
1 / 80

The Classical Architecture Access

Access Paths

2 / 80

The Classical Architecture Access

Data Structures

The DBMS needs several separate data structures
• for the free space management
• for the data itself (storage and retrieval)
• for unusually large data
• for index structures to speed up access

We will look at these in more detail.

3 / 80

The Classical Architecture Access

Free Space Inventory

Problem: Where do we have space for incoming data?

Traditional solution: free space bitmap

0010 0111
page 1 page 2

0011 0111
page 3 page 4

0001 0000
page 5 page 6

4 bits 4 bits
page x page x+1

byte 1 byte 2 byte 3 byte x/2

...

Each nibble indicates the fill status of a given page.

4 / 80

The Classical Architecture Access

Free Space Inventory (2)

Encode the fill status in 4 bits (some system use only 1 or 2):
• must approximate the status
• one possibility: data size / page size

2bits

• loss of accuracy in the lower range
• logarithmic scale is often better
• dlog2(text size)e
• or a combination (logarithmic for lower range, linear for upper range)

Encodes the free space (alternative: the used space) in a few bits.

5 / 80

The Classical Architecture Access

Free Space Inventory (3)
When inserting data,

• compute the required FSI entry (e.g., ≤ 7)
• scan the FSI for a matching entry
• insert the data on this page

Problem:
• linear effort
• FSI is small, for 16KB pages 1 FSI page covers 512MB
• but scan still not free
• only 16 FSI values, cache the next matching page (range)
• most pages will be static (and full anyway)
• segments will mostly grow at the end
• cache avoids scanning most of the FSI entries

6 / 80

The Classical Architecture Access

Allocation
Allocating pages (or parts of a page) benefits from application knowledge

• often larger pieces are inserted soon after each other
• e.g. a set of tuples
• or one very large data item
• should be allocated close to each other

Allocation interface is usually
allocate(min,max)

• max is a hint to improve data layout
• some interfaces (e.g., segment growth) even implement over-allocation
• reduces fragmentation

7 / 80

The Classical Architecture Access

Slotted Pages
Segment A:

123 3
3 Bytes 1 Byte

123 7 Record

TIDs

P123

567 6
TID

Overflow Record

P567

(TID size varies, but will most likely be at least 8 bytes on modern systems)

8 / 80

The Classical Architecture Access

Slotted Pages (2)
Tuples are stored in slotted pages

page

data data
data data data

slotsheader

• data grows from one side, slots from the other
• the page is full when both meet
• updates/deletes complicate issues, though
• might require garbage collection/compactification

9 / 80

The Classical Architecture Access

Slotted Pages (3)

Header:

LSN for recovery
slotCount number of used slots
firstFreeSlot to speed up locating free slots
dataStart lower end of the data
freeSpace space that would be available after compactification

Note: a slotted page can contain hundreds of entries!
Requires some care to get good performance.

10 / 80

The Classical Architecture Access

Slotted Pages (4)

Slot:

offset start of the data item
length length of the data item

Special cases:
• free slot: offset = 0, length = 0
• zero-length data item: offset > 0, length = 0

11 / 80

The Classical Architecture Access

Slotted Pages (5)

Problem:
1. transaction T1 updates data item i1 on page P1 to a very small size

(or deletes i1)
2. transaction T2 inserts a new item i2 on page P1, filling P1 up
3. transaction T2 commits
4. transaction T1 aborts (or T3 updates i1 again to a larger size)

TID concept ⇒ create an indirection
but where to put it? Would have to move i1 and i2.

12 / 80

The Classical Architecture Access

Slotted Pages (6)

Logic is much simpler if we can store the TID inside the slot
• borrow a bit from the TID (or have some other way to detect invalid TIDs)
• if the slot contains a valid TID, the entry is redirected
• otherwise, it is a regular slot

Depending on page size size, this wastes a bit space.
But greatly simplifies the slotted page implementation.

13 / 80

The Classical Architecture Access

Slotted Pages (7)

One possible slot implementation:

T S O O O L L L

1. if T 6= 11111111b, the slot points to another record
2. otherwise the record is on the current page

2.1 if S = 0, the item is at offset O, with length L
2.2 otherwise, the item was moved from another page

I it is also placed at offset O, with length L
I but the first 8 bytes contain the original TID

The original TID is important for scanning.

14 / 80

The Classical Architecture Access

Record Layout

The tuples have to be materialized somehow.

One possibility: serialize the attributes

integer integer length string integer length string

Problem: accessing an attribute is O(n) in worst case.

15 / 80

The Classical Architecture Access

Record Layout (2)

It is better to store offset instead of lengths

integer integer end stringinteger end string

• splits tuple into two parts
• fixed size header and variable size tail
• header contains pointers into the tail
• allows for accessing any attribute in O(1)

16 / 80

The Classical Architecture Access

Record Layout (3)

For performance reasons one should even reorder the attributes

• split strings into length and data
• re-order attributes by decreasing alignment
• place variable-length data at the end
• variable length has alignment 1

Gives better performance without wasting any space on padding.

17 / 80

The Classical Architecture Access

NULL Values
What about NULL values?

• represent an unknown/unspecified value
• is a special value outside the regular domain

Multiple ways to store it
• either pick an invalid value (not always possible)
• or use a separate NULL bit

NULL bits allow for omitting NULL values from the tuple
• complicates the access logic
• but saves space
• useful if NULL values are common.

18 / 80

The Classical Architecture Access

Compression

Some DBMS apply compression techniques to the tuples
• most of the time, compression is not added to save space!
• disk is cheap after all
• compression is used to improve performance!
• reducing the size reduces the bandwidth consumption

Some people really care about space consumption, of course.
But outside embedded DBMSs it is usually an afterthought.

19 / 80

The Classical Architecture Access

Compression (2)

What to compress?
• the larger data compressed chunk, the better the compression
• but: DBMS has to handle updates
• usually rules out page-wise compression
• individual tuples can be compressed more easily

How to compress?
• general purpose compression like LZ77 too expensive
• compression is about performance, after all
• most system use special-purpose compression
• byte-wise to keep performance reasonable

20 / 80

The Classical Architecture Access

Compression (3)

A useful technique for integer: variable length encoding

length (2 bits) data (0-4 bytes)

Variant A Variant B
00 1 byte value NULL, 0 bytes value
01 2 bytes value 1 byte value
10 3 bytes value 2 bytes value
11 4 bytes value 4 bytes value

21 / 80

The Classical Architecture Access

Compression (4)

The length is fixed length, the compressed data is variable length

fixed fixed len1len2len3len4 comp1 comp2 comp4

Problem: locating compressed attributes
• depends on preceding compression
• would require decompressing all previous entries
• not too bad, but can be sped up
• use a lookup tuples per length byte

22 / 80

The Classical Architecture Access

Compression (5)
Another popular technique: dictionary compression

Dictionary:
1 Berlin
2 München
3 Passauerstraße
... ...

Tuples:

city street number
1 3 5
2 3 7
...

• stores strings in a dictionary
• stores only the string id in the tuple
• factors out common strings
• can greatly reduce the data size
• can be combined with integer compression

23 / 80

The Classical Architecture Access

Long Records

Data is organized in pages
• many reasons for this, including recovery, buffer management, etc.
• a tuple must fit on a single page
• limits the maximum size of a tuple

What about large tuples?
• sometimes the user wants to store something large
• e.g., embed a document
• SQL supports this via BLOB/CLOB

Requires some mechanism so handle these large records.

24 / 80

The Classical Architecture Access

Long Records (2)

Simply spanning pages is not a good idea:
• must read an unbounded number of pages to access a tuple
• greatly complicates buffering
• a tuple might not even fit into main memory!
• updates that change the size are complicated
• intermediate results during query processing

Instead, keep the main tuple size down
• BLOBS/CLOBS are stored separate from the tuple
• tuple only contains a pointer
• increases the costs of accessing the BLOB, but simplifies tuple processing

25 / 80

The Classical Architecture Access

Long Records (3)
BLOBs can be stored in a B-Tree like fashion

100,000 250,000

40,000 100,000 50,000 110,000 150,000

• (relative) offset is search key
• allows for accessing and updating arbitrary parts
• very flexible and powerful
• but might be over-sophisticated
• SQL does not offer this interface anyway

26 / 80

The Classical Architecture Access

Long Records (4)
Using an extent list is simpler

hash length (page/#) (page/#)chain

4711 250,000 13/3 90/2

13 14 15 90 91

• real tuple points to BLOB tuple
• BLOB tuple contains a header and an extent list
• in worst case the extent list is chained, but should rarely happen
• extent list only allows for manipulating the BLOB in one piece
• but this is usually good enough
• hash and length to speed up comparisons

27 / 80

The Classical Architecture Access

Long Records (5)

It makes sense to optimize for short BLOBs/CLOBs
• users misuse BLOBs/CLOBs
• they use CLOB to avoid specifying a maximum length
• but most CLOBs are short in reality
• on the other hand some BLOBs are really huge
• the DBMS cannot know
• so BLOBs can be arbitrary large, but short BLOBs should be more efficient

Approach:
1. BLOBs smaller than TID are encoded in BLOB TID
2. BLOBs smaller than page size are stored in BLOB record
3. only larger BLOBs use the full mechanism

28 / 80

The Classical Architecture Access

Index Structures

Data is often indexed
• speeds up lookup
• de-facto mandatory for primary keys
• useful for selective queries

Two important access classes:
• point queries

find all tuples with a given value (might be a compound)
• range queries

find all tuples within a given value range

Support for more complex predicates is rare.

29 / 80

The Classical Architecture Access

B-Tree

B-Trees (including variants) are the dominant data structure for external storage.

Classical definition:
• a B-Tree has a degree k
• each node except the root has at least k entries
• each node has at most 2k entries
• all leaf nodes are at the same depth

30 / 80

The Classical Architecture Access

B-Tree (2)
Example:

B-Tree
with k = 2, h = 3K47

K25 K36

K02 K03 K16 K41 K43

K26 K29 K35 K51 K53 K55 K58 K78 K86

K67 K88

K91 K95

The • is the TID of the corresponding tuple.

31 / 80

The Classical Architecture Access

B+-Tree
Most DBMS use the B+-Tree variant:

B+-Tree
with k = 2, h = 3K49

K25 K35

K02 K03 K16 K36 K41

K26 K29 K35 K51 K53 K55 K58 K67 K78

K58 K90

K91 K95K25 K43 K47

K86 K88

• key+TID only in leaf nodes
• inner nodes contain separators, might or might not occur in the data
• increases the fanout of inner nodes
• simplifies the B-Tree logic

32 / 80

The Classical Architecture Access

Page Structure
Inner Node:

LSN for recovery
upper page of right-most child
count number of entries
key/child key/child-page pairs
... ...

Leaf Node:
LSN for recovery
˜0 leaf node marker
next next leaf node
count number of entries
key/tid key/TID pairs
... ...

Similar to slotted pages for variable keys.

33 / 80

The Classical Architecture Access

Operations - Lookup

Lookup a search key within the B+-tree:
1. start with the root node
2. is the current node a leaf?

I if yes, return the current page (locate the entry on it)
3. find the first entry ≥ search key (binary search)
4. if no such entry is found, go the upper, otherwise go to the corresponding page
5. continue with 2

Lookup can return a concrete entry or just the position on the appropriate leaf page (depends
on usage pattern).

34 / 80

The Classical Architecture Access

Operations - Insert

Insert a new entry into the B+-tree:
1. lookup the appropriate leaf page
2. is there free space on the leaf?

I if yes, insert entry and stop
3. split the leaf into two, insert entry on proper side
4. insert maximum of left page as separator into parent
5. if the parent overflow, split parent and continue with 4
6. create a new root if needed

35 / 80

The Classical Architecture Access

Operations - Delete

Remove an entry from the B+-tree:
1. lookup the appropriate leaf page
2. remove the entry from the current page
3. is the current page at least half full?

I if yes, stop
4. is the neighboring page more than half full?

I if yes, balance both pages, update separator, and stop
5. merge neighboring page into current page
6. remove the separator from the parent, continue with 3

Most systems simplify the delete logic and accept under-full pages.

36 / 80

The Classical Architecture Access

Operations - Range Scan

Read all entries within a (start,stop(range
1. lookup the start value
2. enumerate subsequent entries on the current page
3. use the next pointer to find the next page
4. stop once the stop value is reached

Very efficient, in particular if leaf nodes are consecutive on disk.

37 / 80

The Classical Architecture Access

Indexing Multiple Attribute
Compound keys are compared lexicographically:

(a1, a2) < (b1, b2)⇔ (a1 < b1) ∨ (a1 = b1 ∧ a2 < b2)

Otherwise compound keys are quite similar to atomic keys.

• when all attributes are bound, difference is minor
• if only a prefix is bound, the suffix is specified as range

a1 = 5⇒ (5,−∞) ≤ (a1, a2) ≤ (5,∞)

38 / 80

The Classical Architecture Access

Indexing Non-Unique Values
Users can create indexes on any attributes

• not necessarily unique
• in fact might contain millions of duplicates
• main problem: index maintenance
• how to locate a tuple for update/delete?

Solution: only index unique values
• append TID to non-key attributes
• TID works as a tie-breaker
• increases space consumption a bit
• but guarantees O(log n) access

39 / 80

The Classical Architecture Access

Concurrent Access

How to handle concurrent access?
• simple page locking/latching is not enough
• will protect against “simple” (single page) changes
• but pages depend upon each other (pointers)

The classical technique is lock coupling
• a thread latches both the page and its parent page
• i.e., latch the root, latch the first level, release the root, latch the second level etc.
• prevents conflicts, as pages can only be split when the parent is latched
• no deadlocks, as the latches are ordered

40 / 80

The Classical Architecture Access

Concurrent Access (2)

But what about inserts?
• when a leaf is split, the separator is propagated up
• might go up to the root
• but we have only locked one parent

Lock coupling up is not an option (deadlocks)

One way around it: “safe” inner pages
• while going down, check if the inner page has enough space

for one more entry
• if not, split it
• ensures that we never go up more than one step

41 / 80

The Classical Architecture Access

Concurrent Access (3)

Alternative: restart
1. first try to insert using simple lock coupling
2. if we do not have to split the inner node everything is fine
3. otherwise release all latches
4. restart the operation, but now keep all latches up to the root
5. all operations can be executed safely now

• greatly reduces concurrency
• but should happen rarely
• simpler to implement, in particular for variable-length keys

42 / 80

The Classical Architecture Access

B-link Trees

• lock coupling latches two nodes at a time
• seems cheap, but effectively it locks hundreds (all children of the parent node)
• it would be nicer to lock only one page

For pure lookups that is possible when adding next pointers to inner nodes:
1. latch a page, find the child page, release the page
2. latch the child page
3. might have been split in between, check neighboring pages

Requires some care when deleting.

43 / 80

The Classical Architecture Access

Bulkloading

How to build an B-tree for a large amount of data?
• repeated inserts are inefficient
• a lot of random I/O
• pages are touched multiple times

Instead: sort the data before inserting
• now inserts become more efficient
• good locality

But we can do even better.

44 / 80

The Classical Architecture Access

Bulkloading (2)

To construct an initial B+-Tree:
1. sort the data
2. spool data into leaf pages

I fill the pages completely
I remember largest value (separator) in each page in a temp file

3. spool the separators into inner pages
I fill the pages completely
I remember largest value (separator) in each page in a temp file

4. repeat 3 until only one inner page remains (root)

Produces a compact, clustered B+-tree.

45 / 80

The Classical Architecture Access

Bulkloading (3)

Existing B+-trees are a bit more problematic, but can still be updated in bulk
1. sort the data
2. merge the data into the existing tree
3. form pages, remember separators, etc.
4. start a new chunk once a page would contain only entries from the original tree
5. merge in the separators as above

Minimizes I/O, but destroys clustering. Usually a good compromise.

46 / 80

The Classical Architecture Access

Partitioned B-Tree
Bulk operations are fine if they are rare, but they are disruptive

• usually the B-tree has to be take offline
• the new cannot be queries easily
• existing queries must be halted

Basic idea: partition the B-tree
• add an artificial column in front
• creates separate partitions with the B-tree

Partition no. 0 3 4

47 / 80

The Classical Architecture Access

Partitioned B-Tree (2)

Benefits:
• partitions are largely independent of each other
• one can append to the “rightmost” partition without disrupting the rest
• the index stays always online
• partitions can be merged lazily
• merge only when beneficial

Drawbacks:
• no “global” order any more
• lookups have to access all partitions
• deletion is non-trivial (“anti-matter”)

48 / 80

The Classical Architecture Access

Variable Length Records
So far B-trees are defined for fixed-length keys

• all nodes have between k and 2k entries
• simplifies life considerably
• e.g., we “know” if an inner node is full

But in reality, entries can be variable length
• strings
• variable-length encoding, NULL
• compounds of these

Usually keys are opaque. The B-tree does not understand the structure. (One could special-case
single strings).

49 / 80

The Classical Architecture Access

Variable Length Records (2)
Variable length keys are problematic. Consider the following example:

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh
i jjjjjjjj k llllllll m nnnnnnnn o

All entries have either length 1 or length 8.

49 / 80

The Classical Architecture Access

Variable Length Records (2)
Variable length keys are problematic. Consider the following example:

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh
i jjjjjjjj k llllllll m nnnnnnnn o

Variant A:

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh i jjjjjjjj k llllllll m nnnnnnnn o

bbbbbbbb ffffffff jjjjjjjj nnnnnnnn

dddddddd jjjjjjjj

hhhhhhhh

Height 4

49 / 80

The Classical Architecture Access

Variable Length Records (2)
Variable length keys are problematic. Consider the following example:

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh
i jjjjjjjj k llllllll m nnnnnnnn o

Variant B:

a dddddddd ebbbbbbbb c ffffffff g hhhhhhhh i jjjjjjjj k llllllll m nnnnnnnn o

a c e g i k m

Height 2 (ignores space consumption for pointers)

50 / 80

The Classical Architecture Access

Variable Length Records (3)

Separator choice is crucial!
• affects fanout and space consumption
• all standard guarantees are off if normal algorithms are used for variable-length keys

Non-trivial issue
• greedy algorithms exist for the bulkloading case
• idea: recursively pick the smallest value as separator such that the resulting group sizes

vary within a constant factor
• can also be extended to the dynamic case (rebuild as need), but non-trivial
• difficult, but gives good amortized bounds

51 / 80

The Classical Architecture Access

Variable Length Records (4)

Minimal support: modify the split logic
1. when a page overflows, build the sorted list of all values
2. instead of picking the median value as separator, pick the smallest value within 20% around

the median
3. for ties, prefer values closer to the median

• pragmatic solution, but not optimal
• can still degenerate
• avoids the worst mistakes

52 / 80

The Classical Architecture Access

Prefix B+-tree

A B+-tree can contain separators that do not occur in the data

We can use this to save space:

aaaa bbbb eeee ffff

bbbb

aaaa bbbb eeee ffff

c

• choose the smallest possible separator.
• no change to the lookup logic required

53 / 80

The Classical Architecture Access

Prefix B+-tree (2)
We can do even better by factoring out a common prefix:

http://www. google.com sigmod.org

• only one prefix per page
• the change to the lookup logic is minor
• the lookup key itself is adjusted
• sometimes only inner nodes, to keep scans cheap

54 / 80

The Classical Architecture Access

Prefix B+-tree (3)

The lexicographic sort order makes prefix compression attractive:
• neighboring entries tend to differ only at the end
• a common prefix occurs very frequently
• not only for strings, also for compound keys etc.
• in particular important if partitioned B-trees
• with big-endian ordering any value might get compressed

55 / 80

The Classical Architecture Access

Hash-Based Indexes

In main memory a hash table is usually faster than a search tree
• compute a hash-value h, compute a slot (e.g., s = hmod|T |, access the table T [s]
• promises O(1) access
• (if everything works out fine)

A DBMS could profit from this, too. But:
• random I/O is very expensive on disk
• collisions are problematic (e.g., when chaining)
• rehashing is prohibitive

But there are hashing schemes for external storage.

56 / 80

The Classical Architecture Access

Hash-Based Indexes (2)
Hash indexes are not as versatile as tree indexes:

• only support point query
• range queries are very problematic
• order preserving hashing exists, but is questionable
• quality of the hash function is critical

As a consequence, mainly useful for primary key indexes
• unique keys
• key collisions would be very dangerous
• how to delete a tuple with an indexes attribute of there are 1 million other tuples with the

same value?
• can be fixed by separate indexing within duplicate values (complicated)

57 / 80

The Classical Architecture Access

Extendible Hashing
A central problem of hashing schemes on disk are the table size

• hard to known beforehand
• too small ⇒ too many collisions
• chaining is expensive on disk
• too large ⇒ waste of space
• would have to grow over time

Traditional solution for main memory: rehashing
• re-map items to hash table sizes
• involves touching every item
• poor locality, a lot of random I/O
• prohibitive for disk

Idea: Allow for growing the hash table without rehashing by sharing table entries.

58 / 80

The Classical Architecture Access

Extendible Hashing (2)

• hash table size is always a power of 2
• hash table points to buckets (pages)
• multiple table entries can point to the same bucket
• but always systematically (buddy systems)
• thus, the “depth” of the buckets varies

A B0
1

59 / 80

The Classical Architecture Access

Extendible Hashing (3)

• when a bucket overflows, it is split
• if not a maximum depth, the depth is increased
• achieved by de-sharing slot entries
• one more bit becomes relevant
• items are distributed according to hash values

A 0
1

B C

60 / 80

The Classical Architecture Access

Extendible Hashing (4)

• if the depth cannot be increased, the table is doubled
• other buckets are unaffected
• entries are duplicated, resulting in new sharing
• new buckets are linked as usual

A 00
01

B 10
11 C D

61 / 80

The Classical Architecture Access

Extendible Hashing (5)

• once a maximum table size is reached start chaining
• ideally occurs rarely, traversing chains is expensive
• optionally one can balance chaining vs. table growth via load factor

A 00
01

B 10
11 C D E

62 / 80

The Classical Architecture Access

Extendible Hashing (6)

Advantages:
• ideally exactly two page accesses per lookup
• less than in a B-tree
• table can grow independent of existing buckets
• no need for re-hashing

Disadvantages:
• table growth is a very invasive operation
• large steps in space consumption
• what about hash collisions?
• same care is needed to avoid extreme table growth

63 / 80

The Classical Architecture Access

Linear Hashing

• linear hashing avoids the exponential directory growth
• it starts with a regular hash table with buckets

A B0
1

C D

64 / 80

The Classical Architecture Access

Linear Hashing (2)

• when a bucket overflows it uses chaining
• degrades performance, but ok if the chain is short

A B0
1

C D
E

65 / 80

The Classical Architecture Access

Linear Hashing (3)

• triggered by load factor or chain length a bucket is split
• chains are re-integrated into the bucket
• only one (i.e., the next) bucket is split, the rest remains untouched
• the range of buckets [1, k[has been split, the range [k, n] is unsplit

(the range [n, n + 2k − 2[contains the second halves)
• the directory grows page by page

B 00
1

C D10

 A E

66 / 80

The Classical Architecture Access

Linear Hashing (3)

• more buckets are split on demand
• at some point all buckets have been split once
• then the cycle starts anew

B 00
01

C F10

 A E

D

11

67 / 80

The Classical Architecture Access

Linear Hashing (4)

Advantages:
• avoids the disruptive directory growth of EH
• index grows linearly
• amortized the index structure is nice

Disadvantages:
• chaining hurts performance
• it can take a while until chains are re-integrated
• page allocation for the directory problematic

68 / 80

The Classical Architecture Access

Multi-Level Extendible Hashing
For uniform distributions the EH directory is nice:

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

But data skew causes poor space utilization
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

The directory size explodes.
• skew is an unfortunate reality

69 / 80

The Classical Architecture Access

Multi-Level Extendible Hashing (2)
Basic idea: construct a tree of hash tables

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1

• the next level uses the next k bits
• node size is page size
• additional page faults, but fanout is very large
• only the heavily used parts get additional levels

70 / 80

The Classical Architecture Access

Multi-Level Extendible Hashing (2)
Problem: space utilization

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

• now uniform is the worst case
• all buckets will overflow at the same time
• second-level hash tables will be nearly empty
• leads to poor space utilization (and poor performance)

71 / 80

The Classical Architecture Access

Multi-Level Extendible Hashing (3)
Instead: share inner page between buddies

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 0 0 0 0 0 0 01 1 1 1 1 1 1 1

72 / 80

The Classical Architecture Access

Multi-Level Extendible Hashing (4)
We can get additional bits by splitting the inner page

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

73 / 80

The Classical Architecture Access

Multi-Level Extendible Hashing (5)
In fact here we can even move buddies up again

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

74 / 80

The Classical Architecture Access

Multi-Level Extendible Hashing (6)

• uses a buddy system (boundaries are powers of 2)
• bit width etc. derived implicitly
• pointer structure contains enough information
• results in large fanout

It has some nice properties
• naturally adapts to data skew
• directory growth is not a problem
• but additional page accesses
• tree is very shallow, however

75 / 80

The Classical Architecture Access

Bitmap Indexes

Classical indexes do not handle unselective predicates very well
• large fraction of tuples is returned
• index access is more expensive than a table scan
• but a combination of predicates might be selective
• index intersection would help, but is still expensive
• predicates might also contain disjunctions etc.

Expample: σ(a=2∨b=5)∧(c 6=1)(R)

Could be answered by B-trees, but often not very efficient.

76 / 80

The Classical Architecture Access

Bitmap Indexes (2)

When the attribute domain is small, it can be indexed using
bitmap indexes

a=2
tid1 1
tid2 0
tid3 0
tid4 1
... ...

a=3
tid1 0
tid2 1
tid3 0
tid4 0
... ...

...

• one bitmap for every attribute value
• index intersections become bit operations
• very efficient
• remaining ones indicate matching tuples

77 / 80

The Classical Architecture Access

Bitmap Indexes (3)

• bitmap indexes are compact (one bit per tuple)
• (plus tid directory if needed)
• and are usually sparse
• can be compressed very well
• run-length encoding in particular attractive
• intersection can be performed on the compressed form

Often outperforms other indexes for unselective attributes.

78 / 80

The Classical Architecture Access

Small Materialized Aggregates

• data is usually stored in physical chunks
• pages, or chunks of pages
• clustering usually insertion order
• older chunks tend to remain static
• we can cheaply pre-computed (i.e., cache) some info

Some useful aggregates:
min max sum count
10 20 1500 1000

79 / 80

The Classical Architecture Access

Small Materialized Aggregates (2)

Before scanning a chunk, we examine the aggregate
• some predicates can be evaluated on the pure aggregate
• only for the current chunk, of course
• in particular skipping chunks is often possible
• aggregates can be directly re-used
• greatly saves I/O

What about updates?
• small materialized aggregates are like a cache
• can be updated eagerly or lazily
• an invalidation flag is enough

80 / 80

The Classical Architecture Access

Multi-Dimensional Indexing

• huge field
• R-tree, grid file, pyramid schema, index intersection, ...
• hundreds of approaches
• we do not discuss them here

But: remember the curse of dimensionality
• we can only index a relative low number of dimensions
• for higher dimensions, range queries/proximity queries fail
• scan becomes faster than index structures

	The Classical Architecture
	Access

