
Organization

Organization

0



Organization

Course Goals

Learn to write good C++

• Basic syntax
• Common idioms and best practices

Learn to implement large systems with C++

• C++ standard library and Linux ecosystem
• Tools and techniques (building, debugging, etc.)

Learn to write high-performance code with C++

• Multithreading and synchronization
• Performance pitfalls

1



Organization

Formal Prerequisites

Knowledge equivalent to the lectures
• Introduction to Informatics 1 (IN0001)
• Fundamentals of Programming (IN0002)
• Fundamentals of Algorithms and Data Structures (IN0007)

Additional formal prerequisites (B.Sc. Informatics)
• Introduction to Computer Architecture (IN0004)
• Basic Principles: Operating Systems and System Software (IN0009)

Additional formal prerequisites (B.Sc. Games Engineering)
• Operating Systems and Hardware oriented Programming for Games (IN0034)

2



Organization

Practical Prerequisites

Practical prerequisites
• No previous experience with C or C++ required
• Familiarity with another general-purpose programming language

Operating System
• Working Linux operating system (e.g. recent Ubuntu)

• Ideally with root access
• Basic experience with Linux (in particular with shell)
• You are free to use your favorite OS, we only support Linux

• Our CI server runs Linux
• It will run automated tests on your submissions

3



Organization

Lecture & Tutorial

• Sessions
• Tuesday, 12:00 – 14:00, MI 02.11.018
• Friday, 10:00 – 12:00, MI 02.11.018

• Roughly 50% lectures and 50% tutorials
• Lectures cover new content
• Tutorials discuss assignments and any questions
• Slides on https://db.in.tum.de/teaching/ss23/c++praktikum

• Attendance is mandatory
• Announcements on the website and through Mattermost

4

https://db.in.tum.de/teaching/ss23/c++praktikum


Organization

Preliminary Schedule

Day Date Session
Tue 18.04.23 Lecture
Fri 21.04.23 Lecture
Tue 25.04.23 Lecture
Fri 28.04.23 Lecture
Tue 02.05.23 Tutorial
Fri 05.05.23 Lecture
Tue 09.05.23 Tutorial
Fri 12.05.23 Lecture
Tue 16.05.23 Lecture
Fri 19.05.23 Tutorial
Tue 23.05.23 Lecture
Fri 26.05.23 Tutorial
Tue 30.05.23 Holiday
Fri 02.06.23 Lecture

Day Date Session
Tue 06.06.23 Tutorial
Fri 09.06.23 Lecture
Tue 13.06.23 Lecture
Fri 16.06.23 Tutorial
Tue 20.06.23 Lecture
Fri 23.06.23 Tutorial
Tue 27.06.23 TBD (Lecture)
Fri 30.06.23 TBD (Lecture)
Tue 04.07.23 TBD (Tutorial)
Fri 07.07.23 TBD (Lecture)
Tue 11.07.23 TBD (Tutorial)
Fri 14.07.23 TBD (Lecture)
Tue 18.07.23 TBD (Tutorial)
Fri 21.07.23 TBD (Lecture)

5



Organization

Assignments

• Brief non-coding quiz at the beginning of random lectures or tutorials

• Weekly programming assignments published after each lecture
• No teams
• Due approximately 9 days later (details published on each assignment)
• Managed through our GitLab (more details in first tutorial)
• Deadline is enforced automatically (no exceptions)

• Final (larger) project at end of the semester
• No teams
• Published mid-June
• Due 13.08.2023 at 23:59 (end of examination period)
• Managed through our GitLab (more details in first tutorial)
• Deadline is enforced automatically (no exceptions)

6



Organization

Grading

Grading system
• Quizzes: Varying number of points
• Weekly assignments: Varying number of points depending on workload
• Final project

Final grade consists of
• ≈ 60% programming assignments
• ≈ 30% final project
• ≈ 10% quizzes

7



Organization

Literature

Primary
• C++ Reference Documentation. (https://en.cppreference.com/)
• Lippman, 2013. C++ Primer (5th edition). Only covers C++11.
• Stroustrup, 2013. The C++ Programming Language (4th edition). Only

covers C++11.
• Meyers, 2015. Effective Modern C++. 42 specific ways to improve your use

of C++11 and C++14..

Supplementary
• Aho, Lam, Sethi & Ullman, 2007. Compilers. Principles, Techniques & Tools

(2nd edition).
• Tanenbaum, 2006. Structured Computer Organization (5th edition).

8

https://en.cppreference.com/


Organization

Contact

Important links
• Website: https://db.in.tum.de/teaching/ss23/c++praktikum
• E-Mail: riegerm@in.tum.de engelke@in.tum.de lehners@in.tum.de
• GitLab: https://gitlab.db.in.tum.de/cpplab23
• Mattermost: https://mattermost.db.in.tum.de/cpplab23

9

https://db.in.tum.de/teaching/ss23/c++praktikum
mailto:riegerm@in.tum.de
mailto:engelke@in.tum.de
mailto:lehners@in.tum.de
https://gitlab.db.in.tum.de/cpplab23
https://mattermost.db.in.tum.de/cpplab23


Introduction

Introduction

10



Introduction

What is C++?

Multi-paradigm general-purpose programming language
• Imperative programming
• Object-oriented programming
• Generic programming
• Functional programming

Key characteristics
• Compiled language
• Statically typed language
• Facilities for low-level programming

11



Introduction

A Brief History of C++

Initial development
• Bjarne Stroustrup at Bell Labs (since 1979)
• In large parts based on C
• Inspirations from Simula67 (classes) and Algol68 (operator overloading)

First ISO standardization in 1998 (C++98)
• Further amendments in following years (C++03, C++11, C++14, C++17)
• Current standard: C++20
• Next standard: C++23

12



Introduction

Why Use C++?

Performance
• Flexible level of abstraction (very low-level to very high-level)
• High-performance even for user-defined types
• Direct mapping of hardware capabilities
• Zero-overhead rule: “What you don’t use, you don’t pay for.” (Bjarne

Stroustrup)

Flexibility
• Choose suitable programming paradigm
• Comprehensive ecosystem (tool chains & libraries)
• Scales easily to very large systems (with some discipline)
• Interoperability with other programming languages (especially C)

13



Background

Background

14



Background Central Processing Unit

The Central Processing Unit (1)

“Brains” of the computer
• Execute programs stored in main memory
• Fetch, examine and execute instructions

Connected to other components by a bus
• Collection of parallel wires for transmitting signals
• External (inter-device) and internal (intra-device) buses

15



Background Central Processing Unit

The Central Processing Unit (2)

Control
Unit

Arithmetic
Logical Unit

(ALU)

Registers

... ... Main
Memory

Bus

Central Processing Unit

16



Background Central Processing Unit

Components of a CPU

Control Unit
• Fetch instructions from memory and determine their type
• Orchestrate other components

Arithmetic Logical Unit (ALU)
• Perform operations (e.g. addition, logical AND, ...)
• “Workhorse” of the CPU

Registers
• Small, high-speed memory with fixed size and function
• Temporary results and control information (one number / register)
• Program Counter (PC): Next instruction to be fetched
• Instruction Register (IR): Instruction currently being executed

17



Background Central Processing Unit

Data Path (1)

ALU

A

A + B

B

Registers

ALU Input Registers
ALU Input Bus

ALU Output Register

A
B

A + B

18



Background Central Processing Unit

Data Path (2)

Internal organization of a typical von Neumann CPU
• Registers feed two ALU input registers
• ALU input registers hold data while ALU performs operations
• ALU stores result in output register
• ALU output register can be stored back in register

⇒ Data Path Cycle
• Central to most CPUs (in particular x86)
• Fundamentally determines capabilities and speed of a CPU

19



Background Central Processing Unit

Instruction Categories

Register-register instructions
• Fetch two operands from registers into ALU input registers
• Perform some computation on values
• Store result back into one of the registers
• Low latency, high throughput

Register-memory instructions
• Fetch memory words into registers
• Store registers into memory words
• Potentially incur high latency and stall the CPU

20



Background Central Processing Unit

Fetch-Decode-Execute Cycle

Rough steps to execute an instruction
1. Load the next instruction from memory into the instruction register
2. Update the program counter to point the the next instruction
3. Determine the type of the current instruction
4. Determine the location of memory words accessed by the instruction
5. If required, load the memory words into CPU registers
6. Execute the instruction
7. Continue at step 1

Central to the operation of all computers

21



Background Central Processing Unit

Execution vs. Interpretation

We do not have to implement the fetch-decode-execute cycle in hardware
• Easy to write an interpreter in software (or some hybrid)
• Break each instruction into small steps (microoperations, or µops)
• Microoperations can be executed in hardware

Major implications for computer organization and design
• Interpreter requires much simpler hardware
• Easy to maintain backward compatibility
• Historically led to interpreter-based microprocessors with very large

instruction sets

22



Background Central Processing Unit

RISC vs. CISC

“Complex” Instruction Set Computer (CISC)
• Large instruction set

“Reduced” Instruction Set Computer (RISC)
• Simple instruction set executed in hardware
• Easier to implement efficiently than CISC architectures

CISC architectures still dominate the market
• Backward compatibility is paramount for commercial customers
• Modern CPUs (RISC and CISC): RISC core for most common instructions

23



Background Central Processing Unit

Instruction-Level Parallelism

Just increasing CPU clock speed is not enough
• Fetching instructions from memory becomes a major bottleneck
• Increase instruction throughput by parallel execution

Instruction Prefetching
• Fetch instructions from memory in advance
• Hold prefetched instructions in buffer for fast access
• Breaks instruction execution into fetching and actual execution

Pipelining
• Divide instruction execution into many steps
• Each step handled in parallel by dedicated piece of hardware
• Central to modern CPUs

24



Background Central Processing Unit

Pipelining (1)

Instruction
Execution

S4
Write
Back

S5

Frontend Backend

Instruction
Fetch

S1
Instruction

Decode

S2
Operand

Fetch

S3

S1

S2

S3

S4

S5

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

1 2 3 4 5Time
25



Background Central Processing Unit

Pipelining (2)

CPU front-end
• Fetch instructions from memory
• Decode assembly instructions to microoperations
• Provide stream of work to pipeline back-end (Skylake: 6 µops / cycle)
• Requires branch prediction (implemented in special hardware)

CPU back-end
• Execute microoperations out-of-order as soon as possible
• Complex bookkeeping required
• Microoperations are run on execution units (e.g. ALU, FPU)

26



Background Central Processing Unit

Superscalar Architectures

Idea: Execute more than one instruction per cycle
• Parallel instructions must not conflict over resources
• Parallel instructions must be independent
• Incurs hardware replication

Superscalar architectures
• Fetch stage is typically much faster than execution
• Issue multiple instructions per clock cycle in a single pipeline
• Replicate (some) execution units in execution stage to keep up with fetch

stage

27



Background Central Processing Unit

Branch Prediction and Out-Of-Order Execution

The CPU front-end requires branch prediction
• “Guess” which branches will be taken e.g. in if-statements
• Speculatively issue corresponding microoperations to CPU back-end
• Discard results if prediction did not come true
• Can heavily affect program performance

Microoperations may be executed out-of-order by the CPU back-end
• Order does not necessarily match instruction order in assembly
• Memory accesses may be performed in different order
• Instructions commit/retire in order
• Superscalar architectures require independent instructions for maximum

performance

28



Background Central Processing Unit

Multiprocessors

Include multiple CPUs in a system
• Shared access to main memory over common bus
• Requires coordination in software to avoid conflicts
• CPU-local caches to reduce bus contention
• CPU-local caches require highly sophisticated cache-coherency protocols

29



Background Primary Memory

Main Memory

Main memory provides storage for data and programs
• Information is stored in binary units (bits)
• Bits are represented by values of a measurable quantity (e.g. voltage)
• More complex data types are translated into suitable binary representation

(e.g. two’s complement for integers, IEEE 754 for floating point numbers, ...)
• Main memory is (much) slower but (much) larger than registers

30



Background Primary Memory

Memory Addresses (1)

Memory consists of a number of cells
• All cells contain the same number of bits
• Each cell is assigned a unique number (its address)
• Logically adjacent cells have consecutive addresses
• De-facto standard: 1 byte per cell ⇒ byte-addressable memory (with some

caveats, more details later)
• Usually 1 byte is defined to consist of 8 bits

Instructions typically operate on entire groups of bytes (memory words)
• 32-bit architecture: 4 bytes / word
• 64-bit architecture: 8 bytes / word
• Memory accesses commonly need to be aligned to word boundaries

Addresses are memory words themselves
• Addresses can be stored in memory or registers just like data
• Word size determines the maximum amount of addressable memory

31



Background Primary Memory

Memory Addresses (2)

Example: two-byte addresses, one-byte cells

0000
0008
0010

01 02 03 04 05 06 0700
48 65 6c 6c 6f 20 57 6f
72 6c 64 21 20 49 20 6c
69 6b 65 20 43 2b 2b 21Ad

dr
es

s

Address

0000
0008
0010

01 02 03 04 05 06 0700

Ad
dr

es
s

Address

H e l l o W o
r l d ! I l
i k e C + + !

Hexadecimal

ASCII

32



Background Primary Memory

Byte Ordering (1)

ASCII requires just one byte per character
• Fits into a single memory cell
• What about data spanning multiple cells (e.g. 32-bit integers)?

Bytes of wider data types can be ordered differently (endianness)
• Most significant byte first ⇒ big-endian
• Least significant byte first ⇒ little-endian

Most current architectures are little-endian
• But big-endian architectures such as PowerPC still exist (although many

support little-endian mode)
• Has to be taken into account for low-level memory manipulation

33



Background Primary Memory

Byte Ordering (2)

Big-endian byte ordering can lead to unexpected results
• Conversions between word-sizes need care and address calculations

0000 00 2a
00 01 02 03

32-bit integer
at address 00:

4210

16-bit integer
at address 00:

010

00 2a 00 00
00 01 02 03

16-bit integer
at address 00:

4210

32-bit integer
at address 00:
2,752,51210

34



Background Primary Memory

Byte Ordering (3)

Little-endian byte ordering can lead to unexpected results
• Mainly because we are used to reading from left to right

0000 00
00 01 02 03

00 01 00 00
00 02 00 00
01 00 00 00
01 01 00 00

00

000001 02

4-byte words in 
byte-wise lexicographical 

order

010
25610
51210

110
25710
51310

interpreted as 
little-endian

32-bit integers

35



Background Primary Memory

Cache Memory (1)

Main memory has substantial latency
• Usually 10s of nanoseconds
• Memory accesses may cause CPU to stall for multiple cycles

Memory accesses very commonly exhibit spatial and temporal locality
• When a memory load is issued adjacent words are likely accessed too
• The same memory word is likely to be accessed multiple times within a small

number of instructions
• Locality can be exploited to hide main memory latency

36



Background Primary Memory

Cache Memory (2)

Introduce small but fast cache between CPU and main memory
• CPU transparently keeps recently accessed data in cache (temporal locality)
• Memory is divided into blocks (cache lines)
• Whenever a memory cell is referenced, load the entire corresponding cache

line into the cache (spatial locality)
• Requires specialized eviction strategy

Intel CPUs
• 3 caches (L1, L2, L3) with increasing size and latency
• Caches are inclusive (i.e. L1 is replicated within L2, and L2 within L3)
• 64 byte cache lines

37



Background Primary Memory

Cache Memory (3)

Typical cache hierarchy on Intel CPUs

L1-I L1-D
Unified L2

Unified L3

CPU 1

L1-I L1-D
Unified L2

CPU 2

Main
Memory

38



Background Primary Memory

Cache Memory (4)

Cache memory interacts with byte-addressability
• On Intel, we can access each byte individually
• However, on each access, the entire corresponding cache line is loaded
• Can lead to read amplification (e.g. if we read every 64th byte)

Designing cache-efficient data structures is a major challenge
• A programmer has to take care that data is kept in caches as long as possible
• However, there is no direct control over caches
• Must be ensured through suitable programming techniques

39



Background Primary Memory

Cache Memory on Multiprocessor Systems

Modern processors usually use a write-back strategy
• Writes to memory initially only change CPU-local caches (x86)
• Changes are propagated to main memory at some later time

Unpleasant side-effects on multiprocessor systems
• Memory reads and writes are ordered only within a single CPU
• Changes may become visible in arbitrary order on other CPUs
• Requires special programming models to maintain consistency

40



Background Assembly

Assembly Language (1)

A basic understanding of assembly is immensely helpful when learning C++

• Understand how C++ features map to assembly
• Understand the close connection between C++ and low-level code
• (Sometimes) C++ design decisions become easier to understand
• (Sometimes) helps visualize what a piece of C++ code is doing

A basic understanding of assembly is immensely helpful when writing C++

• Ensure that you get the performance you expect from your code
• Ensure that you get the behavior you expect from your code
• Ensure that the compiler is doing what you expect it to do

41



Background Assembly

Assembly Language (2)

Basic program structure
• Series of mnemonic processor instructions (e.g. movl, addl)
• Instructions usually operate on one or more operands
• Operands are usually registers, constants, or memory addresses

Example

movl %edi, -4(%rbp) # move data from register to memory
movl -4(%rbp), %eax # move data from memory to register
shll $1, %eax # shift register content 1 bit to left
addl $42, %eax # add 42 to register content

42



Background Assembly

Registers (1)

Data is manipulated in the registers of a CPU
• CPUs contain a limited number of registers
• Registers are extremely fast in comparison to caches or main memory
• The compiler has to determine which variables to put into registers
• If not enough registers are available, variables are spilled into main memory

Assembly instructions usually manipulate data in registers
• Registers are referenced in assembly through their names (e.g. eax)
• Data transfer between memory and registers is explicit in assembly
• Some registers are used for specific purposes (e.g. rip for storing the

instruction pointer)

43



Background Assembly

Registers (2)

Important registers on x86-64

AH ALRAX

64 bit 32 bit 16 bit 8 bit

RSI

RDI

RSP

RBP

R8

R15

EAX AX

RBX EBX BX
BH BL

RCX ECX CX
CH CL

RDX EDX DX
DH DL

ESI SI

EDI DI

EBP BP

ESP SP

R8B
R8WR8D

R15D R15W
R15B

SIL

DIL

BPL

SPL

...

general-purpose

base pointer

stack pointer

general-purpose

44



Background Assembly

Godbolt Compiler Explorer

The Compiler Explorer created by Matt Godbolt is an invaluable tool
• Allows interactive viewing of the assembly generated by various C++

compilers
• We host an instance at https://compiler.db.in.tum.de/
• We encourage you to play with the tool throughout this course

45

https://compiler.db.in.tum.de/

	Organization
	Introduction
	Background
	Central Processing Unit
	Primary Memory
	Assembly


