambda2(); // b = 42

}

551

Standard Library II Function Objects

Lambda Captures (5)

We can also capture a this pointer
• By-copy: *this (actually copies the current object)
• By-reference: this

struct Foo {
int i = 0;

void bar() {
auto lambda1 = [*this]() {return i + 42; };
auto lambda2 = [this](){ return i + 42; };

i = 42;

int a = lambda1(); // a = 42
int b = lambda2(); // b = 84

}
};

552

Standard Library II Function Objects

Lambda Captures (6)

By-copy capture-default copies only the this pointer

struct Foo {
int i = 0;

void bar() {
auto lambda1 = [&]() {return i + 42; };
auto lambda2 = [=](){ return i + 42; };

i = 42;

int a = lambda1(); // a = 84
int b = lambda2(); // b = 84

}
};

553

Standard Library II Function Objects

Lambda Captures (7)

Beware of lifetimes when capturing

#include <memory>

int main() {
auto ptr = std::make_unique<int>(4);

auto f2 = [inner = ptr.get()]() {
return *inner;

};

int a = f2(); // 4
ptr.reset();
int b = f2(); // undefined behavior

}

By-reference capture can also easily lead to dangling references

554

Standard Library II Function Objects

Stateful Function Objects (1)

Situation so far
• Functions are generally stateless
• State has to be kept in surrounding object, e.g. class instances
• Lambda expressions allow limited state-keeping

Function objects can be implemented in a regular class
• Allows the function object to keep arbitrary state
• Difference to lambda expressions: State member variables can be accessed

explicitly and changed from outside the function object

555

Standard Library II Function Objects

Stateful Function Objects (2)
Example

struct Adder {
int value;

int operator()(int param) {
return param + value;

}
};
//--
int main() {

Adder myAdder;
myAdder.value = 1;
myAdder(1); // 2
myAdder(4); // 5
myAdder.value = 5;
myAdder(1); // 6

}

556

Standard Library II Function Objects

std::function (1)

std::function is a general purpose wrapper for all callable targets
• Defined in the <functional> header
• Able to store, copy and invoke the wrapped target
• Potentially incurs dynamic memory allocations
• Often adds unnecessary overhead
• Should be avoided where possible

#include <functional>
//--
int add2(int p){ return p + 2; }
//--
int main() {

std::function<int(int)>adder = add2;
int a = adder(5); // a = 7

}

557

https://en.cppreference.com/w/cpp/utility/functional/function

Standard Library II Function Objects

std::function (2)

Potential std::function use case

#include <functional>
//--
std::function<int()> getFunction(bool first){

int a = 14;

if (first)
return [=]() { return a; };

else
return [=]() { return 2 * a; };

}
//--
int main() {

return getFunction(false)() + getFunction(true)(); // 42
}

558

Standard Library II Function Objects

Working with Function Objects
Code that intends to call function objects should usually rely on templates

int bad(int (*fn)()) { return fn(); }
//--
template <typename Fn>
int good(Fn&& fn) { return fn(); }
//--
struct Functor {

int operator()() { return 42; }
};
//--
int main() {

Functor ftor;

bad([]() { return 42; }); // OK
bad(ftor); // ERROR

good([]() { return 42; }); // OK
good(ftor); // OK

}

559

Standard Library II The Algorithms Library

The Algorithms Library

The algorithms library is part of the C++ standard library
• Defines operations on ranges of elements [first, last)
• Bundles functions for sorting, searching, manipulating, etc.
• Ranges can be specified using pointers or any appropriate iterator type
• Spread in 4 headers

• <algorithm>
• <numeric>
• <memory>
• <cstdlib>

• We will focus on <algorithm> as it bundles the most relevant parts

560

https://en.cppreference.com/w/cpp/algorithm

Standard Library II The Algorithms Library

std::sort

Sorts all elements in a range [first, last) in ascending order
• void sort(RandomIt first, RandomIt last);
• Iterators must be RandomAccessIterators
• Elements have to be swappable (std::swap or user-defined swap)
• Elements have to be move-assignable and move-constructible
• Does not guarantee order of equal elements
• Needs O(n ∗ log(n)) comparisons

#include <algorithm>
#include <vector>
//--
int main() {

std::vector<unsigned> v = {3, 4, 1, 2};
std::sort(v.begin(), v.end()); // 1, 2, 3, 4

}

561

https://en.cppreference.com/w/cpp/algorithm/sort

Standard Library II The Algorithms Library

Custom Comparison Functions

Sorting algorithms can be modified through custom comparison functions
• Supplied as function objects (Compare named requirement)
• Have to establish a strict weak ordering on the elements
• Syntax: bool cmp(const Type1 &a, const Type2 &b);
• Return true if and only if a < b according to some strict weak ordering <

#include <algorithm>
#include <vector>
//--
int main() {

std::vector<unsigned> v = {3, 4, 1, 2};
std::sort(v.begin(), v.end(), [](unsigned lhs, unsigned rhs) {

return lhs > rhs;
}); // 4, 3, 2, 1

}

562

https://en.cppreference.com/w/cpp/named_req/Compare

Standard Library II The Algorithms Library

Further Sorting Operations

Sometimes std::sort may not be the optimal choice
• Does not necessarily keep order of equal-ranked elements
• Sorts the entire range (unnecessary e.g. for top-k queries)

Keep the order of equal-ranked elements
• std::stable_sort

Partially sort a range
• std::partial_sort

Check if a range is sorted
• std::is_sorted
• std::is_sorted_until

563

https://en.cppreference.com/w/cpp/algorithm#Sorting_operations

Standard Library II The Algorithms Library

Searching

The algorithms library offers a variety of searching operations
• Different set of operations for sorted and unsorted ranges
• Searching on sorted ranges is faster in general
• Sorting will pay off for repeated lookups

Arguments against sorting
• Externally prescribed order that may not be modified
• Frequent updates or insertions

General semantics
• Search operations return iterators pointing to the result
• Unsuccessful operations are usually indicated by returning the last iterator

of a range [first, last)

564

Standard Library II The Algorithms Library

Searching - Unsorted

Find the first element satisfying some criteria
• std::find
• std::find_if
• std::find_if_not

Search for a range of elements in another range of elements
• std::search

Count matching elements
• std::count
• std::count_if

Many more useful operations (see reference documentation)

565

https://en.cppreference.com/w/cpp/algorithm#Non-modifying_sequence_operations

Standard Library II The Algorithms Library

std::find

Example

#include <algorithm>
#include <vector>
//--
int main() {

std::vector<int> v = {2, 6, 1, 7, 3, 7};

auto res1 = std::find(vec.begin(), vec.end(), 7);
int a = std::distance(vec.begin(), res1); // 3

auto res2 = std::find(vec.begin(), vec.end(), 9);
assert(res2 == vec.end());

}

566

https://en.cppreference.com/w/cpp/algorithm/find

Standard Library II The Algorithms Library

std::find_if

Example

#include <algorithm>
#include <vector>
//--
int main() {

std::vector<int> v = {2, 6, 1, 7, 3, 7};

auto res1 = std::find_if(vec.begin(), vec.end(),
[](int val) { return (val % 2) == 1; });

int a = std::distance(vec.begin(), res1); // 2

auto res2 = std::find_if_not(vec.begin(), vec.end(),
[](int val) { return val <= 7; });

assert(res2 == vec.end());
}

567

Standard Library II The Algorithms Library

Searching - Sorted

On sorted ranges, binary search operations are offered
• Complexity O(log(n)) when range is given as RandomAccessIterator
• Can employ custom comparison function (see above)

When called with ForwardIterators complexity is linear in number of
iterator increments

Search for one occurrence of a certain element
• std::binary_search

Search for range boundaries
• std::lower_bound
• std::upper_bound

Search for all occurrences of a certain element
• std::equal_range

568

https://en.cppreference.com/w/cpp/algorithm#Binary_search_operations_.28on_sorted_ranges.29

Standard Library II The Algorithms Library

std::binary_search

Lookup an element in a range [first, last)
• Only checks for containment, therefore return type is bool
• To locate the actual values use std::equal_range

#include <algorithm>
#include <vector>
//--
int main() {

std::vector<int> v = {1, 2, 2, 3, 3, 3, 4};

auto res1 = std::binary_search(v.begin(), v.end(), 3);
assert(res1 == true);

auto res2 = std::binary_search(v.begin(), v.end(), 0);
assert(res2 == false);

}

569

https://en.cppreference.com/w/cpp/algorithm/binary_search

Standard Library II The Algorithms Library

std::lower_bound

Returns iterator pointing to the first element >= the search value

#include <algorithm>
#include <vector>
//--
int main() {

std::vector<int> v = {1, 2, 2, 3, 3, 3, 4};

auto res1 = std::lower_bound(v.begin(), v.end(), 3);
int a = std::distance(v.begin(), res1); // 3

auto res2 = std::lower_bound(v.begin(), v.end(), 0);
int b = std::distance(v.begin(), res2); // 0

}

570

https://en.cppreference.com/w/cpp/algorithm/lower_bound

Standard Library II The Algorithms Library

std::upper_bound

Returns iterator pointing to the first element > the search value

#include <algorithm>
#include <vector>
//--
int main() {

std::vector<int> v = {1, 2, 2, 3, 3, 3, 4};

auto res1 = std::upper_bound(v.begin(), v.end(), 3);
int a = std::distance(v.begin(), res1); // 6

auto res2 = std::upper_bound(v.begin(), v.end(), 4);
assert(res2 == v.end());

}

571

https://en.cppreference.com/w/cpp/algorithm/upper_bound

Standard Library II The Algorithms Library

std::equal_range

Locates range of elements equal to search value
• Returns pair of iterators (begin and end of range)
• Identical to using std::lower_bound and std::upper_bound

#include <algorithm>
#include <vector>
//--
int main() {

std::vector<int> v = {1, 2, 2, 3, 3, 3, 4};

auto [begin1, end1] = std::equal_range(v.begin(), v.end(), 3);
int a = std::distance(v.begin(), begin1); // 3
int b = std::distance(v.begin(), end1); // 6

auto [begin2, end2] = std::equal_range(v.begin(), v.end(), 0);
assert(begin2 == end2);

}

572

Standard Library II The Algorithms Library

Permutations

The algorithms library offers operations to permute a given range
• Can iterate over permutations in lexicographical order
• Requires at least BidirectionalIterators
• Values have to be swappable
• Order is determined using operator< by default
• A custom comparison function can be supplied (see above)

Initialize a dense range of elements
• std::iota

Iterate over permutations in lexicographical order
• std::next_permutation
• std::prev_permutation

573

https://en.cppreference.com/w/cpp/algorithm#Permutation_operations

Standard Library II The Algorithms Library

std::iota

Initialize a dense range of elements
• std::iota(ForwardIt first, ForwardIt last, T value)
• Requires at least ForwardIterators
• Fills the range [first, last) with increasing values starting at value
• Values are incremented using operator++()

#include <numeric>
#include <memory>
//--
int main() {

auto heapArray = std::make_unique<int[]>(5);
std::iota(heapArray.get(), heapArray.get() + 5, 2);

// heapArray is now {2, 3, 4, 5, 6}
}

574

https://en.cppreference.com/w/cpp/algorithm/iota

Standard Library II The Algorithms Library

std::next_permutation

Reorders elements in a range to the lexicographically next permutation
• bool next_permutation(BidirIt first, BidirIt last)
• Returns false if the current permutation was the lexicographically last

permutation (the range is then sorted in descending order)

#include <algorithm>
#include <vector>
//--
int main() {

std::vector<int> v = {1, 2, 3};

bool b = std::next_permutation(v.begin(), v.end());
// b == true, v == {1, 3, 2}
b = std::next_permutation(v.begin(), v.end());
// b == true, v == {2, 1, 3}

}

575

https://en.cppreference.com/w/cpp/algorithm/next_permutation

Standard Library II The Algorithms Library

std::prev_permutation

Reorders elements in a range to the lexicographically previous permutation
• bool prev_permutation(BidirIt first, BidirIt last)
• Returns false if the current permutation was the lexicographically first

permutation (the range is then sorted in ascending order)

#include <algorithm>
#include <vector>
//--
int main() {

std::vector<int> v = {1, 3, 2};

bool b = std::prev_permutation(v.begin(), v.end());
// b == true, v == {1, 2, 3}
b = std::prev_permutation(v.begin(), v.end());
// b == false, v == {3, 2, 1}

}

576

https://en.cppreference.com/w/cpp/algorithm/prev_permutation

Standard Library II The Algorithms Library

Additional Functionality

The algorithms library offers many more operations
• std::min & std::max over a range instead of two elements
• std::merge & std::in_place_merge for merging of sorted ranges
• Multiple set operations (intersection, union, difference, …)
• Heap functionality
• Sampling of elements using std::sample
• Swapping elements using std::swap
• Range modifications

• std::copy To copy elements to new location
• std::rotate To rotate range
• std::shuffle To randomly reorder elements

• For even more operations: See the reference documentation

577

https://en.cppreference.com/w/cpp/algorithm

Standard Library II The Ranges Library

The Ranges Library (1)

The ranges library provides components for dealing with ranges of elements
• Ranges provide an abstraction of the [first, last) iterator pairs we have

seen so far
• Formalized by the range concept in the <ranges> header
• We can iterate over the elements of a range in the same way as over the

elements of a container
• Newly introduced in C++20, compiler support may still be incomplete

Views of ranges can be manipulated through range adaptors
• Apply various transformations to a view or its contained elements
• Range adaptors can be composed in a functional way to yield more complex

transformations

578

https://en.cppreference.com/w/cpp/ranges

Standard Library II The Ranges Library

The Ranges Library (2)

Example

#include <ranges>
#include <iostream>
#include <map>

int main() {
std::map<int, int> map{{1, 2}, {3, 4}};

for (auto key : (map | std::views::keys))
std::cerr << key << std::endl;

}

Output

1
3

579

Standard Library II The Ranges Library

Range Factories (1)

Most containers can directly be used as ranges
• Details specified by the range concepts in the <range> header
• In particular the viewable_range concept which allows a range to be

converted to a view that can then be transformed further

Range factories can be used to create some commonly used views without
constructing a dedicated container
• views::empty – An empty view
• views::single – A view that contains a single element
• views::iota – A view consisting of repeatedly incremented values

580

Standard Library II The Ranges Library

Range Factories (2)
Example

#include <ranges>
#include <iostream>

int main() {
auto square = [](auto x) { return x * x; };

for (auto i : (std::views::iota(1, 5)
| std::views::transform(square)))

std::cout << i << std::endl;
}

Output

1
4
9
16

581

Standard Library II The Ranges Library

Range Adaptors (1)

Range adaptors apply transformations to the elements of a range
• Take a viewable_range as their first argument and return a view
• May take additional arguments if required by the transformation
• The pipe operator can be used to chain unary range adaptors

Chaining unary range adaptors
• Assume C1 and C2 to be unary range adaptors and R to be a range
• C2(C1(R)) is the view that results from applying C1 followed by C2 to R
• This can also be written as R | C1 | C2

582

https://en.cppreference.com/w/cpp/ranges#Range_adaptors

Standard Library II The Ranges Library

Range Adaptors (2)

Example

#include <ranges>
#include <iostream>
#include <map>

int main() {
std::map<int, int> map{{1, 2}, {3, 4}};

// Functional syntax
for (auto key : std::views::reverse(std::views::keys(map)))

std::cerr << key << std::endl;

// "Pipe" composition syntax
for (auto key : (map | std::views::keys | std::views::reverse))

std::cerr << key << std::endl;
}

583

Standard Library II The Ranges Library

Range Adaptors (3)

Range adaptors that take multiple arguments can be curried
• Assume C to be a range adaptor that takes arguments A1 to An in addition to

a range R
• Then C(A1, …, An) is a unary range adaptor

This means the following expressions are equivalent
• C(R, A1, …, An)
• C(A1, …, An)(R)
• R | C(A1, …, An)

584

https://en.cppreference.com/w/cpp/ranges#Range_adaptors

Standard Library II The Ranges Library

Range Adaptors (4)

Example

#include <ranges>
#include <iostream>

int main() {
auto numbers = {1, 2, 3, 4};
auto square = [](auto x) { return x * x; };

// Functional syntax
for (auto i : std::views::transform(numbers, square))

std::cout << i << std::endl;

// Curried functional syntax
for (auto i : std::views::transform(square)(numbers))

std::cout << i << std::endl;

// "Pipe" composition syntax
for (auto i : numbers | std::views::transform(square))

std::cout << i << std::endl;
}

585

Standard Library II The Ranges Library

Range Adaptors (5)

Many useful range adaptors are specified in the <ranges> header
• views::filter – View all elements that satisfy a predicate
• views::transform – Apply a transformation function to all elements
• views::keys – View the first elements of a range of pairs
• views::values – View the second elements of a range of pairs
• For more range adaptors see the reference documentation

586

https://en.cppreference.com/w/cpp/ranges#Range_adaptors

Standard Library II The Random Library

The Random Library

The random library defines pseudo-random number generators and distributions
• Defined in <random> header
• Bundles several useful components

• Abstraction for random devices
• Random number generators
• Wrappers to generate numerical distributions from RNGs

Should always be preferred over functionality from <cstdlib> header
• rand produces very low-quality random numbers
• E.g. in one example the lowest bit simply alternates between 0 and 1
• Especially serious if rand is used with modulo operations

587

https://en.cppreference.com/w/cpp/header/random

Standard Library II The Random Library

Random Number Generators (1)

The random library defines various pseudo-random number generators
• Uniform pseudo-random bit generators with distinct properties
• RNGs can be seeded and reseeded
• RNGs can be equality-compared
• RNGs are not thread-safe
• Within the STL, one should usually prefer the Mersenne Twister generators

The random library additionally defines a default_random_engine type alias
• Implementation is implementation-defined

Do not use if you want portability

Most RNGs are template specializations of an underlying random number engine
Always use the predefined RNGs unless you know exactly what you are doing

588

https://en.cppreference.com/w/cpp/header/random#Predefined_generators

Standard Library II The Random Library

Random Number Generators (2)

Mersenne Twister engine
• Predefined for 32-bit (std::mt19937) and 64-bit (std::mt19937_64)

output width
• Produces high-quality unsigned random numbers in [0, 2w − 1] where w is the

number of bits
• Can and should be seeded in the constructor

#include <cstdint>
#include <random>
//--
int main() {

std::mt19937 engine(42);

unsigned a = engine(); // a == 1608637542
unsigned b = engine(); // b == 3421126067

}

589

Standard Library II The Random Library

std::random_device

Standard interface to every available source of external randomness
• /dev/random, atmospheric noise, …
• Actual sources are implementation dependent
• Only “real” source of randomness

Can degrade to a pseudo-random number generator when no source of true
randomness is available

#include <cstdint>
#include <random>
//--
int main() {

std::mt19937 engine(std::random_device()());

unsigned a = engine(); // a == ???
unsigned b = engine(); // b == ???

}

590

https://en.cppreference.com/w/cpp/numeric/random/random_device

Standard Library II The Random Library

Distributions

Random number generators are rather limited
• Fixed output range
• Fixed output distribution (approximately uniform)

The random library provides distributions to transform the output of RNGs
• All distributions can be combined with all random engines
• Various well-known distributions are provided

• Uniform
• Normal
• Bernoulli
• Possion
• …

• Some distributions are available as discrete or continuous distributions

591

https://en.cppreference.com/w/cpp/header/random#Unifrom_distributions

Standard Library II The Random Library

std::uniform_int_distribution

Generates discrete uniform random numbers in range [a, b]
• Integer type specified as template parameter
• Constructed as uniform_int_distribution<T>(T a, T b)
• If not specified a defaults to 0 and b to the maximum value of T
• Numbers generated by operator()(Generator& g) where g is any

random number generator

#include <random>
//--
int main() {

std::mt19937 engine(42);
std::uniform_int_distribution<int> dist(-2, 2);

int d1 = dist(engine); // d1 == -1
int d2 = dist(engine); // d2 == -2

}

592

https://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution

Standard Library II The Random Library

std::uniform_real_distribution

Generates continuous uniform random numbers in range [a, b]
• Floating point type specified as template parameter
• Constructed as uniform_real_distribution<T>(T a, T b)
• If not specified a defaults to 0 and b to the maximum value of T
• Numbers generated by operator()(Generator& g) where g is any

random number generator

#include <random>
//--
int main() {

std::mt19937 engine(42);
std::uniform_real_distribution<float> dist(-2, 2);

float d1 = dist(engine); // d1 == -0.50184
float d2 = dist(engine); // d2 == 1.18617

}

593

https://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution

Standard Library II The Random Library

Seeding

Random generators should generate new random numbers each time
• The seed value of a generator is used to calculate all other random numbers
• Normally the seed should itself be a random number, e.g. by
random_device

• Deterministic sequences are preferable e.g. for tests or experiments
• For tests or experiments seed can be fixed to an arbitrary integer

Entropy of a generator is entirely dependent on the entropy of the seed
generator

594

Standard Library II The Random Library

Generating Random Dice Rolls

Example

#include <random>
//--
int main() {

// Use random device to seed generator
std::random_device rd;
// Use pseudo-random generator to get random numbers
std::mt19937 engine(rd());
// Use distribution to generate dice rolls
std::uniform_int_distribution<> dist(1, 6);

int d1 = dist(engine); // gets random dice roll
int d2 = dist(engine); // gets random dice roll

}

595

Standard Library II The Random Library

Problems With Modulo

Modulo should in general not be used to limit the range of RNGs
• Most random number generators generate values in [0, 2w − 1] for some w
• When using modulo with a number that is not a power of two modulo will

favor smaller values

Consider e.g. random dice rolls
• Assume a perfect random generator gen with w = 3

• gen will produce all values in {0, . . . , 7} with equal probability 0.125

int randomDiceroll() {
return gen() % 6 + 1;

}

• P(randomDiceroll() = x) = 0.25 for x ∈ {1, 2}
• P(randomDiceroll() = x) = 0.125 for x ∈ {3, 4, 5, 6}

596

Concurrency in Modern Hardware

Concurrency in Modern Hardware

597

Concurrency in Modern Hardware

Concurrency

What is concurrency?
function foo() { ... }
function bar() { ... }

function main() {
t1 = startThread(foo)
t2 = startThread(bar)

// Wait for t1 and t2 to finish before continuing executing main()
waitUntilFinished(t1)
waitUntilFinished(t2)

// No concurrent execution here anymore
}

In this example program, concurrency means that foo() and bar() are executed
at the same time.
• How does a CPU actually do this?
• How can concurrency be used to make your programs faster?

598

Concurrency in Modern Hardware

Concurrency in Modern Hardware

• Modern CPUs can execute multiple instruction streams simultaneously:
• Single CPU cores can execute multiple threads:

Simultaneous Multi-Threading (SMT), Intel calls it hyper-threading
• Of course CPUs can also have multiple cores that can run independently

• To get the best performance in C++ systems programming, writing
multi-threaded programs is essential

• For this, a basic understanding of how hardware behaves in the context of
parallel programming is required

• Actually writing multi-threaded C++ programs will be covered in a future
lecture

Most of the low-level implementation details can be found in the
Intel Architectures Software Developer’s Manual and the
ARM Architecture Reference Manual

599

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://developer.arm.com/docs/ddi0406/cd/arm-architecture-reference-manual-armv7-a-and-armv7-r-edition

Concurrency in Modern Hardware Simultaneous Multi-Threading (SMT)

Simultaneous Multi-Threading (SMT)
• CPUs support instruction-level parallelism by using out-of-order execution
• With SMT, CPUs also support thread-level parallelism

• In a single CPU core, multiple threads are executed
• Many hardware components, like the ALU, the SIMD unit, etc., are shared

between the threads
• Other components are duplicated for each thread, e.g. control unit to fetch

and decode instructions, register file

T1:
store

µ11 µ12

add

µ21 µ22

sub

µ31 µ32

T2:
padd

µ41 µ42

add

µ51 µ52

mul

µ61 µ62

CPU core
CU1

CU2

ALU1

ALU2

SIMD

MEM

µ51

µ22

µ32

µ42

µ12

time
add

sub

store

padd add mul

600

Concurrency in Modern Hardware Simultaneous Multi-Threading (SMT)

Problems with SMT

When using SMT, multiple instruction streams share parts of the CPU core.
• When one stream alone already utilizes all computation units, SMT does not

increase performance
• Same for memory bandwidth
• Some units may only exist once on the core, so SMT can also decrease

performance
• When two threads from unrelated processes run on the same core, this can

potentially lead to security issues → Security issues similar to Spectre and
Meltdown are suspected to be enabled by SMT

601

Concurrency in Modern Hardware Cache Coherence

Cache Coherence

L1-I L1-D
Unified L2

Unified L3

CPU 1

L1-I L1-D
Unified L2

CPU 2

Main
Memory

• Different cores can access the same memory at the same time
• Multiple cores potentially share caches
• Caches are inclusive
• CPU must make sure that caching is consistent even with concurrent

accesses → Communication between CPUs with a Cache Coherence Protocol

602

Concurrency in Modern Hardware Cache Coherence

MESI Protocol

• CPUs and caches always read and write at cache line granularity, i.e. 64 byte
• The common MESI cache coherence protocol assigns every cache line one of

the four states:
• Modified: Cache line is stored in exactly one cache and was modified in the

cache but not yet written back to main memory
• Exclusive: Cache line is stored in exactly one cache to be used exclusively by

one CPU
• Shared: Cache line is stored in at least one cache, is currently used by a CPU

for read-only access, and was not modified, yet
• Invalid: Cache line is not loaded or being used exclusively by another cache

603

Concurrency in Modern Hardware Cache Coherence

MESI Example (1)

0100
0250

0xa0:
0xe0:

main memory

0000I
0000I

CPU 1

I 0000
I 0000
CPU 2

0100
0250

0xa0:
0xe0:

main memory

0100S
0000I

CPU 1

S 0250
I 0000
CPU 2

0100
0250

0xa0:
0xe0:

main memory

0100S
0250E

CPU 1

I 0250
I 0000
CPU 2

0100
0250

0xa0:
0xe0:

main memory

0100S
0350M

CPU 1

I 0250
S 0100
CPU 2

CPU 1: loads 0xa0

CPU 2: loads 0xe0

CPU 1: loadx 0xe0

CPU 1: store 0xe0

CPU 2: loads 0xa0

604

Concurrency in Modern Hardware Cache Coherence

MESI Example (2)

0100
0250

0xa0:
0xe0:

main memory

0100S
0350M

CPU 1

I 0250
S 0100
CPU 2

0100
0350

0xa0:
0xe0:

main memory

0100I
0350S

CPU 1

I 0250
E 0100
CPU 2

0100
0350

0xa0:
0xe0:

main memory

0100S
0350S

CPU 1

I 0250
S 0100
CPU 2

• Memory store instructions don’t
directly write to main memory

• Can be enforced with explicit flush
instructions

• When a cache line is used by
multiple CPUs, this can lead to
cache thrashing
→ bad performance

CPU 1: flush 0xe0

CPU 2: loadx 0xa0

CPU 1: loads 0xa0

605

Concurrency in Modern Hardware Memory Order

Memory Accesses and Concurrency

Consider the following example program where foo() and bar() will be executed
concurrently:
globalCounter = 0

function foo() {
repeat 1000 times:

globalCounter = globalCounter - 1
}

function bar() {
repeat 1000 times:

globalCounter = (globalCounter + 1) * 2
}

Machine code for this program could look like this:

foo:
load (globalCounter), %r1
sub %r1, $1
store %r1, (globalCounter)

bar:
load (globalCounter), %r1
add %r1, $1
mul %r1, $2
store %r1, (globalCounter)

What is the value of globalCounter at the end?

606

Concurrency in Modern Hardware Memory Order

Memory Order

• Out-of-order execution and simultaneous multi-processing leads to
unexpected execution of memory load and store instructions

• All executed instructions will complete eventually
• However, effects of memory instructions (i.e. reads and writes) can become

visible in a non-deterministic order
• CPU vendors define how reads and writes are allowed to be interleaved

→ memory order
• Generally: Dependent instructions within a single thread always work as

expected:
store $123, A
load A, %r1

If the memory location at A is only accessed by this thread, r1 will always
contain 123

607

Concurrency in Modern Hardware Memory Order

Weak and Strong Memory Order

• CPU architectures usually have either weak memory order (e.g. ARM) or
strong memory order (e.g. x86)

• Weak Memory Order:
• As long as dependencies are respected, memory instructions and their effects

can be reordered
• Different threads will see writes in different orders

• Strong Memory Order:
• Within a thread, only stores are allowed to be delayed after subsequent loads,

everything else is not reordered
• When two threads execute stores to the same location, all other threads will

see the resulting writes in the same order
• Writes from a set of threads will be seen in the same order by all other threads

• For both:
• Writes from other threads can be reordered
• Concurrent memory accesses to the same location can be reordered

608

Concurrency in Modern Hardware Memory Order

Example of Memory Order (1)

In this example, initially the memory at A contains the value 1, the memory at B
the value 2.

Thread 1
store $3, A

Thread 2
store $4, B

Thread 3
load A, %r1
load B, %r2

Thread 4
load B, %r3
load A, %r4

Weak memory order:
• Threads do not have dependent

instructions
• Memory instructions can be

reordered arbitrarily
• r1 = 3, r2 = 2, r3 = 4, r4 = 1 is

allowed

Strong memory order:
• Threads 3 and 4 must see writes

from threads 1 and 2 in the same
order

• Example from weak memory order is
not allowed

• r1 = 3, r2 = 2, r3 = 4, r4 = 3 is
allowed

609

Concurrency in Modern Hardware Memory Order

Example of Memory Order (2)
Visualization of the example for weak memory order:

Thread 1
store $3, A

Thread 2
store $4, B

Thread 3
load A, %r1
load B, %r2

Thread 4
load B, %r3
load A, %r4

1. write A 5. write B

8. write A

4. write B

2. read A → 3
3. read B → 2

6. read B → 4
7. read A → 1

• Thread 3 sees write to A (1.) before write to B. (4.)
• Thread 4 sees write to B (5.) before write to A. (8.)
• In strong memory order 5. is not allowed to happen before 8.

610

Concurrency in Modern Hardware Memory Order

Memory Barriers

• Multi-core CPUs have special memory barrier (also called memory fence)
instructions that can enforce stricter memory orders requirements

• This is especially useful for architectures with weak memory order
• x86 has the following barrier instructions:

• lfence: Earlier loads cannot be reordered beyond this instruction, later loads
and stores cannot be reordered before this instruction

• sfence: Earlier stores cannot be reordered beyond this instruction, later
stores cannot be reordered before this instruction

• mfence: No loads or stores can be reordered beyond or before this instruction
• ARM has the data memory barrier instruction that supports different modes:

• dmb ishst: All writes visible in or caused by this thread before this instruction
will be visible to all threads before any writes from stores after this instruction

• dmb ish: All writes visible in or caused by this thread and dependent reads
before this instruction will be visible to all threads before any reads and writes
after this instruction

• To additionally control out-of-order execution, ARM has the data
synchronization barrier instructions: dsb ishst, dsb ish

611

Concurrency in Modern Hardware Atomic Operations

Atomic Operations

• Memory order is only concerned about memory loads and stores
• Concurrent stores to the same memory location do not have any memory

order constraints → order is possibly non-deterministic
• To allow deterministic concurrent modifications, most architectures support

atomic operations
• An atomic operation is usually a sequence of: load data, modify data, store

data
• Also called Read-Modify-Write (RMW)
• CPU ensures that all RMW operations are executed atomically, i.e. no other

concurrent loads and stores are allowed in-between
• Usually only supported for individual arithmetic and bit-wise instructions

Atomic add on x86
lock addl $1, (%rdi)

Atomic add on ARM
ldrex r1, [r0]
add r1, r1, #1
strex r2, r1, [r0]

612

Concurrency in Modern Hardware Atomic Operations

Compare-And-Swap Operations (1)
• On x86, RMW instructions potentially lock the memory bus
• To avoid performance issues, only very few RMW instructions exist
• To facilitate more complex atomic operations, the Compare-And-Swap (CAS)

atomic operation can be used
• ARM does not support locking the memory bus, so all RMW operations are

implemented with CAS
• A CAS instruction has three parameters: The memory location m, the

expected value e, and the desired value d
• The CAS operation conceptually works as follows:

tmp = load(m)
if (tmp == e) {

store(m, d)
success = true

} else {
success = false

}
• Note: The CAS operation can fail, e.g. due to concurrent modifications!

613

Concurrency in Modern Hardware Atomic Operations

Compare-And-Swap Operations (2)

Because CAS operations can fail, they are usually used in a loop with the
following steps:

1. Load value from memory location into local register
2. Do computation with the local register assuming that no other thread will

modify the memory location
3. Generate new desired value for the memory location
4. Do a CAS operation on the memory location with the value in the local

register as expected value
5. Start the loop from the beginning if the CAS operation fails

Note that steps 2 and 3 can contain any number of instructions and are not
limited to RMW instructions!

614

Concurrency in Modern Hardware Atomic Operations

Compare-And-Swap Operations (3)

A typical loop using CAS looks like this:

success = false
while (not success) { (Step 5)

expected = load(A) (Step 1)
desired = non_trivial_operation(expected) (Steps 2, 3)
success = CAS(A, expected, desired) (Step 4)

}

• With this approach, arbitrarily complex atomic operations on a memory
location can be performed

• However, the likelihood for failure increases the more time is spent on the
non-trivial operation

• Also, the non-trivial operation is potentially executed much more often than
necessary

615

Parallel Programming

Parallel Programming

616

Parallel Programming

Parallel Programming

Multi-threaded programs usually contain many shared resources
• Data structures
• Operating system handles (e.g. file descriptors)
• Individual memory locations
• ...

Concurrent access to shared resources needs to be controlled
• Uncontrolled access leads to race conditions
• Race conditions usually end in inconsistent program state
• Other outcomes such as silent data corruption are also possible

Synchronization can be achieved in different ways
• Operating system support, e.g. through mutexes
• Hardware support, especially through atomic operations

617

Parallel Programming Mutual Exclusion

Mutual Exclusion (1)

Concurrent removal of elements from a linked list

A B C D

Thread 1 removes B

A B C

Thread 2 removes C

B C D

Final state

A B C D

Observations
• C is not actually removed
• Threads might also deallocate node memory after removal

618

Parallel Programming Mutual Exclusion

Mutual Exclusion (2)

Protect shared resources by only allowing accesses within critical sections
• Only one thread at a time can enter a critical section
• Ensures that the program state is always consistent if used correctly
• Non-deterministic (but consistent) program behavior is still possible

There are various possibilities for implementing mutual exclusion
• Atomic test-and-set operations

• usually requires spinning which can be dangerous
• Operating system support

• E.g. mutexes in Linux

619

Parallel Programming Mutual Exclusion

Locks

Implement mutual exclusion by acquiring locks on mutex objects
• Only one thread at a time can acquire a lock on a mutex
• Trying to acquire a lock on an already locked mutex will block the thread

until the mutex becomes available again
• Blocked threads can be suspended by the kernel to free compute resources

Multiple mutex objects can be used to represent separate critical sections
• Only one thread at a time may enter the same critical section, but threads

may simultaneously enter distinct critical sections
• Allows for more fine-grained synchronization
• Requires careful implementation to avoid deadlocks

620

Parallel Programming Mutual Exclusion

Shared Locks

Strict mutual exclusion is not always necessary
• Commonly concurrent read-only accesses to the same shared resource do not

interfere with each other
• Using strict mutual exclusion introduces an unnecessary bottleneck as readers

would block each other
• We only need to make sure that write accesses can not happen concurrently

with other write or read accesses

Shared locks provide a solution
• Threads can acquire either an exclusive or a shared lock on a mutex
• Multiple threads can simultaneously acquire a shared lock on a mutex if it is

not locked exclusively
• One thread at a time can acquire an exclusive lock on a mutex if it is not

locked in any other way (exclusive or shared)

621

Parallel Programming Mutual Exclusion

Problems with Mutual Exclusion (1)

Deadlocks
• Multiple threads each wait for the other threads to release a lock

Thread 1 Thread 2

lock(A) lock(B)

lock(A)lock(B) blocked

Avoiding deadlocks
• If possible, threads should never acquire multiple locks
• If not avoidable, locks must always be acquired in a globally consistent order

622

Parallel Programming Mutual Exclusion

Problems with Mutual Exclusion (2)

Starvation
• High contention on a mutex may lead to some threads making no progress
• Can partially be alleviated by using less restrictive locking schemes

High latency
• Some threads are blocked for a long time if a mutex is highly contended
• Can lead to noticeably reduced system performance
• Performance can possibly even drop below single-threaded performance

Priority inversion
• A high-priority thread may be blocked by a low-priority thread
• Due to the priority differential, the low-priority thread may not be allowed

sufficient compute resources to quickly release the lock

623

Parallel Programming Hardware-Assisted Synchronization

Hardware-Assisted Synchronization

Using mutexes is usually relatively expensive
• Each mutex requires some state (16 to 40 bytes)
• Acquiring locks potentially requires system calls which can take thousands of

cycles or more

For this reason, mutexes are best suited for coarse-grained locking
• E.g. locking an entire data structure instead of parts of it
• Sufficient if only very few threads contend for locks on the mutex
• Sufficient if the critical section protected by the mutex is much more

expensive than a (potential) system call to acquire a lock

The performance of mutexes quickly degrades under high contention
• In particular, the latency of lock acquisition increases dramatically
• This even occurs when we only acquire shared locks on a mutex
• We can exploit hardware support for more efficient synchronization

624

Parallel Programming Hardware-Assisted Synchronization

Optimistic Locking (1)

Often, read-only accesses to a resource are more common than write accesses
• Thus we should optimize for the common case of read-only access
• In particular, parallel read-only access by many threads should be efficient
• Shared locks are not well-suited for this (see previous slide)

Optimistic locking can provide efficient reader-writer synchronization
• Associate a version with the shared resource
• Writers still have to acquire an exclusive lock of some sort

• This ensures that only one writer at a time has access to the resource
• At the end of its critical section, a writer atomically increases the version

• Readers only have to read the version
• At the begin of its critical section, a reader atomically reads the current version
• At the end of its critical section, a reader validates that the version did not

change
• Otherwise, a concurrent write occurred and the critical section is restarted

625

Parallel Programming Hardware-Assisted Synchronization

Optimistic Locking (2)
Example (pseudocode)

writer(optLock) {
lockExclusive(optLock.mutex) // begin critical section

// modify the shared resource

storeAtomic(optLock.version, optLock.version + 1)

unlockExclusive(optLock.mutex) // end critical section
}

reader(optLock) {
while(true) {

current = loadAtomic(optLock.version); // begin critical section

// read the shared resource

if (current == loadAtomic(optLock.version)) // validate
return; // end critical section

}
}

626

Parallel Programming Hardware-Assisted Synchronization

Optimistic Locking (3)

Why is optimistic locking efficient?
• Readers only have to execute two atomic load instructions
• This is much cheaper than acquiring a shared lock
• But requires that modifications are rare, otherwise readers have to restart

frequently

A careful implementation of readers is required
• The shared resource may be modified while a reader is accessing it
• We cannot assume that we read from a consistent state
• Additional intermediate validation may be required for more complex read

operations

627

Parallel Programming Hardware-Assisted Synchronization

Beyond Mutual Exclusion

In many cases, strict mutual exclusion is not required in the first place
• E.g. parallel insertion into a linked list
• We do not care about the order of insertions
• We only need to guarantee that all insertions are reflected in the final state

This can be implemented efficiently by using atomic operations (pseudocode)

threadSafePush(linkedList, element) {
while (true) {

head = loadAtomic(linkedList.head)
element.next = head
if (CAS(linkedList.head, head, element))

break;
}

}

628

Parallel Programming Hardware-Assisted Synchronization

Non-Blocking Algorithms

Algorithms or data structures that do not rely on locks are called non-blocking
• E.g. the threadSafePush function on the previous slide
• Synchronization between threads is usually achieved using atomic operations
• Enables more efficient implementations of many common algorithms and

data structures

Such algorithms can provide different levels of progress guarantee
• Wait-freedom: There is an upper bound on the number of steps it takes to

complete each operation
• Hard to achieve in practice

• Lock-freedom: At least one thread makes progress if the program is run for
sufficient time

• Often informally (and technically incorrectly) used as a synonym for
non-blocking

629

Parallel Programming Hardware-Assisted Synchronization

A-B-A Problem (1)

Non-blocking data structures need to be implemented carefully
• We do not have the luxury of critical sections anymore
• Threads can execute different operations on a data structure in parallel (e.g.

insert and remove)
• The individual atomic operations comprising these compound operations can

be interleaved arbitrarily
• This can lead to hard-to-debug anomalies, such as lost updates or the A-B-A

problem

Often problems can be avoided by making sure that only the same operation (e.g.
insert) is executed in parallel
• E.g. insert elements in parallel in a first step, and remove them in parallel in a

second step

630

Parallel Programming Hardware-Assisted Synchronization

A-B-A Problem (2)
Consider the following simple linked-list based stack (pseudocode)

threadSafePush(stack, element) {
while (true) {

head = loadAtomic(stack.head)
element.next = head
if (CAS(stack.head, head, element))

break;
}

}

threadSafePop(stack) {
while (true) {

head = loadAtomic(stack.head)
next = head.next
if (CAS(stack.head, head, next))

return head
}

}

631

Parallel Programming Hardware-Assisted Synchronization

A-B-A Problem (3)

Consider the following initial state of the stack, on which two threads perform
some operations in parallel

B C D

Thread 1

x = threadSafePop(stack)

Thread 2

y = threadSafePop(stack)
z = threadSafePop(stack)
threadSafePush(stack, y)

632

Parallel Programming Hardware-Assisted Synchronization

A-B-A Problem (4)

Our implementation would allow the execution to be interleaved as follows

B C D

Thread 1 Thread 2

633

Parallel Programming Hardware-Assisted Synchronization

A-B-A Problem (5)

Our implementation would allow the execution to be interleaved as follows

B C D

Thread 1

head = loadAtomic(stack.head)
// head == B
next = head.next
// next == C

Thread 2

634

Parallel Programming Hardware-Assisted Synchronization

A-B-A Problem (6)

Our implementation would allow the execution to be interleaved as follows

C D

Thread 1

head = loadAtomic(stack.head)
// head == B
next = head.next
// next == C

Thread 2

y = threadSafePop(stack)
// y == B

635

Parallel Programming Hardware-Assisted Synchronization

A-B-A Problem (7)

Our implementation would allow the execution to be interleaved as follows

D

Thread 1

head = loadAtomic(stack.head)
// head == B
next = head.next
// next == C

Thread 2

y = threadSafePop(stack)
// y == B
z = threadSafePop(stack)
// z == C

636

Parallel Programming Hardware-Assisted Synchronization

A-B-A Problem (8)

Our implementation would allow the execution to be interleaved as follows

B D

Thread 1

head = loadAtomic(stack.head)
// head == B
next = head.next
// next == C

Thread 2

y = threadSafePop(stack)
// y == B
z = threadSafePop(stack)
// z == C
threadSafePush(stack, y)

637

Parallel Programming Hardware-Assisted Synchronization

A-B-A Problem (9)

Our implementation would allow the execution to be interleaved as follows

C D

Thread 1

head = loadAtomic(stack.head)
// head == B
next = head.next
// next == C

CAS(stack.head, head, next)
// inconsistent state!

Thread 2

y = threadSafePop(stack)
// y == B
z = threadSafePop(stack)
// z == C
threadSafePush(stack, y)

638

Parallel Programming Hardware-Assisted Synchronization

The Dangers of Spinning (1)

It is possible to implement a “better” mutex that requires less space and uses no
system calls by using atomic operations:
• The mutex is represented in a single atomic integer
• It has the value 0 when it is unlocked, 1 when it is locked
• To lock the mutex, the value is changed atomically to 1 only if it was 0 by

using a CAS
• The CAS is repeated as long as another thread holds the mutex

function lock(mutexAddress) {
while (CAS(mutexAddress, 0, 1) not sucessful) {

<noop>
}

}

function unlock(mutexAddress) {
atomicStore(mutexAddress, 0)

}

639

Parallel Programming Hardware-Assisted Synchronization

The Dangers of Spinning (2)

Using this CAS loop as a mutex, also called spin lock, has several disadvantages:
• It has no fairness, i.e. does not guarantee that a thread will acquire the lock

eventually → lifelock
• The CAS loop consumes CPU cycles (waste of energy and resources)
• Can easily lead to priority inversion

• The scheduler of the operating system thinks that the spinning thread requires
a lot of CPU time

• The spinning thread actually does no useful work at all
• In the worst-case, the scheduler takes CPU time away from the thread that

holds the lock to give it to the spinning thread
→ Spinning thread needs to spin even longer which makes the situation worse

Possible solutions:
• Spin for a limited number of times (e.g. several hundred thousand iterations)
• If the lock could not be acquired, fall back to a “real” mutex
• This is actually already how mutexes are usually implemented

640

Multi-Threading in C++

Multi-Threading in C++

641

Multi-Threading in C++

Multi-Threading in C++

In C++ it is allowed to run multiple threads simultaneously that use the same
memory.
• Multiple threads may read from the same memory location
• All other accesses (i.e. read-write, write-read, write-write) are called conflicts
• Conflicting operations are only allowed when threads are synchronized
• This can be done with mutexes or atomic operations
• Unsynchronized accesses (also called data races), deadlocks, and other

potential issues when using threads are undefined behavior!

All conflicting operations must be synchronized in some way!

642

Multi-Threading in C++ Threads Library

Threads Library (1)

The header <thread> defines the class std::thread
• Using this class is the best way to use threads platform-independently
• May require additional compiler flags depending on the actual underlying

implementation
• Use CMake to determine these flags in a platform-independent way
• For gcc and clang on Linux this will usually be -pthread

cmake_minimum_required(VERSION 3.21)
project(sample)

find_package(Threads REQUIRED)
add_executable(sample main.cpp)
target_link_libraries(sample PUBLIC Threads::Threads)

643

https://en.cppreference.com/w/cpp/thread/thread

Multi-Threading in C++ Threads Library

Threads Library (2)

The constructor of std::thread can be used to start a new thread
• Syntax: thread(Function&& f, Args&&... args)
• The function f will be invoked in a new thread with the arguments args
• The thread will terminate once f returns
• The default constructor can be used to create an empty thread object

The member function join() must be used to wait for a thread to finish
• join() must be called exactly once for each thread
• join() must be called before an std::thread object is destroyed
• When the destructor of an std::thread is called, the program is

terminated if the associated thread was not joined

644

https://en.cppreference.com/w/cpp/thread/thread

Multi-Threading in C++ Threads Library

Threads Library (3)

Example

#include <thread>

void foo(int a, int b);

int main() {
// Pass a function and args
std::thread t1(foo, 1, 2);
// Pass a lambda
std::thread t2([]() {

foo(3, 4);
});

foo(5, 6);

t2.join();
t1.join();

}

main() t1t2

t1 constructed

t2 constructed foo(1, 2)

foo(3, 4)

foo(5, 6)

t1 joined

t2 joined

645

Multi-Threading in C++ Threads Library

Threads Library (4)
Example

#include <iostream>
#include <string_view>
#include <thread>

void safe_print(std::string_view s);

int main() {
{

std::thread t1([]() { safe_print("Hi\n"); });
t1.join();

}
// Everything is fine, we called t1.join()
{

std::thread t2([]() {});
}
// Program terminated because t2.join() was not called

}

646

https://en.cppreference.com/w/cpp/thread/thread/join

Multi-Threading in C++ Threads Library

Threads Library (5)

std::thread is movable but not copyable
• Moving transfers all resources associated with the running thread
• Only the moved-to thread can be joined
• The moved-from thread object is empty (not associated with any thread)

Example

#include <iostream>
#include <string_view>
#include <thread>

void safe_print(std::string_view s);

int main() {
std::thread t1([]() { safe_print("Hi\n"); });
std::thread t2 = std::move(t1); // t1 is now empty
t2.join(); // OK, thread originally started in t1 is joined

}

647

Multi-Threading in C++ Threads Library

Threads Library (6)

std::thread can be used in standard library containers

#include <thread>
#include <vector>

void safe_print(int i);

int main() {
std::vector<std::thread> threadPool;
for (int i = 1; i <= 9; ++i) {

threadPool.emplace_back([i]() { safe_print(i); });
}
// Digits 1 to 9 are printed (unordered)
for (auto& t : threadPool) {

t.join();
}

}

648

Multi-Threading in C++ Threads Library

Other Functions of the Thread Library

The thread library also contains other useful functions that are closely related to
starting and stopping threads:
• std::this_thread::sleep_for(): Stop the current thread for a given

amount of time
• std::this_thread::sleep_until(): Stop the current thread until a

given point in time
• std::this_thread::yield(): Let the operating system schedule another

thread
• std::this_thread::get_id(): Get the (operating-system-specific) id of

the current thread

649

https://en.cppreference.com/w/cpp/thread

Multi-Threading in C++ Mutual Exclusion

Mutual Exclusion (1)

Mutual exclusion is a straightforward way to synchronize multiple threads
• Threads acquire a lock on a mutex object before entering a critical section
• Threads release their lock on the mutex when leaving a critical section

High-level programming model
• The resource (usually a class) that requires protection from data races owns a

mutex object of the appropriate type
• Threads that intend to access the resource acquire a suitable lock on the

mutex before performing the actual access
• Threads release their lock on the mutex after completing the access
• Usually locks are simply acquired and released in the member functions of the

class

650

Multi-Threading in C++ Mutual Exclusion

Mutual Exclusion (2)

The standard library defines several useful classes that implement mutexes in the
<mutex> and <shared_mutex> headers
• std::mutex – regular mutual exclusion
• std::recursive_mutex – recursive mutual exclusion
• std::shared_mutex – mutual exclusion with shared locks

The standard library provides RAII wrappers for locking and unlocking mutexes
• std::unique_lock – RAII wrapper for exclusive locking
• std::shared_lock – RAII wrapper for shared locking

The RAII wrappers should always be preferred for locking and unlocking mutexes
• Makes bugs due to inconsistent locking/unlocking much more unlikely
• Manual locking and unlocking may be required in some rare cases
• Should still be performed through the corresponding functions of the RAII

wrappers

651

Multi-Threading in C++ Mutual Exclusion

std::unique_lock (1)

std::unique_lock can be used to lock a mutex in exclusive mode
• The constructor acquires an exclusive lock on the mutex
• Constructor syntax: unique_lock(mutex_type& m)
• Blocks the calling thread until the mutex becomes available
• The destructor releases the lock automatically
• Can be used with any mutex type from the standard library

#include <mutex>
#include <iostream>

std::mutex printMutex;
void safe_print(int i) {

std::unique_lock lock(printMutex); // lock is acquired
std::cout << i;

} // lock is released

652

https://en.cppreference.com/w/cpp/thread/unique_lock

Multi-Threading in C++ Mutual Exclusion

std::unique_lock (2)

std::unique_lock provides additional constructors
• unique_lock(mutex_type& m, std::defer_lock_t t) – Do not

immediately lock the mutex
• unique_lock(mutex_type& m, std::try_to_lock_t t) – Do not

block when the mutex cannot be locked

std::unique_lock provides additional member functions
• lock() – Manually lock the mutex
• try_lock() – Try to lock the mutex, return true if successful
• operator bool() – Check if the std::unique_lock holds a lock on the

mutex

653

https://en.cppreference.com/w/cpp/thread/unique_lock

Multi-Threading in C++ Mutual Exclusion

std::unique_lock (3)
Example

#include <mutex>

std::mutex mutex;

void foo() {
std::unique_lock lock(mutex, std::try_to_lock);
if (!lock) {

doUnsynchronizedWork();

// block until we can get the lock
lock.lock();

}

doSynchronizedWork();

// release the lock early
lock.unlock();

doUnsynchronizedWork();
}

654

Multi-Threading in C++ Mutual Exclusion

std::unique_lock (4)
std::unique_lock is movable to transfer ownership of a lock on a mutex

#include <mutex>

class MyContainer {
private:
std::mutex mutex;

public:
class iterator { /* ... */ };

iterator begin() {
std::unique_lock lock(mutex);

// compute the begin iterator constructor args

// keep the lock for iteration
return iterator(std::move(lock), ...);

}
};

655

Multi-Threading in C++ Mutual Exclusion

Recursive Mutexes (1)
The following code will deadlock since std::mutex can be locked at most once

#include <mutex>

std::mutex mutex;

void bar() {
std::unique_lock lock(mutex);

// do some work...
}

void foo() {
std::unique_lock lock(mutex);

// do some work...

bar(); // INTENTIONALLY BUGGY, will deadlock
}

656

Multi-Threading in C++ Mutual Exclusion

Recursive Mutexes (2)

std::recursive_mutex implements recursive ownership semantics
• The same thread can lock an std::recursive_mutex multiple times

without blocking
• Other threads will still block if an std::recursive_mutex is currently

locked
• Can be used with std::unique_lock just like a regular std::mutex
• Useful for functions that call each other and use the same mutex

#include <mutex>

std::recursive_mutex mutex;
void bar() {

std::unique_lock lock(mutex);
}
void foo() {

std::unique_lock lock(mutex);
bar(); // OK, will not deadlock

}

657

https://en.cppreference.com/w/cpp/thread/recursive_mutex

Multi-Threading in C++ Mutual Exclusion

std::shared_lock (1)

std::shared_lock can be used to lock a mutex in shared mode
• Constructors and member functions analogous to std::unique_lock
• Multiple threads can acquire a shared lock on the same mutex
• Shared locking attempts block if the mutex is locked in exclusive mode
• Only usable in conjunction with std::shared_mutex

We have to adhere to some contract to write well-behaved programs
• Shared mutexes are mostly used to implement read/write-locks
• Only read accesses are allowed when holding a shared lock
• Write accesses are only allowed when holding an exclusive lock

658

https://en.cppreference.com/w/cpp/thread/shared_lock

Multi-Threading in C++ Mutual Exclusion

std::shared_lock (2)
Example

#include <shared_mutex>

class SafeCounter {
private:
mutable std::shared_mutex mutex;
size_t value = 0;

public:
size_t getValue() const {

std::shared_lock lock(mutex);
return value; // read access

}

void incrementValue() {
std::unique_lock lock(mutex);
++value; // write access

}
};

659

Multi-Threading in C++ Mutual Exclusion

Working with Mutexes

We usually have to make mutexes mutable within our data structures
• The RAII wrappers require mutable references to the mutex
• const member functions of our data structure usually also need to use the

mutex

Using mutexes without care can easily lead to deadlocks within the system
• Usually occurs when a thread tries to lock another mutex when it already

holds a lock on some mutex
• Can in some cases be avoided by using std::recursive_mutex (if we are

locking the same mutex multiple times)
• Requires dedicated programming techniques when multiple mutexes are

involved

660

Multi-Threading in C++ Mutual Exclusion

Avoiding Deadlocks (1)
The following example will lead to deadlocks

std::mutex m1, m2, m3;
void threadA() {

// INTENTIONALLY BUGGY
std::unique_lock l1{m1}, l2{m2}, l3{m3};

}
void threadB() {

// INTENTIONALLY BUGGY
std::unique_lock l3{m3}, l2{m2}, l1{m1};

}

Possible deadlock scenario
• threadA() acquires locks on m1 and m2
• threadB() acquires lock on m3
• threadA() waits for threadB() to release m3
• threadB() waits for threadA() to release m2

661

Multi-Threading in C++ Mutual Exclusion

Avoiding Deadlocks (2)

Deadlocks can be avoided by always locking mutexes in a globally consistent order
• Ensures that one thread always “wins”
• Maintaining a globally consistent locking order requires considerable

developer discipline
• Maintaining a globally consistent locking order may not be possible at all

std::mutex m1, m2, m3;
void threadA() {

// OK, will not deadlock
std::unique_lock l1{m1}, l2{m2}, l3{m3};

}
void threadB() {

// OK, will not deadlock
std::unique_lock l1{m1}, l2{m2}, l3{m3};

}

662

Multi-Threading in C++ Mutual Exclusion

Avoiding Deadlocks (3)

Sometimes it is not possible to guarantee a globally consistent order
• The std::scoped_lock RAII wrapper can be used to safely lock any

number of mutexes
• Employs a deadlock-avoidance algorithm if required
• Generally quite inefficient in comparison to std::unique_lock
• Should only be used as a last resort!

std::mutex m1, m2, m3;
void threadA() {

// OK, will not deadlock
std::scoped_lock l{m1, m2, m3};

}
void threadB() {

// OK, will not deadlock
std::scoped_lock l{m3, m2, m1};

}

663

https://en.cppreference.com/w/cpp/thread/scoped_lock

Multi-Threading in C++ Mutual Exclusion

Condition Variables (1)

A condition variable is a synchronization primitive that allows multiple threads to
wait until an (arbitrary) condition becomes true.
• A condition variable uses a mutex to synchronize threads
• Threads can wait on or notify the condition variable
• When a thread waits on the condition variable, it blocks until another thread

notifies it
• If a thread waited on the condition variable and is notified, it holds the mutex
• A notified thread must check the condition explicitly because spurious

wake-ups can occur

664

Multi-Threading in C++ Mutual Exclusion

Condition Variables (2)

The standard library defines the class std::condition_variable in the header
<condition_variable> which has the following member functions:
• wait(): Takes a reference to a std::unique_lock that must be locked by

the caller as an argument, unlocks the mutex and waits for the condition
variable

• notify_one(): Notify a single waiting thread, mutex does not need to be
held by the caller

• notify_all(): Notify all waiting threads, mutex does not need to be held
by the caller

665

https://en.cppreference.com/w/cpp/thread/condition_variable

Multi-Threading in C++ Mutual Exclusion

Condition Variables Example

One use case for condition variables are worker queues: Tasks are inserted into a
queue and then worker threads are notified to do the task.

std::mutex m;
std::condition_variable cv;
std::vector<int> taskQueue;

void pushWork(int task) {
{
std::unique_lock l{m};
taskQueue.push_back(task);

}
cv.notify_one();

}

void workerThread() {
std::unique_lock l{m};
while (true) {
while (!taskQueue.empty()) {

int task = taskQueue.back();
taskQueue.pop_back();
l.unlock();
// [...] do actual work here
l.lock();

}
cv.wait(l);

}
}

666

Multi-Threading in C++ Atomic Operations

Atomic Operations

Mutual exclusion may be inefficient for synchronization
• Very coarse-grained synchronization
• May require communication with the operating system

Modern hardware also supports atomic operations for synchronization.
• The memory order of a CPU determines how non-atomic memory operations

are allowed to be reordered
• In C++ all non-atomic conflicting operations have undefined behavior even if

the memory order of the CPU would allow it!
• There is one exception: Special atomic functions are allowed to have conflicts
• The compiler usually knows your CPU and generates “real” atomic

instructions only if necessary

667

Multi-Threading in C++ Atomic Operations

Atomic Operations Library (1)

C++ provides atomic operations in the atomic operations library
• Implemented in the <atomic> header
• std::atomic<T> is a class that represents an atomic version of the type T
• Can be used (almost) interchangeably with the original type T
• Has the same size and alignment as the original type T
• Conflicting operations are only allowed on std::atomic<T> objects

std::atomic on its own does not provide any synchronization at all
• Simply makes conflicting operations possible and defined behavior
• Exposes the guarantees of specific memory models to the programmer
• Suitable programming models must be used to achieve proper synchronization

668

https://en.cppreference.com/w/cpp/atomic/atomic

Multi-Threading in C++ Atomic Operations

Atomic Operations Library (2)

std::atomic has several member functions that implement atomic operations
• T load(): Loads the value
• void store(T desired): Stores desired in the object
• T exchange(T desired): Stores desired in the object and returns the

old value

If T is a integral type, the following operations also exist:
• T fetch_add(T arg): Adds arg to the value and returns the old value
• T fetch_sub(T arg): Same for subtraction
• T fetch_and(T arg): Same for bitwise and
• T fetch_or(T arg): Same for bitwise or
• T fetch_xor(T arg): Same for bitwise xor

669

https://en.cppreference.com/w/cpp/atomic/atomic

Multi-Threading in C++ Atomic Operations

Atomic Operations Library (3)

Example (without atomics)

#include <thread>

int main() {
unsigned value = 0;
thread t([]() {

for (size_t i = 0; i < 10; ++i)
++value; // UNDEFINED BEHAVIOR, data race

});

for (size_t i = 0; i < 10; ++i)
++value; // UNDEFINED BEHAVIOR, data race

t.join();

// value will contain garbage
}

670

Multi-Threading in C++ Atomic Operations

Atomic Operations Library (4)
Example (with atomics)

#include <atomic>
#include <thread>

int main() {
std::atomic<unsigned> value = 0;
thread t([]() {

for (size_t i = 0; i < 10; ++i)
value.fetch_add(1); // OK, atomic increment

});

for (size_t i = 0; i < 10; ++i)
value.fetch_add(1); // OK, atomic increment

t.join();

// value will contain 20
}

671

Multi-Threading in C++ Atomic Operations

Semantics of Atomic Operations

C++ may support atomic operations that are not supported by the CPU
• std::atomic<T> can be used with any trivially copyable type
• In particular also for types that are much larger than one cache line
• To guarantee atomicity, compilers are allowed to fall back to mutexes

The C++ standard defines precise semantics for atomic operations
• Every atomic object has a totally ordered modification order
• There are several memory orders that define how operations on different

atomic objects may be reordered
• The C++ memory orders do not necessarily map precisely to memory orders

defined by a CPU

672

Multi-Threading in C++ Atomic Operations

Modification Order (1)

All modifications of a single atomic object are totally ordered
• This is called the modification order of the object
• All threads are guaranteed to observe modifications of the object in this order

Modifications of different atomic objects may be unordered
• Different threads may observe modifications of multiple atomic objects in a

different order
• The details depend on the memory order that is used for the atomic

operations

673

Multi-Threading in C++ Atomic Operations

Modification Order (2)

Example

std::atomic<int> i = 0, j = 0;
void workerThread() {

i.fetch_add(1); // (A)
i.fetch_sub(1); // (B)
j.fetch_add(1); // (C)

}
void readerThread() {

int iLocal = i.load(), jLocal = j.load();
assert(iLocal != -1); // always true

}

Observations
• Reader threads will never see a modification order with (B) before (A)
• Depending on the memory order, multiple reader threads may see any of
(A),(B),(C), or (A),(C),(B), or (C),(A),(B)

674

Multi-Threading in C++ Atomic Operations

Memory Order (1)

The atomics library defines several memory orders
• All atomic functions take a memory order as their last parameter
• The two most important memory orders are std::memory_order_relaxed

and std::memory_order_seq_cst
• std::memory_order_seq_cst is used by default if no memory order is

explicitly supplied
• You should stick to this default unless you identified the atomic operation to

be a performance bottleneck

std::atomic<int> i = 0;

i.fetch_add(1); // uses std::memory_order_seq_cst
i.fetch_add(1, std::memory_order_seq_cst);
i.fetch_add(1, std::memory_order_relaxed);

675

https://en.cppreference.com/w/cpp/atomic/memory_order

Multi-Threading in C++ Atomic Operations

Memory Order (2)
std::memory_order_relaxed
• Roughly maps to a CPU with weak memory order
• Only consistent modification order is guaranteed
• Atomic operations of different objects may be reordered arbitrarily

std::atomic<int> i = 0, j = 0;
void threadA() {

while (true) {
i.fetch_add(1, std::memory_order_relaxed); // (A)
i.fetch_sub(1, std::memory_order_relaxed); // (B)
j.fetch_add(1, std::memory_order_relaxed); // (C)

}
}
void threadB() { /* ... */ }
void threadC() { /* ... */ }

Observations
• threadB() may observe (A),(B),(C)
• threadC() may observe (C),(A),(B)

676

https://en.cppreference.com/w/cpp/atomic/memory_order

Multi-Threading in C++ Atomic Operations

Memory Order (3)
std::memory_order_seq_cst
• Roughly maps to a CPU with strong memory order
• Guarantees that all threads see all atomic operations in one globally

consistent order

std::atomic<int> i = 0, j = 0;
void threadA() {

while (true) {
i.fetch_add(1, std::memory_order_seq_cst); // (A)
i.fetch_sub(1, std::memory_order_seq_cst); // (B)
j.fetch_add(1, std::memory_order_seq_cst); // (C)

}
}
void threadB() { /* ... */ }
void threadC() { /* ... */ }

Observations
• threadB() may observe (C),(A),(B)
• threadC() will then also observe (C),(A),(B)

677

https://en.cppreference.com/w/cpp/atomic/memory_order

Multi-Threading in C++ Atomic Operations

Compare-And-Swap Operations (1)

Compare-and-swap operations are one of the most useful operations on atomics
• Signature: bool compare_exchange_weak(T& expected, T desired)
• Compares the current value of the atomic to expected
• Replaces the current value by desired if the atomic contained the expected

value and returns true
• Updates expected to contain the current value of the atomic object and

returns false otherwise

Often the main building block to synchronize data structures without mutexes
• Allows us to check that no modifications occurred to an atomic over some

time period
• Can be used to implement “implicit” mutual exclusion
• Can suffer from subtle problems such as the A-B-A problem

678

https://en.cppreference.com/w/cpp/atomic/atomic/compare_exchange

Multi-Threading in C++ Atomic Operations

Compare-And-Swap Operations (2)
Example: Insert into a lock-free singly linked list
#include <atomic>

class SafeList {
private:
struct Entry {

T value;
Entry* next;

};

std::atomic<Entry*> head;

Entry* allocateEntry(const T& value);

public:
void insert(const T& value) {

auto* entry = allocateEntry(value);
auto* currentHead = head.load();
do {

entry->next = currentHead;
} while (!head.compare_exchange_weak(currentHead, entry));

}
};

679

Multi-Threading in C++ Atomic Operations

Compare-And-Swap Operations (3)

std::atomic actually provides two CAS versions with the same signature
• compare_exchange_weak – weak CAS
• compare_exchange_strong – strong CAS

Semantics
• The weak version is allowed to return false, even when no other thread

modified the value
• This is called “spurious failure”
• The strong version may use a loop internally to avoid this
• General rule: If you use a CAS operation in a loop, always use the weak

version

680

Multi-Threading in C++ Atomic Operations

std::atomic_ref (1)

std::atomic can be unwieldy
• std::atomic is neither movable nor copyable
• As a consequence it cannot easily be used in standard library containers

std::atomic_ref allows us to apply atomic operations to non-atomic objects
• The constructor takes a reference to an arbitrary object of type T
• The referenced object is treated as an atomic object during the lifetime of

the std::atomic_ref
• std::atomic_ref defines similar member functions to std::atomic

Data races between accesses through std::atomic_ref and non-atomic
accesses are still undefined behavior!

681

Multi-Threading in C++ Atomic Operations

std::atomic_ref (2)
Example
#include <atomic>
#include <thread>
#include <vector>

int main() {
std::vector<int> localCounters(4);
std::vector<std::thread> threads;

for (size_t i = 0; i < 16; ++i) {
threads.emplace_back([]() {

for (size_t j = 0; j < 100; ++j) {
std::atomic_ref ref(localCounters[i % 4]);
ref.fetch_add(1);

}
});

}

for (auto& thread : threads) {
thread.join();

}
}

682

Organizing Larger Projects

Organizing Larger Projects

683

Organizing Larger Projects

Overview

Up to now a project scaffold has (mostly) been provided to you
• A substantial challenge in larger projects is simply organizing the project itself
• Bad project organization incurs enormous unnecessary overhead, promotes

bugs, impedes extensibility and maintainability, …

This lecture attempts to give some suggestions and an overview of useful tools
• Project layout suggestions (tailored to CMake)
• Integrating third-party tools and libraries with CMake
• Advanced debugging facilities
• We do not claim completeness or bias-free presentation
• Refer to the CMake documentation for much more detail

684

Organizing Larger Projects Project Layout

Project Layout (1)

The general project layout affects several interconnected properties
• Directory and source tree structure
• Namespace structure
• Library and executable structure

Changes to one of these properties likely entail changes to the other properties
• Namespace structure should (roughly) reflect directory structure and

vice-versa
• Different libraries and executables ideally reside in separate source trees (i.e.

directories)

685

Organizing Larger Projects Project Layout

Project Layout (2)

The project layout will evolve as a project grows
• Different guidelines apply to projects of different size
• Things one might get away with in small projects can become major issues in

large projects
• Things that might be necessary in large projects can be overkill in small

projects
• If a project is known to grow to a large size it pays off to plan ahead
• Definition of “small” and “large” is subjective

General guidelines
• Always clearly organize files, directories and namespaces with modularization

in mind
• Start with a monolithic library/executable structure and move to a more

independent and modular structure as the project grows

686

Organizing Larger Projects Project Layout

Directory Structure

General directory structure guidelines
• Files belonging to different libraries and executables should reside in different

directories
• Files belonging to different components (logically separate parts) within a

library or executable should reside in different directories
• Files belonging to different top-level namespaces should reside in different

directories
• Tests should reside in a separate directory tree from the actual

implementation
• Out-of-source builds should always be preferred

687

Organizing Larger Projects Project Layout

Directory Structure: Small Projects (1)

Directory structure guidelines for small projects
• The general directory structure guidelines still apply
• Parts of the CMakeLists.txt may be shared by all components within the

project
• Build system setup (e.g. compiler flags)
• Dependencies (e.g. third-party libraries)

• The test code and executable(s) may be shared by all components within the
project

Evolution
• Eventually, some library or executable in a small project will grow large
• Should then be moved into an independent (sub-)project

688

Organizing Larger Projects Project Layout

Directory Structure: Small Projects (2)

Small project example

> tree project
project
├── CMakeLists.txt # Common CMakeLists.txt logic
├── my_executable
│ ├── CMakeLists.txt # CMakeLists.txt logic for my_executable
│ └── ... # Source (& header) files
├── my_library
│ ├── CMakeLists.txt # CMakeLists.txt logic for my_library
│ └── ... # Source (& header) files
└── test

├── CMakeLists.txt # CMakeLists.txt logic for testing
├── my_executable
| └── ... # Tests for my_executable
└── my_library

└── ... # Tests for my_library

689

Organizing Larger Projects Project Layout

Directory Structure: Large Projects (1)

Directory structure guidelines for large projects
• The general directory structure guidelines still apply
• The components of large projects should be mostly independent subprojects
• Should not share most CMakeLists.txt logic
• Should not share test code and executable(s)

Evolution
• Eventually other projects or people may want to reuse one of the subprojects

in a different context
• Should then be moved into an entirely independent project

690

Organizing Larger Projects Project Layout

Directory Structure: Large Projects (2)
Large project example

> tree project
project
├── CMakeLists.txt # Minimal common CMakeLists.txt logic
├── my_executable
│ ├── CMakeLists.txt # Common my_executable CMakeLists.txt
│ ├── src
| | └── ... # Source (& header) files
| └── test
| ├── CMakeLists.txt # CMakeLists.txt logic for tests
| └── ... # Tests for my_executable
└── my_library

├── CMakeLists.txt # Common my_library CMakeLists.txt
 ├── src

| └── ... # Source (& header) files
└── test

├── CMakeLists.txt # CMakeLists.txt logic for tests
└── ... # Tests for my_library

691

Organizing Larger Projects Project Layout

Header and Implementation Files

File content
• Generally, there should be one separate pair of header and implementation

files for each C++ class
• Very tightly coupled classes (e.g. classes that could also be nested classes)

can be placed in the same header and implementation files

File location
• Option 1: Place associated implementation and header files in the same

directory (preferred by us)
• Option 2: Place associated implementation and header files in separate

directory trees (e.g. src and include)
• Option 1 makes browsing code somewhat easier, option 2 makes system-wide

installation easier

692

Organizing Larger Projects Project Layout

Namespaces & Cycles

Namespaces should identify logically coherent components within a library or
executable
• Usually, there should be at least a top-level namespace (i.e. don’t put stuff in

the default namespace)
• Namespaces should group broadly similar or coherent functionality
• Rule of thumb: Think of namespaces as “candidates for moving into a

separate library”

Dependencies between namespaces should be cycle-free
• Makes refactoring code much easier
• Allows future modularization into separate libraries

693

Organizing Larger Projects Project Layout

Library & Executable Structure

It is usually advisable to separate executables from their core functionality
• Executables often serve as “frontends” to some library functionality
• Library functionality can probably be reused in other programs
• Keeps interaction logic (e.g. I/O) separate from core functionality
• Not necessary in very small projects

There should be a separate CMakeLists.txt for each library or executable
• Implies that separate libraries and executables reside in separate directories
• Facilitates future modularization into separate (sub-)projects
• The add_subdirectory CMake function can be used to aggregate several

such sub-projects

694

Organizing Larger Projects Project Layout

Include Directories

Usually, the include path for a library should contain a prefix
• E.g. includes for a library “foo” could start with #include "foo/..."
• Requires a suitable directory structure in the source tree of the library
• Usually requires the use of target_include_directories in the
CMakeLists.txt

> tree project/my_library
my_library
├── CMakeLists.txt
├── src
| └── my_library
| ├── Bar.hpp
| ├── Foo.hpp
| └── Foo.cpp
└── test

└── ...

695

Organizing Larger Projects Libraries & Executables

Libraries & Executables
In most cases, libraries and executables are the main product of a CMake project
• Encoded as targets in a CMake project
• Targets can have properties such as dependencies
• CMake projects may contain further targets (e.g. for installing, packaging,

linting, etc.)
Libraries
• Collection of compiled code that can be reused in other libraries or

executables
• Can either be static or shared libraries
• Have to conform to the OS application binary interface (ABI)
• Cannot be executed on their own

Executables
• Compiled code that can be executed on a certain operating system
• Have to conform to the OS application binary interface (ABI)
• May contain further metadata such as information about entry points etc.

696

Organizing Larger Projects Libraries & Executables

Executables in CMake (1)

Executables are added with the add_executable CMake command
• Syntax: add_executable(name sources...)
• Adds a CMake target with the specified name
• Produces an executable with the specified name in the same relative directory

as the current CMakeLists.txt
• sources... can be a whitespace-separated list of source files or a CMake

variable that expands to such a list
• Passing source files by variable should be preferred for more than a few files
• Properties such as dependencies can be modified through additional CMake

commands

697

https://cmake.org/cmake/help/latest/command/add_executable.html

Organizing Larger Projects Libraries & Executables

Executables in CMake (2)

Sample CMakeLists.txt for the my_executable sub-project

set(MY_EXECUTABLE_SOURCES
src/my_executable/Helper.cpp
...
src/my_executable/Main.cpp

)

add_executable(my_executable ${MY_EXECUTABLE_SOURCES})

further commands required

698

Organizing Larger Projects Libraries & Executables

Static Libraries

Static libraries are essentially archives of executable code
• Contain assembly from some number of object files, e.g. for classes,

functions, etc.
• Dependencies on static libraries are resolved at link time
• Static libraries on Linux typically have the extension *.a

The linker is responsible for resolving dependencies on static libraries
• Code from a static library A is copied into a library or executable B that

depends on A
• At runtime, no dependency on A exists since the relevant code is part of the

library or executable B

699

Organizing Larger Projects Libraries & Executables

Shared Libraries

Shared libraries are dynamic archives of executable code
• Contain assembly from some number of object files, e.g. for classes,

functions, etc.
• Dependencies on shared libraries are resolved at runtime
• Shared libraries on Linux typically have the extension *.so

The operating system is responsible for resolving dependencies on shared libraries
• Only pointers to the code in a shared library A are used in a library or

executable B that depends on A
• At runtime, the operating system loads A into memory once
• All programs depending on A access this memory to execute code in A

700

Organizing Larger Projects Libraries & Executables

Advantages and Disadvantages of Static Libraries

Advantages
• Can have slightly higher performance since there are no indirections
• Can prevent compatibility issues since there are no external dependencies

Disadvantages
• Much bigger file sizes than shared libraries since code is actually copied
• Programs depending on static libraries have to be recompiled if the static

library changes
• Can lead to problems with transitive dependencies even if they are “header

only”

701

Organizing Larger Projects Libraries & Executables

Advantages and Disadvantages of Shared Libraries

Advantages
• Much smaller file sizes since the shared library is only loaded into memory at

run time
• Much lower memory consumption since only a single copy of a shared library

is kept in memory (even for unrelated processes)
• Can be exchanged for other compatible versions without changing programs

that depend on a shared library

Disadvantages
• Programs depending on a shared library rely on a compatible version being

available
• Can be slightly slower due to additional indirection at runtime

702

Organizing Larger Projects Libraries & Executables

Static Libraries in CMake (1)

Static libraries are added with the add_library CMake command
• Syntax: add_library(name STATIC sources...)
• Adds a CMake target with the specified name
• Produces a static library with the specified name in the same relative

directory as the current CMakeLists.txt
• sources... can be a whitespace-separated list of source files or a CMake

variable that expands to such a list
• Passing source files by variable should be preferred for more than a few files
• Properties such as dependencies can be modified through additional CMake

commands

703

https://cmake.org/cmake/help/latest/command/add_library.html

Organizing Larger Projects Libraries & Executables

Static Libraries in CMake (2)

Sample CMakeLists.txt for the my_library sub-project (assuming static
library)

set(MY_LIBRARY_SOURCES
src/my_library/ClassA.cpp
...
src/my_library/ClassZ.cpp

)

add_library(my_library STATIC ${MY_LIBRARY_SOURCES})

further commands required

704

Organizing Larger Projects Libraries & Executables

Shared Libraries in CMake (1)

Shared libraries are added with the add_library CMake command
• Syntax: add_library(name SHARED sources...)
• Adds a CMake target with the specified name
• Produces a shared library with the specified name in the same relative

directory as the current CMakeLists.txt
• sources... can be a whitespace-separated list of source files or a CMake

variable that expands to such a list
• Passing source files by variable should be preferred for more than a few files
• Properties such as dependencies can be modified through additional CMake

commands

705

https://cmake.org/cmake/help/latest/command/add_library.html

Organizing Larger Projects Libraries & Executables

Shared Libraries in CMake (2)

Sample CMakeLists.txt for the my_library sub-project (assuming shared
library)

set(MY_LIBRARY_SOURCES
src/my_library/ClassA.cpp
...
src/my_library/ClassZ.cpp

)

add_library(my_library SHARED ${MY_LIBRARY_SOURCES})

further commands required

706

Organizing Larger Projects Libraries & Executables

Interface Libraries in CMake (1)

Usually only the implementation files (*.cpp) should be added to a CMake target
• Header files on their own are not compiled
• Only headers that are included by implementation files are relevant for

compilation

Exception: Interface libraries
• Syntax: add_library(name INTERFACE)
• A library might contain only template definitions
• Cannot be compiled into a static or shared library (unless explicit

instantiation is used)
• Can still have properties such as include paths or dependencies

707

https://cmake.org/cmake/help/latest/command/add_library.html

Organizing Larger Projects Libraries & Executables

Interface Libraries in CMake (2)

Sample CMakeLists.txt for the my_library sub-project (assuming
header-only)

add_library(my_library INTERFACE)
target_include_directories(my_library INTERFACE src)
target_link_libraries(my_library INTERFACE some_dependency)

708

Organizing Larger Projects Libraries & Executables

Nested Projects in CMake (1)

The add_subdirectory CMake command can be used to add a subproject
• Syntax: add_subdirectory(source_dir)
• Adds the CMakeLists.txt in the specified source_dir to the build
• The nested CMakeLists.txt will be processed immediately by CMake
• The CMake variable CMAKE_SOURCE_DIR refers to the top-level source

directory inside nested CMakeLists.txt
• The CMake variable CMAKE_CURRENT_SOURCE_DIR refers to the source

directory in which the nested CMakeLists.txt resides

709

https://cmake.org/cmake/help/latest/command/add_subdirectory.html

Organizing Larger Projects Libraries & Executables

Nested Projects in CMake (2)

Example top-level CMakeLists.txt

cmake_minimum_required(VERSION 3.12)
project(project)

more general setup code ...

add_subdirectory(my_executable)
add_subdirectory(my_library)

710

Organizing Larger Projects Libraries & Executables

Important Project Properties (1)

Usually, the include directory of libraries and executables needs to be set
• target_include_directories(target PUBLIC|PRIVATE dirs...)
• Should be set to the src or include directory of a subproject in our

suggested layout
• PUBLIC include directories are passed on to targets that depend on the

current target

711

https://cmake.org/cmake/help/latest/command/target_include_directories.html

Organizing Larger Projects Libraries & Executables

Important Project Properties (2)

Dependencies between targets can be set with target_link_libraries
• target_link_libraries(target PUBLIC|PRIVATE libs...)
• libs... can refer to libraries defined by the current project or imported

third-party library targets
• PUBLIC dependencies are passed on to targets that depend on the current

target

712

https://cmake.org/cmake/help/latest/command/target_link_libraries.html

Organizing Larger Projects Libraries & Executables

Important Project Properties (3)

Sample CMakeLists.txt for the my_executable sub-project

set(MY_EXECUTABLE_SOURCES
src/my_executable/Helper.cpp
...
src/my_executable/Main.cpp

)

add_executable(my_executable ${MY_EXECUTABLE_SOURCES})
allows includes to be '#include "my_executable/..."
instead of '#include "my_executable/src/my_executable/..."
target_include_directories(my_executable PRIVATE src/)
dependency on the my_libary target defined in other subproject
target_link_libraries(my_executable PRIVATE my_library)

713

Organizing Larger Projects Libraries & Executables

Paths in CMake

CMake defines several variables for often-used paths

CMAKE_SOURCE_DIR
Contains the full path to the top level of the source tree, i.e. the location of the
top-level CMakeLists.txt
CMAKE_CURRENT_SOURCE_DIR
Contains the full path the the source directory that is currently being processed
by CMake. Differs from CMAKE_SOURCE_DIR in directories added through
add_subdirectory.
CMAKE_BINARY_DIR
Contains the full path to the top level of the build tree, i.e. the build directory in
which cmake is invoked.
CMAKE_CURRENT_BINARY_DIR
Contains the full path the binary directory that is currently being processed.
Each directory added through add_subdirectory will create a corresponding
binary directory in the build tree.

Relative paths are usually relative to the current source directory
714

https://cmake.org/cmake/help/latest/manual/cmake-variables.7.html

Organizing Larger Projects Third-Party Libraries

Third-Party Libraries

Usually we do not want to reinvent the wheel
• There is a vast ecosystem of (open-source) third-party libraries
• If there exists a well-maintained third-party library that matches your

requirements you should use it

If possible and feasible, your project should not bundle third-party dependencies
• Many libraries can easily be installed through a package manager
• Reduces complexity of project configuration and maintenance
• CMake provides facilities for locating third-party dependencies in a

platform-independent way

715

Organizing Larger Projects Third-Party Libraries

find_package (1)

Preferred CMake function for locating third-party dependencies
• find_package(<PackageName> [version] [REQUIRED])
• Finds and loads settings from an external project
• Sets the <PackageName>_FOUND CMake variable if the package was found
• May provide additional variables and imported CMake targets depending on

the package

find_package relies on CMake scripts
• Attempts to find a Find<PackageName>.cmake file in the path specified by

the CMAKE_MODULE_PATH variable and in the CMake installation
• Many Find*.cmake scripts are provided by CMake itself
• CMake documentation can be consulted for details about provided
Find*.cmake scripts

• Own Find*.cmake scripts can be written if necessary

716

https://cmake.org/cmake/help/latest/command/find_package.html

Organizing Larger Projects Third-Party Libraries

find_package (2)

Example

...

Attempt to locate system-wide installation of libgtest
Invokes the FindGTest.cmake script provided by CMake
Configuration will fail if libgtest cannot be found
find_package(GTest REQUIRED)

add_executable(tester ...)
target_link_libraries(tester PRIVATE

...
GTest::GTest # Imported target for the gtest library

as specified by the documentation of
FindGTest

)

717

Organizing Larger Projects Third-Party Libraries

find_library (1)

If no Find*.cmake script is available, find_library can be used
• find_library(<VAR> name [path1 path2 ...])
• Creates a cache entry named <VAR> to store the result of the command
• If nothing is found, the result will be <VAR>-NOTFOUND
• name specifies the name of the library (e.g. gtest for libgtest)
• Additional paths beside the default search paths can be specified

find_library simply searches directories for a library
• A wide range of (highly configurable) paths is searched for the library
• Does not automatically configure non-standard include paths like
find_package

• Should only be used as a fallback or within Find*.cmake scripts

718

https://cmake.org/cmake/help/latest/command/find_library.html

Organizing Larger Projects Third-Party Libraries

find_library (2)
Example (assuming there is no FindGTest.cmake script)

...

Attempt to locate libgtest library
Searches for the library file in a range of paths
find_library(GTest gtest)

if (${GTest} STREQUAL "GTest-NOTFOUND")
message(FATAL_ERROR "libgtest not found")

endif()

add_executable(tester ...)
target_link_libraries(tester PRIVATE

...
GTest # Only adds the libgtest library

Does not set include paths
)

719

Organizing Larger Projects Third-Party Libraries

Further Reading

We only scratched the surface of CMake in this lecture
• CMake provides much more highly useful functionality
• E.g. checks for compiler flags
• E.g. checks for compiler features
• E.g. checks for host system features
• E.g. defining custom Makefile targets
• …

The CMake documentation provides a good overview

720

https://cmake.org/cmake/help/latest/

Organizing Larger Projects Testing

Testing

Tests should be an integral part of every larger project
• Unit tests
• Integration tests
• …

Good test coverage greatly facilitates implementing a large project
• Tests can ensure (to some extent) that modifications do not break existing

functionality
• Can easily refactor code
• Can easily change the internals of a component
• …

721

Organizing Larger Projects Testing

Googletest (1)

We use Googletest in the programming assignments and final project
• Works on a large variety of platforms
• Contains a large set of useful functions
• Can usually be installed through a package manager
• Can be added to a CMake project through the FindGTest.cmake module
• Alternative test frameworks are of course available

Functionality overview
• Test cases
• Predefined and user-defined assertions
• Death tests
• …

722

https://github.com/google/googletest

Organizing Larger Projects Testing

Googletest (2)

Simple tests

#include <gtest/gtest.h>
//--
TEST(TestSuiteName, TestName) {

...
}

• Defines and names a test function that belongs to a test suite
• Test suites can for example map to one class or function
• Googletest assertions can be used to control the outcome of the test function
• If any assertion fails or the test function crashes, the entire test case fails

723

Organizing Larger Projects Testing

Googletest (3)

Fatal assertions
• Fatal assertions are prefixed with ASSERT_
• When a fatal assertion fails the test function is immediately terminated

Non-fatal assertions
• Non-fatal assertions are prefixed with EXPECT_
• When a non-fatal assertion fails the test function is allowed to continue
• Nevertheless the test case will fail
• All assertions exist in fatal and non-fatal versions

Assertion examples
• ASSERT_TRUE(condition); or ASSERT_FALSE(condition);
• ASSERT_EQ(val1, val2); or ASSERT_NE(val1, val2);
• …

724

Organizing Larger Projects Testing

Googletest (4)

A custom main function needs to be provided for Googletest

#include <gtest/gtest.h>
//--
int main(int argc, char** argv) {

::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

}

• Should usually be placed in a separate Tester.cpp or main.cpp

725

Organizing Larger Projects Testing

Coverage (1)

Code coverage can help ensure proper testing of a project
• Simple metrics like line coverage have to be interpreted carefully
• Can indicate that a certain part of a project has not been tested properly
• Can usually not indicate that a certain part of a project has been tested

exhaustively

Line coverage information can automatically be collected during test execution
• Possible with a variety of tools
• GCC contains the build-in coverage tool gcov
• Clang can produce gcov-like output
• lcov together with genhtml can be used to generate HTML line coverage

reports from information collected during test execution

726

Organizing Larger Projects Testing

Coverage (2)

Brief example

build executable with gcov enabled
> g++ -fprofile-arcs -ftest-coverage -o main main.cpp

run executable and generate coverage data
> ./main

generate lcov report
> lcov --coverage --directory . --output-file coverage.info

generate html report
> genhtml coverage.info --output-directory coverage

• Produces HTML coverage report in coverage/index.html
• Configuration for coverage reports should be part of CMake configuration

727

Organizing Larger Projects Further Tools & Techniques

Continuous Integration

Platforms like GitLab provide continuous integration (CI) functionality
• Can automatically run tests or other checks each time some commits are

pushed to GitLab
• Highly useful in larger projects with multiple contributors
• Can be used to enforce certain standards in a project (e.g. minimum line

coverage, no failing tests etc.)
• Has to be taken seriously to be effective (e.g. refuse merge requests with

failing CI tests etc.)

Configured through .gitlab-ci.yml file in the repository
• Rather complex initial server-side setup
• Already provided by our GitLab server
• .gitlab-ci.yml configures the CI for a certain GitLab repository
• Refer to the GitLab documentation for details

728

Organizing Larger Projects Further Tools & Techniques

Linting

A linter performs static source code analysis
• Can detect some types of “bad” code
• Some forms of bugs
• Stylistic errors that may lead to bugs
• Suspicious constructs that may lead to bugs

clang-tidy is a clang-based C++ linter
• Widely available through package manager
• Highly configurable set of checks (e.g. through .clang-tidy file)
• Integrated in CLion
• Can be integrated in CMake configuration of a project

729

Organizing Larger Projects Further Tools & Techniques

perf (1)

perf is a highly useful performance analysis tool for Linux
• Can profile any program using the standalone executable perf
• Can be integrated in a program by using the perf API
• Can interface with hardware and software performance counters

Standalone perf examples
• perf stat [OPTIONS] command

• Run command and display information about event counts such as cache
misses, branch misses etc.

• perf record [OPTIONS] command
• Run command and sample a certain event on the instruction level
• If possible, command should be built with debug symbols

• perf report
• Analyze a file generated by perf record
• Generates an interactive report that shows sampled event counts for each

instruction.

730

Organizing Larger Projects Further Tools & Techniques

perf (2)
perf stat example
> perf stat --detailed ./my_executable
...
Performance counter stats for './my_executable':

56.505,78 msec task-clock # 2,573 CPUs utilized
854.187 context-switches # 0,015 M/sec
7.827 cpu-migrations # 0,139 K/sec

309.550 page-faults # 0,005 M/sec
177.728.516.281 cycles # 3,145 GHz
60.347.961.620 instructions # 0,34 insn per cycle
12.694.777.815 branches # 224,663 M/sec

89.725.841 branch-misses # 0,71% of all branches
16.672.843.754 L1-dcache-loads # 295,064 M/sec
1.267.581.260 L1-dcache-load-misses # 7,60% of all L1-dcache hits
471.681.999 LLC-loads # 8,347 M/sec
258.238.607 LLC-load-misses # 54,75% of all LL-cache hits

21,964215591 seconds time elapsed

44,360970000 seconds user
16,626546000 seconds sys

731

Organizing Larger Projects Further Tools & Techniques

Valgrind

Valgrind is a general-purpose dynamic analysis tool
• Mainly used for memory debugging, memory leak detection and profiling
• Essentially runs programs on a virtual machine, allowing tools to do arbitrary

transformations on the program before execution
• Extremely high overhead compared to other tools like ASAN

Use cases
• Complex memory bugs that are not detected by simpler tools like the address

sanitizer
• Complex profiling tasks

732

Organizing Larger Projects Further Tools & Techniques

Reverse Debugging (1)

Regular debuggers like GDB can only step forward in the program
• Does not necessarily fit debugging requirements
• E.g. when a crash occurs, we would like to step backwards until we have

found the source of the crash

Reverse debuggers provide such functionality
• Usually, a program run is recorded first
• Subsequently, the program run can be replayed reproducing the exact same

behavior
• During debugging, execution can step forward and backward in time
• Example: rr by Mozilla

733

Organizing Larger Projects Further Tools & Techniques

Reverse Debugging (2)
Buggy class

main.cpp
#include <cassert>
//--
struct Foo {

static constexpr int max = 15;
int a = 0;

void bar() {
assert((a % 2) == 0);
a = (a + 2) % max;

}
};
//--
int main() {

Foo foo;
for (unsigned i = 0; i < 16; ++i)

foo.bar();
}

734

Organizing Larger Projects Further Tools & Techniques

Reverse Debugging (3)
rr example

> g++ -g -o main main.cpp
> rr record main # record execution of main, including crash
> rr replay # start rr GDB session, will break at _start
...
(rr) continue # continue program until crash
(rr) up 4 # go to Foo::bar stack frame
(rr) watch -l a # hardware watchpoint for Foo::a
(rr) reverse-continue # continue backwards, will break at SIGABRT
(rr) reverse-continue # continue backwards, will break at watchpoint
Continuing.

Hardware watchpoint 1: -location a

Old value = 1
New value = 14
0x00005568dba67208 in Foo::bar (this=0x7fff75f38980) at main.cpp:9
9 a = (a + 2) % max;

735

C++ Systems Programming on Linux

C++ Systems Programming on Linux

736

C++ Systems Programming on Linux

C++ Systems Programming on Linux

Until now, most topics were about standard C++. The standard does not contain
everything that is useful for good systems programming, such as:
• Creating, removing, renaming files and directories
• Efficient reading and writing of files
• Direct manual memory allocation from the kernel
• Networking
• Management of processes and threads

The Linux kernel in particular has a very extensive user-space C-API that can be
used to directly communicate with the kernel for all of those tasks.

737

C++ Systems Programming on Linux

POSIX and Linux API

POSIX is a standard that defines a C-API to communicate with the operating
system.
• The POSIX API is supported by most Unix-like operating systems (e.g.

Linux, Mac OS X)
• It is a pure C-API but can also be used directly in C++

• Consists of types, functions and constants defined in <unistd.h>,
<fcntl.h>, various <sys/*.h> files, and more

Linux defines additional types, functions and constants for Linux-specific
operations that are not defined by the standard.
• Documentation of the POSIX functions can be found in man pages (usually

in section 3posix or 3p)
• Linux-specific functions are also documented in man pages (usually in

section 2)

738

C++ Systems Programming on Linux Interacting with Files

File Descriptors

A very central concept in the POSIX API are so called file descriptors (fds).
• File descriptors have the type int
• They are used as a “handle” to:

• Files in the filesystem
• Directories in the filesystem
• Network sockets
• Many other kernel objects

• Usually, fds are created by a function (e.g. open()) and must be closed by
another function (e.g. close())

• When working with fds in C++, the RAII pattern can be very useful

739

C++ Systems Programming on Linux Interacting with Files

Opening and Creating Files (1)

To open and create files the open() function can be used. It must be included
from <sys/stat.h> and <fcntl.h>.
• int open(const char* path, int flags, mode_t mode)
• Opens the file at path with the given flags and returns an fd for that file
• If an error occurs, -1 is returned
• The third argument mode is optional and only required when a file is created
• flags is a bitmap (created with bitwise or) that must contain exactly one of

the following flags:
O_RDONLY Open the file only for reading.
O_RDWR Open the file for reading and writing.
O_WRONLY Open the file only for writing.

• close() must be used to close the fd returned by open() → RAII

740

C++ Systems Programming on Linux Interacting with Files

Opening and Creating Files (2)

There are more flags that can combined with bitwise or:
O_CREAT If the file does not exist, it is created with the permission

bits taken from the mode argument
O_EXCL Can only be used in combination with O_CREAT. Causes

open() to fail and return an error when the file exists.
O_TRUNC If the file exists and it is opened for writing, truncate the

file, i.e. remove all its contents and set its length to 0.
Example:

#include <fcntl.h>
#include <sys/stat.h>
int main() {

int fd = open("/tmp/testfile", O_WRONLY | O_CREAT, 0600);
if (fd < 0) { /* error */ }
else { close(fd); }

}

741

C++ Systems Programming on Linux Interacting with Files

Reading and Writing from Files

To read from and write to files, read() and write() from the header
<unistd.h> can be used.
• ssize_t read(int fd, void* buf, size_t count)
• ssize_t write(int fd, const void* buf, size_t count)
• fd must be a valid file descriptor
• buf must be a memory buffer which has a size of at least count bytes
• The return value indicates how many bytes were actually read or written (can

be up to count)
• Both functions return -1 when an error occurs
• Note: Both functions may wait until data can actually be read or written

which can lead to deadlocks!

742

C++ Systems Programming on Linux Interacting with Files

File Positions and Seeking (1)

For an opened file the kernel remembers the current position in the file.
• read() and write() start reading or writing from the current position
• They both advance the current position by the number of bytes read or

written
The function lseek() (headers <sys/types.h> and <unistd.h>) can be used
to get or set the current position.
• off_t lseek(int fd, off_t offset, int whence)
• off_t is a signed integer type
• The current position is changed according to offset and whence, which is

one of the following:
SEEK_SET The current position is set to offset
SEEK_CUR offset is added to the current position
SEEK_END The current position is set to the end of the file plus offset

• lseek() returns the value of the new position, or -1 if an error occurred

743

C++ Systems Programming on Linux Interacting with Files

File Positions and Seeking (2)

Example:

int fd = open("/etc/passwd", O_RDWR);
auto fileSize = lseek(fd, 0, SEEK_END);
lseek(fd, -4, SEEK_CUR);
write(fd, "test", 4); // overwrite the last 4 bytes

Note: The current position is shared between all threads. Generally, read(),
write(), and lseek() should not be used concurrently on the same fd.

744

C++ Systems Programming on Linux Interacting with Files

Reading and Writing at Specific Offsets

There also exist two functions that read or write from a file without using the
current position: pread() and pwrite() from the header <unistd.h>.
• ssize_t pread(int fd, void* buf, size_t count, off_t offset)

• ssize_t pwrite(int fd, const void* buf, size_t count, off_t offset)

• Conceptually, those functions work like lseek(fd, offset, SEEK_SET)
followed by read() or write()

• However, they do not modify the current position in the file
• Should be used when reading from and writing to files from multiple threads

745

C++ Systems Programming on Linux Interacting with Files

Getting Metadata of Files

Meta data of files, such as the type of a file, its size, its owner, or the date it was
last modified, can be read with stat() or fstat(). Required headers:
<sys/types.h>, <sys/stat.h>, <unistd.h>.
• int stat(const char* filename, struct stat* statbuf)
• int fstat(int fd, struct stat* statbuf)
• The meta data of the file specified by filename or fd is written into
statbuf

• Returns 0 on success, -1 on error
• struct stat has several member variables:

mode_t st_mode The file mode (S_IFREG for regular file, S_IFDIR for
directory, S_IFLNK for symbolic link, …)

uid_t st_uid The user id of the owner
off_t st_size The total size in bytes
…

746

C++ Systems Programming on Linux Interacting with Files

Changing the Size of a File

Files can be resized by using the functions truncate() or ftruncate() from
the headers <sys/types.h> and <unistd.h>.
• int truncate(const char* path, off_t length)
• int ftruncate(int fd, off_t length)
• Sets the size of the file specified by path or fd to length bytes
• If the new length is larger than the old, zero bytes are appended at the end
• Returns 0 on success, -1 on error
• These functions are especially useful when files are used as a memory buffers,

e.g. for a buffer manager of a database system

747

C++ Systems Programming on Linux Interacting with Files

More File Functions

POSIX and Linux have many more functions that deal with files and directories:

mkdir() Create a directory
mkdirat() Create a subdirectory in a specific directory
openat() Open a file in a specific directory
unlink() Remove a file
unlinkat() Remove a file from a specific directory
rmdir() Remove an empty directory
chmod()/fchmod() Change the permissions of a file
chown()/fchown() Change the owner of a file
fsync() Force changes to a file to be written
…

748

C++ Systems Programming on Linux Memory Mapping

Memory Mapping

POSIX defines the function mmap() in the header <sys/mman.h> which can be
used to manage the virtual address space of a process.
• void* mmap(void* addr, size_t length, int prot, int flags,

int fd, off_t offset)
• Arguments have different meaning depending on flags
• On error, the special value MAP_FAILED is returned
• Always: If a pointer is returned successfully, it must be freed with munmap()
• int munmap(void* addr, size_t length)
• addr must be a value returned from mmap()
• length must be the same value passed to mmap()
• RAII should be used to ensure that munmap() is called

749

C++ Systems Programming on Linux Memory Mapping

Memory Mapping Files (1)

One use case for mmap() is to map the contents of a file into the virtual memory.
To map a file, the arguments are used as follows:
• addr: hint for the kernel which address to use, should be nullptr
• length: length of the returned memory mapping (usually multiple of page

size)
• prot: determines how the mapped pages may be accessed and is a

combination (with bitwise or) of the following flags:
PROT_EXEC pages may be executed
PROT_READ pages may be read
PROT_WRITE pages may be written
PROT_NONE pages may not be accessed

• flags: should be either MAP_SHARED (changes to the mapped memory are
written to the file) or MAP_PRIVATE (changes are not written to the file)

• fd: descriptor of an opened file
• offset: Offset into the file where the mapping should start (multiple of

page size)

750

C++ Systems Programming on Linux Memory Mapping

Memory Mapping Files (2)

Example of reading integers from file /tmp/ints:

int fd = open("/tmp/ints", O_RDONLY);
void* mappedFile = mmap(nullptr, 4096, PROT_READ, MAP_SHARED, fd, 0);
int* fileInts = static_cast<int*>(mappedFile);
for (int i = 0; i < 1024; ++i)

std::cout << fileInts[i] << std::endl;
munmap(mappedFile, 4096);
close(fd);

• Note: This assumes that integers are written in binary format to the file!
• Using mmap() to read from large files is often faster than using read()
• This is because with mmap() data is directly read from and written to the file

without copying it to a buffer first

751

C++ Systems Programming on Linux Memory Mapping

Using mmap for Memory Allocation
mmap() can also be used to allocate memory by not associating it with a file.
• flags must be MAP_PRIVATE | MAP_ANONYMOUS
• fd must be -1
• offset must be 0
• Other arguments have the same meaning
• Used by malloc() internally
• Should be used manually only to allocate very large regions of memory (at

least several MBs)
Example of allocating 100 MiB of memory:

void* mem = mmap(nullptr, 100 * (1ull << 20),
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);

// [...]
munmap(mem, 100 * (1ull << 20));

752

C++ Systems Programming on Linux Process Management

Creating Processes with fork
The most common way to start a new process in Linux is using fork() from the
headers <sys/types.h> and <unistd.h>.
• pid_t fork()
• When fork() is called, the process is duplicated (including its virtual

memory with all memory mappings, open file descriptors, etc.)
• In the original process, fork() returns the process id of the new process, or
-1 if an error occurred

• In the new process, fork() returns 0

std::cout << "start ";
if (fork() == 0) {

std::cout << "new ";
} else {

std::cout << "old ";
}
std::cout << "end ";

One possible output for this example is: start old end new end
753

C++ Systems Programming on Linux Process Management

Fine-Grained Process Creation with clone
For greater control over creating a process, clone() from <sched.h> (which is
also used by fork() internally) should be used.
• int clone(int (*fn)(void*), void* child_stack,

int flags, void* arg)
• Takes a function pointer that will be executed in the new process, the new

stack pointer for the process, flags, and an argument that will be passed to
the function

• Returns the process id of the new process
• flags is 0 or a bitwise or combination of the following:

CLONE_FILES File descriptors are shared between old and new process
CLONE_FS File system information is shared (e.g. the current direc-

tory)
CLONE_VM Virtual memory is shared
CLONE_PARENT The parent process of the new process will be the parent

of the current process
CLONE_THREAD The new process will be a thread in the current process
…

754

C++ Systems Programming on Linux Process Management

Executing Other Programs
To execute an entirely new program, execve() from <unistd.h> can be used.
• int execve(const char* pathname, char* const argv[],

char* const envp[])
• pathname is the path to binary that should be executed
• argv is a pointer to a null-terminated array for the program arguments
• envp is a pointer to a null-terminated array for the environment variables
• On success, the new program is executed, so the function does not return
• On error, returns -1
• execve() replaces the virtual memory of the old program by the new, but it

keeps all fds
• Is often used in combination with fork()

std::vector<const char*> args = {"/bin/ls", "/", nullptr};
std::vector<const char*> env = {"FOO=bar", nullptr};
if (fork() == 0) {

execve("/bin/ls", args.data(), env.data());
}

755

C++ Systems Programming on Linux Process Management

Thread Pinning
Threads can control on which physical CPU cores they run by using
sched_setaffinity() from <sched.h>.
• int sched_setaffinitiy(pid_t pid, size_t cpusetsize

const cpu_set_t* mask)
• pid stands for the process id whose affinity should be set, or 0 which stands

for the current thread
• cpusetsize must be set to sizeof(cpu_set_t)
• mask is a pointer to a cpu_set_t which describes which CPU cores the

thread is allowed to run on
• Returns 0 on success, -1 on error
• Variables of type cpu_set_t can be modified with
CPU_ZERO(cpu_set_t* set) and
CPU_SET(int cpu, cpu_set_t* set)

cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(0, &set); CPU_SET(4, &set);
sched_setaffinity(0, sizeof(cpu_set_t), &set);

756

C++ Systems Programming on Linux Process Management

Signals

In POSIX systems like Linux, every process can receive signals.
• Signals can either be generated by hardware (e.g. on memory access

violations) or by software (by using kill())
• By default, a process is either terminated or does nothing when it receives a

signal
• A process can set a signal handler function which will be called when a signal

is received
• The most common signals are:

Signal Default Description
SIGSEGV terminate “segfault”, invalid memory access
SIGINT terminate interrupt from user, usually by pressing Ctrl + C
SIGTERM terminate process is terminated
SIGKILL terminate process is killed (cannot be caught with a signal

handler)
SIGCHLD ignore a child process terminated

757

C++ Systems Programming on Linux Process Management

Setting Signal Handlers (1)

Signal handlers can set by using sigaction() from the header <signal.h>.
• int sigaction(int signum, const struct sigaction* act,

struct sigaction* sigact)
• signum is the signal whose signal handler should be changed
• act is a pointer to the signal handler that should be set, or nullptr if an

existing signal handler should be removed
• If sigact is not nullptr, it will contain the old signal handler after the

function returns
• Returns 0 on success, -1 on error
• struct sigaction has several members, the most important one is:
void (*sa_handler)(int)

• sa_handler is a function pointer that points to the signal handler function
that takes the signal as only argument

758

C++ Systems Programming on Linux Process Management

Setting Signal Handlers (2)

As signal handlers can be called at any time while other code is running, they
should avoid to interfere with memory that is currently accessed.

void handler(int /*signal*/) {
std::cout << "Ctrl-C was pressed\n";
std::exit(1);

}
struct sigaction s{}; // Use {} here to zero-initialize
s.sa_handler = handler;
sigaction(SIGINT, &s, nullptr);

759

C++ Systems Programming on Linux Process Management

Sending Signals

A process can send a signal to itself or other process by using kill() from the
headers <sys/types.h> and <signal.h>.
• int kill(pid_t pid, int sig)
• pid is the process id of the process that should recieve the signal
• If pid is 0, the signal is sent to all processes in the process group (i.e. to all

other threads)
• If pid is -1, the signal is sent to all processes for which the calling process

has the permission
• Returns 0 on success, -1 on error
• With the signals SIGUSR1 and SIGUSR2 (“user-defined signals”) this can be

used for (limited) communication between processes

760

C++ Systems Programming on Linux Process Management

Inter-Process Communication with Pipes (1)
Using basic signals is often not sufficient for communication between processes.
pipe() (from <unistd.h>) can be used instead which creates two fds that are
connected to each other.
• int pipe(int pipefd[2])
• Takes a pointer to an array that can hold two integers
• Returns 0 on success, -1 on error
• Creates a unidirectional connection between pipefd[0] and pipefd[1]
• Everything that is written to pipefd[1] can be read from pipefd[0]
• Both fds must be closed eventually

int fds[2];
pipe(fds);
int readfd = fds[0]; int writefd = fds[1];
write(writefd, "hello", 5);
char buffer[5];
read(readfd, buffer, 5); // buffer now contains "hello"
close(readfd); close(writefd);

761

C++ Systems Programming on Linux Process Management

Inter-Process Communication with Pipes (2)
pipe() is usually used in combination with fork():

int fds[2]; pipe(fds);
int readfd = fds[0];
int writefd = fds[1];
if (fork() == 0) {

// We only need to read from the parent, so close writefd
close(writefd);
char buffer[6]; buffer[5] = 0;
read(readfd, buffer, 5);
std::cout << "parent wrote: " << buffer;
close(readfd)

} else {
// Likewise, close readfd
close(readfd);
write(writefd, "hello", 5);
close(writefd);

}

762

C++ Systems Programming on Linux Error Handling

Error Handling

Most functions use errno from the header <cerrno> for error handling.
• errno is a global variable that contains an error code
• Is set when a function returns an error (e.g. by returning -1)
• All possible values for errno are available as constants:

EINVAL Invalid argument
ENOENT No such file or directory (e.g. in open())
EACCES Permission denied
ENOMEM Not enough memory (e.g. for mmap())
…

• A description of the error can be retrieved with std::strerror() from
<cstring>

763

https://en.cppreference.com/w/cpp/header/cerrno

Miscellaneous

Miscellaneous

764

Miscellaneous Tricks on x86-64

Pointer Tagging on x86-64 (1)

Virtual addresses are translated to physical addresses by the MMU
• Virtual addresses are 64-bit integers on x86-64
• On x86-64, only the lower 48 bit of pointers are actually used
• The upper 16 bit of pointers are usually required to be zero

The upper 16 bit of each pointer can be used to store useful information
• Usually called pointer tagging
• Tagged pointers require careful treatment to avoid memory bugs
• If portability is desired, an implementation that works without pointer

tagging has to be provided (e.g. through preprocessor defines)
• Allows us to modify two values (16 bit tag and 48 bit pointer) with a single

atomic instruction

765

Miscellaneous Tricks on x86-64

Pointer Tagging on x86-64 (2)

We can store different things in the upper 16 bit of pointers
• Up to 16 binary flags
• A single 16 bit integer
• …

Guidelines
• Always wrap tagged pointers within a suitable data structure
• Do not expose tagged pointers in raw form
• Store tagged pointers as uintptr_t internally
• Use bit operations to access tag and pointer parts

766

Miscellaneous Tricks on x86-64

Pointer Tagging on x86-64 (3)
Using the upper 16 bit to store information

static constexpr uint64_t shift = 48;
static constexpr uintptr_t mask = (1ull << shift) - 1;
//--
uintptr_t tagPointer(void* ptr, uint64_t tag)
// Tag a pointer. Discards the upper 48 bit of tag.
{

return (reinterpret_cast<uintptr_t>(ptr) & mask) | (tag << shift);
}
//--
uint64_t getTag(uintptr_t taggedPtr)
// Get the tag stored in a tagged pointer
{

return taggedPtr >> shift;
}
//--
void* getPointer(uintptr_t taggedPtr)
// Get the pointer stored in a tagged pointer
{

return reinterpret_cast<void*>(taggedPtr & mask);
}

767

Miscellaneous Tricks on x86-64

Pointer Tagging on x86-64 (4)
Using the lower 16 bit to store information

static constexpr uint64_t shift = 16;
static constexpr uintptr_t mask = (1ull << shift) - 1;
//--
uintptr_t tagPointer(void* ptr, uint64_t tag)
// Tag a pointer. Discards the upper 48 bit of tag.
{

return (reinterpret_cast<uintptr_t>(ptr) << shift) | (tag & mask);
}
//--
uint64_t getTag(uintptr_t taggedPtr)
// Get the tag stored in a tagged pointer
{

return taggedPtr & mask;
}
//--
void* getPointer(uintptr_t taggedPtr)
// Get the pointer stored in a tagged pointer
{

return reinterpret_cast<void*>(taggedPtr >> shift);
}

768

Miscellaneous Vectorization

Vectorization

Most modern CPUs contain vector units that can exploit data-level parallelism
• Apply the same operation (e.g. addition) to multiple data elements in a single

instruction
• Can greatly improve the performance of suitable algorithms (e.g. image

processing)
• Not all algorithms are amenable to vectorization

Overview
• Can be used through extensions to the x86 instruction set architecture
• Commonly referred to as single instruction, multiple data (SIMD) instructions
• Can be used in C/C++ code through intrinsic functions
• The Intel Intrinsics Guide provides an excellent documentation

769

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Miscellaneous Vectorization

SIMD Extensions

SIMD extensions have evolved substantially over time
• MMX
• SSE, SSE2, SSE3, SSE4
• AVX, FMA, AVX2, AVX-512

Modern CPUs retain backward compatibility with older instruction set extensions
• The CPU flags exposed in /proc/cpuinfo indicate which extensions are

supported
• We will briefly introduce AVX (avx flag in /proc/cpuinfo)
• AVX should be supported on most reasonably modern CPUs

770

Miscellaneous Vectorization

AVX Data Types

AVX data types and intrinsics are defined in the <immintrin.h> header
• AVX adds 16 registers which are 256 bits wide each
• Can hold multiple data elements
• Can be used through special opaque data types

AVX data types
• __m256: Can hold eight 32 bit floating point values
• __m256d: Can hold four 64 bit floating point values
• __m256i: Can hold thirty-two 8 bit, sixteen 16 bit, eight 32 bit or four 64 bit

integer values
• Commonly referred to as vectors (not to be confused with std::vector)

Other SIMD extensions follow similar naming conventions for data types

771

Miscellaneous Vectorization

AVX Intrinsics

Usually, there are separate intrinsics for each data type
• AVX intrinsics usually begin with _mm256
• Next is a name for the instruction (e.g. loadu)
• Finally, the data type is indicated

• ps for __m256
• pd for __m256d
• si256 for __m256i

• Example: _mm256_loadu_ps

We will only show intrinsics for __m256 in the following
• Intrinsics for other data types usually follow similar patterns
• Exception: AVX does not contain many arithmetic operations on integer

types (added in AVX2)

772

Miscellaneous Vectorization

Constant Values

We cannot directly modify individual data elements in AVX data types
• We have to use intrinsics for that purpose
• Intrinsics usually return the result of a modification

We can create constant vectors
• __m256 _mm256_set1_ps(float a)

• Returns a vector with all elements equal to a
• __m256 _mm256_set_ps(float e7, ..., float e0)

• Returns a vector with the elements e0, ..., e7
• __m256 _mm256_setr_ps(float e0, ..., float e7)

• Returns a vector with the elements e0, ..., e7

773

Miscellaneous Vectorization

Loading and Storing

Loading data from memory
• __m256 _mm256_load_ps(const float* addr)

• Load eight 32 bit floating point values from memory starting at addr
• addr has to be aligned to a 32 byte boundary

• __m256 _mm256_loadu_ps(const float* addr)
• Load eight 32 bit floating point values from memory starting at addr
• addr does not have to be aligned beyond usual float alignment

Storing data to memory
• void _mm256_store_ps(float* addr, __m256 a)

• Store eight 32 bit floating point values in a to memory starting at addr
• addr has to be aligned to a 32 byte boundary

• void _mm256_storeu_ps(float* addr, __m256 a)
• Store eight 32 bit floating point values in a to memory starting at addr
• addr does not have to be aligned beyond usual float alignment

774

Miscellaneous Vectorization

Arithmetic Operations

AVX provides many arithmetic operations on vectors
• All the usual arithmetic operations
• Bitwise operations on integer types
• …

Example: Adding vectors
• __m256 _mm256_add_ps(__m256 a, __m256 b)

• Adds the individual elements of the vectors a and b
• Returns the result of the addition

775

Miscellaneous Vectorization

Example
Computing the sum of elements in an std::vector

#include <immintrin.h>
#include <vector>
//--
float fastSum(const std::vector<float>& vec) {

__m256 vectorSum = _mm256_set1_ps(0);
uint64_t index;
for (index = 0; (index + 8) <= vec.size(); index += 8) {

__m256 data = _mm256_loadu_ps(&vec[index]);
vectorSum = _mm256_add_ps(vectorSum, data);

}

float sum = 0;
float buffer[8];
_mm256_storeu_ps(buffer, vectorSum);
for (unsigned i = 0; i < 8; ++i)

sum += buffer[i];
for (; index < vec.size(); ++index)

sum += vec[index];

return sum;
}

776

Miscellaneous Vectorization

Further Operations

AVX contains many more instructions
• Comparison operations on vectors
• Masked operations

Allows vectorization of many algorithms
• Vectorization is not guaranteed to improve performance
• Generally, compute-heavy algorithms benefit greatly from vectorization
• Algorithms with a lot of fine-grained branching or many loads and stores may

not benefit
• Vectorization is always an optimization that should not be applied

prematurely

777

Miscellaneous Template Metaprogramming

Template Metaprogramming

Templates can be used for meta-programming at compile time.
• Template specializations can be used to select different types depending on

template arguments
• Recursive templates can be used for basic “control flow”
• The standard library defines several useful templates in <type_traits>
• All types and values are generated at compile time, so can be used as

constants or template parameters

778

Miscellaneous Template Metaprogramming

Type Traits

Type traits can be used to analyze properties of arbitrary types:
constexpr bool a = std::is_arithmetic_v<int>; // true
constexpr bool b = std::is_class_v<int>; // false
constexpr bool c = std::is_class_v<std::vector<int>>; // true
constexpr bool d = std::is_move_assignable_v<std::vector<int>>; // true

They can also be used to generate new types:
using T1 = std::remove_reference_t<int&>; // T1 is int
using T2 = std::add_pointer_t<int>; // T2 is int*
// T3 is const std::vector<int>&
using T3 = std::add_const_t<std::add_lvalue_reference_t<std::vector<int>>>;
// my_uintptr_t is uint64_t on systems where the size of void* is 8 bytes,
// or uint32_t otherwise.
using my_uintptr_t =

std::conditional_t<sizeof(void*) == 8, uint64_t, uint32_t>;

779

Miscellaneous Template Metaprogramming

Using Type Traits

Using type traits can prevent code duplication. Common example: const and
non-const versions of an iterator.

template <typename T>
class Container {

private:
template <bool isConst>
class Iterator {

public:
using reference = std::conditional_t<isConst, const T&, T&>;
// [...]

};

public:
using iterator = Iterator<false>;
using const_iterator = Iterator<true>;

};

780

Miscellaneous Template Metaprogramming

Implementing Type Traits

Some of the templates from <type_traits> are “magic” and cannot be
implemented in pure C++ without compiler support.

Still, many can be implemented by using template specializations:
// By default, my_remove_pointer just gives back T
template <typename T>
struct my_remove_pointer { using type = T; };
// Use template specialization that is only selected for pointer types
// and declare type to be T without the pointer.
template <typename T>
struct my_remove_pointer<T*> { using type = T; };
template <typename T>
using my_remove_pointer_t = typename my_remove_pointer<T>::type;

781

Miscellaneous Template Metaprogramming

Substition Failure Is Not An Error (SFINAE)

• When a template is instantiated, the template arguments are substituted
everywhere the template parameter is used (e.g. T is replaced by int)

• This can lead to invalid code → Substitution Failure
• In some cases, substitution failures do not lead to a compile error!
• This is necessary to enable overloaded template functions
• Can be (ab)used for meta programming (see std::enable_if)

template <typename T>
T::value_type foo(const T& values) { /* ... */ }

int foo(int a) { return a + 1; }

foo(123); // Is this a compile error?
// This is invalid code:
int::value_type foo(const int& values) { /* ... */ }
// Because of SFINAE, only int foo(int) is considered as overload

782

https://en.cppreference.com/w/cpp/language/sfinae

Miscellaneous Additional C++20 Features

The C++20 Standard

C++20 is the latest release of the C++ standard
• Adds some very cool features to the C++ standard
• We already covered many of the well-supported new features throughout this

course (e.g. concepts)
• In the following we will give an overview of additional potentially very useful

features

Compiler support for these features is improving although still intermittent
• Some features (e.g. modules) are not yet implemented completely by some

compilers
• Some features (e.g. coroutines) may be implemented but affected by compiler

bugs
• In any case: Use the latest compiler version available to you

783

https://en.cppreference.com/w/cpp/compiler_support

Miscellaneous Additional C++20 Features

Coroutines (1)

Regular function calls are strictly nested
• A function call suspends execution of the calling function, and resumes

execution at the start of the called function
• Eventually, the called function returns and execution of the calling function

resumes after the function call expression

Functions have state that has to be maintained across nested function calls
• Values of any local variables
• The instruction at which to resume execution after a function call
• Strict nesting of function calls allows for highly optimized state maintenance

on the stack
• Strict nesting of function calls makes implementing asynchronous operations

cumbersome

784

Miscellaneous Additional C++20 Features

Coroutines (2)

Coroutines are functions that can be suspended and resumed (almost) arbitrarily
• Suspending a coroutine transfers execution back to the caller
• Resuming a suspended coroutine continues execution at the point it was

suspended
• The state of a coroutine remains alive across suspensions (e.g. local variables)

Coroutines in C++ are implemented with the help of three new keywords
• co_await <expr>: Suspends the coroutine and returns control to the caller
• co_yield <expr>: Returns a value to the caller and suspends the coroutine
• co_return <expr>: Returns a value to the caller and finishes the coroutine

785

https://en.cppreference.com/w/cpp/language/coroutines

Miscellaneous Additional C++20 Features

Coroutines (3)

Coroutines look like sequential code that is executed asynchronously

ThreadPool pool;

Task<> work(...) {
// Executed on the calling thread
doSomeWork(...);

// Suspend the coroutine and schedule it for resumption
// on the thread pool. Control returns immediately to
// the caller of the coroutine.
co_await pool.schedule();

// Executed on a thread from the thread pool
doSomeMoreWork(...);

}

786

Miscellaneous Additional C++20 Features

Coroutines (4)
Coroutines can be used to implement lazy generators

#include <iostream>

Generator<int> iota(int n = 0) {
while (true)

// Return a value to the caller and suspend the
// iota coroutine
co_yield n++;

}

Task<> work() {
auto generator = iota();
for (size_t i = 0; i < 10; ++i)

// Resume the iota coroutine to retrieve the
// next value from the generator
std::cout << co_await generator << std::endl;

}

787

Miscellaneous Additional C++20 Features

Coroutines (5)

Coroutines can be used to implement asynchronous IO

Task<> work(Socket socket) {
while (true) {

// Suspend the coroutine until data becomes available
auto incoming = co_await socket.receive_async(...);

// Do some work with the received data
auto outgoing = doSomeWork(incoming);

// Suspend the coroutine until data has been sent
co_await socket.send_async(outgoing);

}
}

788

Miscellaneous Additional C++20 Features

Coroutines (6)

Unfortunately, C++ coroutines are currently quite painful to use
• There is not yet any “coroutine standard library”
• In order to actually use any of the coroutine keywords, we have to implement

a lot of (boilerplate) infrastructure ourselves
• The behavior of C++ coroutines is highly configurable through the details of

this infrastructure implementation
• Overall, it is quite difficult to implement working coroutines

Further complications that will (hopefully) improve over time
• Compiler bugs in the implementation of coroutines
• Suboptimal compiler error messages for coroutines
• Suboptimal debugger support for coroutines

789

https://en.cppreference.com/w/cpp/language/coroutines

Miscellaneous Additional C++20 Features

Modules (1)

Modules help structure large amounts of code into logical parts
• A module consists of multiple translation units called module units
• Module units can import other modules
• Module units can export certain declarations

Facilitates encapsulation of logically independent parts
• Exported declarations are visible to name lookup in translation units that

import the module
• Other declarations are not visible to name lookup

Reduces compilation overhead
• Exported definitions are compiled into easy-to-parse binary format
• No need to recursively parse transitive includes

790

https://en.cppreference.com/w/cpp/language/modules

Miscellaneous Additional C++20 Features

Modules (2)

Example
greeting.cpp

export module greeting;

import <string>;

export std::string getGreeting() {
return "Hello world!";

}

main.cpp
import greeting;
import <iostream>;

int main() {
std::cout << getGreeting() << std::endl;

}

791

Miscellaneous Additional C++20 Features

Designated Initializers

C++20 introduces designated initializers
• Allows explicit initialization of class members by name
• This was already possible in C and supported by many compilers
• C++20 now supports a subset of what is allowed in C

struct Foo {
int a;
int b;

};
Foo f{ .a = 1, .b = 2 };

792

https://en.cppreference.com/w/cpp/language/aggregate_initialization#Designated_initializers

Miscellaneous Additional C++20 Features

Bit Manipulation

The <bit> header introduces several functions for bit inspection and
manipulation.
• std::bit_cast: Inspect the object representation (instead of using
reinterpret_cast with potential undefined behavior)

• std::endian: Check the endianness of the system
• std::has_single_bit: Check if number is power of two
• std::bit_ceil, std::bit_floor: Find the next/previous power of two
• std::rotl, std::rotr: Rotate bits
• std::countl_zero: Count the number of consecutive zero bits starting

from the most significant bit
• std::popcount: Count the number of one bits
• ...

793

https://en.cppreference.com/w/cpp/header/bit

Miscellaneous Additional C++20 Features

Additional atomic types

C++20 introduces an atomic specialization of std::shared_ptr
#include <atomic>
#include <memory>

struct LargeObject {
char data[1000];

};
std::atomic<std::shared_ptr<LargeObject>> object;

void readThreadSafe() {
auto objectPtr = object.load();
if (objectPtr)

objectPtr->data; /* do something with objectPtr->data */
}

void replaceThreadSafe(std::shared_ptr<LargeObject> newObject) {
object.store(std::move(newObject));

}

794

https://en.cppreference.com/w/cpp/atomic/atomic

Miscellaneous Additional C++20 Features

More Features

C++20 introduces further small and large features, such as:
• std::source_location: Stores a location in the source code.
std::source_location::current() can be used to get the location of
the current line

• <numbers> header: Contains mathematical constants like
std::numbers::pi and std::numbers::e

• consteval and constinit: Behave like a “mandatory” constexpr
• More functions and classes in the standard library are constexpr
• Some restrictions of lambdas were removed, e.g. you can capture structural

bindings
• Non-type-template arguments can have a user-defined type
• ...

795

	Organization
	Introduction
	Background
	Central Processing Unit
	Primary Memory
	Assembly

	Introduction to the C++ Ecosystem
	Hello World
	Compiler
	make
	CMake
	Git

	Basic C++ Syntax
	Comments
	Basic Types and Variables
	Expressions
	Statements
	Functions
	Basic IO
	Code Style

	Compiling C++ files
	Hello World 2.0
	Compiler
	Debugging

	Declarations and Definitions
	Objects
	Namespaces
	Declarations
	Definitions
	Header and Implementation Files

	References, Arrays, and Pointers
	References
	Arrays
	Pointers
	Pointer Arithmetic
	Pointer Conversions
	Guidelines
	Troubleshooting

	Classes
	Members
	Forward Declarations
	Constructors and Destructors
	Member Access Control
	Constness of Members
	Operator Overloading
	Defaulted and Deleted Member Functions

	Other User-Defined Types
	Unions
	Enums
	Type Aliases

	Dynamic Memory Management
	Process Memory Layout
	Dynamic Memory Management in C++
	Memory Manipulation Primitives

	Copy and Move Semantics
	Copy Semantics
	Move Semantics
	Idioms

	Ownership
	Smart Pointers

	Inheritance
	Basic Non-Polymorphic Inheritance
	Polymorphic Inheritance
	Conversions
	Implementation of Polymorphic Inheritance
	Inheritance Modes
	Multiple Inheritance
	Exceptions

	Templates
	Basic Templates
	Template Specialization
	Template Argument Deduction
	Placeholder Type Specifiers
	Variadic Templates
	Template Metaprogramming
	Idioms

	Standard Library I
	Introduction
	Strings
	Optional, Pair, Tuple
	Containers
	Iterators
	Streams and I/O

	Standard Library II
	Function Objects
	The Algorithms Library
	The Ranges Library
	The Random Library

	Concurrency in Modern Hardware
	Simultaneous Multi-Threading (SMT)
	Cache Coherence
	Memory Order
	Atomic Operations

	Parallel Programming
	Mutual Exclusion
	Hardware-Assisted Synchronization

	Multi-Threading in C++
	Threads Library
	Mutual Exclusion
	Atomic Operations

	Organizing Larger Projects
	Project Layout
	Libraries & Executables
	Third-Party Libraries
	Testing
	Further Tools & Techniques

	C++ Systems Programming on Linux
	Interacting with Files
	Memory Mapping
	Process Management
	Error Handling

	Miscellaneous
	Tricks on x86-64
	Vectorization
	Template Metaprogramming
	Additional C++20 Features

