
Classes

Classes

250

Classes

Classes

In C++ classes are the main kind of user-defined type.
Informal specification of a class definition:
class-keyword name {

member-specification
};

• class-keyword is either struct or class
• name can be any valid identifier (like for variables, functions, etc.)
• member-specification is a list of declarations, mainly variables (“data

members”), functions (“member functions”), and types (“nested types”)
• The trailing semicolon is mandatory!

251

https://en.cppreference.com/w/cpp/language/class

Classes Members

Data Members
• Declarations of data members are variable declarations
• extern is not allowed
• Declarations without static are called non-static data members, otherwise

they are static data members
• thread_local is only allowed for static data members
• Declaration must have a complete type (see later slide)
• Name of the declaration must differ from the class name and must be unique

within the class
• Non-static data members can have a default value

struct Foo {
// non-static data members:
int a = 123;
float& b;
const char c;
// static data members:
static int s;
thread_local static int t;

};

252

https://en.cppreference.com/w/cpp/language/data_members

Classes Members

Memory Layout of Data Members (Standard-Layout)

• Every type has a size and an alignment requirement
• To be compatible between different compilers and programming languages

(mainly C), the memory layout of objects of class type is fixed, if all
non-static data members have the same access control and the class is a
standard-layout class

• Non-static data members appear in memory by the order of their declarations
• Size and alignment of each data-member is accounted for → leads to “gaps”

in the object, called padding bytes
• Alignment of a class type is equal to the largest alignment of all non-static

data members
• Size of a class type is at least the sum of all sizes of all non-static data

members and at least 1
• static data members are stored separately

253

https://en.cppreference.com/w/cpp/language/classes

Classes Members

Size, Alignment and Padding

struct C {
int i;
int* p;
char b;
short s;

};

sizeof(i) == 4
alignof(i) == 4

sizeof(p) == 8
alignof(p) == 8

sizeof(b) == 1
alignof(b) == 1

sizeof(s) == 2
alignof(s) == 2

sizeof(C) == 24
alignof(C) == 8

i padding
p

b s padding

00 01 02 03 04 05 06 07
00
08
10

offset

Reordering the member variables in the order p, i, s, b would lead to
sizeof(C) == 16!
In general: Order member variables by decreasing alignment to get the fewest
padding bytes.

254

Classes Members

Member Functions
• Declarations of member functions are like regular function declarations
• Just like for data members, there are non-static and static (with the static

specifier) member functions
• Non-static member functions can be const-qualified (with const) or

ref-qualified (with const&, &, or &&)
• Non-static member functions can be virtual
• There are some member functions with special functions:

• Constructor and destructor
• Overloaded operators

struct Foo {
void foo(); // non-static member function
void cfoo() const; // const-qualified non-static member function
void rfoo() &; // ref-qualified non-static member function
static void bar(); // static member function
Foo(); // Constructor
~Foo(); // Destructor
bool operator==(const Foo& f); // Overloaded operator ==

};

255

https://en.cppreference.com/w/cpp/language/member_functions

Classes Members

Accessing Members

Given the following code:
struct C {

int i;
static int si;

};
C o; // o is variable of type C
C* p = &o; // p is pointer to o

the members of the object can be accessed as follows:
• non-static and static member variables and functions can be accessed with

the member-of operator: o.i, o.si
• As a shorthand, instead of writing (*p).i, it is possible to write p->i
• Static member variables and functions can also be accessed with the scope

resolution operator: C::si

256

https://en.cppreference.com/w/cpp/language/operator_member_access

Classes Members

Writing Member Functions

• In a non-static member function members can be accessed implicitly without
using the member-of operator (preferred)

• Every non-static member function has the implicit parameter this
• In member functions without qualifiers and ref-qualified ones this has the

type C*
• In const-qualified or const-ref-qualified member functions this has the type
const C*

struct C {
int i;
int foo() {

this->i; // Explicit member access, this has type C*
return i; // Implicit member access

}
int foo() const { return this->i; /* this has type const C* */ }
int bar() & { return i; /* this (implicit) has type C* */ }
int bar() const& { return this->i; /* this has type const C* */ }

};

257

https://en.cppreference.com/w/cpp/language/this

Classes Members

Out-of-line Definitions
• Just like regular functions member functions can have separate declarations

and definitions
• A member function that is defined in the class body is said to have an inline

definition
• A member function that is defined outside of the class body is said to have

an out-of-line definition
• Member functions with inline definitions implicitly have the inline specifier
• Out-of-line definitions must have the same qualifiers as their declaration

struct Foo {
void foo1() { /* ... */ } // Inline definition
void foo2();
void foo_const() const;
static void foo_static();

};
// Out-of-line definitions
void Foo::foo2() { /* ... */ }
void Foo::foo_const() const { /* ... */ }
void Foo::foo_static() { /* ... */ }

258

Classes Forward Declarations

Forward Declarations (1)

Classes can be forward-declared
• Syntax: class-keyword name ;
• Declares a class type which will be defined later in the scope
• The class name has incomplete type until it is defined
• The forward-declared class name may still be used in some situations (more

details next)

Use Cases
• Allows classes to refer to each other
• Can reduce compilation time (significantly) by avoiding transitive includes of

an expensive-to-compile header
• Commonly used in header files

259

https://en.cppreference.com/w/cpp/language/class#Forward_declaration

Classes Forward Declarations

Forward Declarations (2)

Example
foo.hpp

class A;
class ClassFromExpensiveHeader;

class B {
ClassFromExpensiveHeader* member;

void foo(A& a);
};
class A {

void foo(B& b);
};

foo.cpp
#include "expensive_header.hpp"

/* implementation */

260

Classes Forward Declarations

Incomplete Types

A forward-declared class type is incomplete until it is defined

• In general, no operations that require the size and layout of a type to be
known can be performed on an incomplete type

• E.g. pointer arithmetics on a pointer to an incomplete type
• E.g. Definition or call (but not declaration) of a function with incomplete

return or argument type

• However, some declarations can involve incomplete types
• E.g. pointer declarations to incomplete types
• E.g. member function declarations with incomplete parameter types

• For details: See the reference documentation

261

https://en.cppreference.com/w/cpp/language/types#Incomplete_type

Classes Constructors and Destructors

Constructors

• Constructors are special functions that are called when an object is initialized
• Constructors have no return type, no const- or ref-qualifiers, and their name

is equal to the class name
• The definition of a constructor can have an initializer list
• Constructors can have arguments, a constructor without arguments is called

default constructor
• Constructors are sometimes implicitly defined by the compiler

struct Foo {
Foo() {

std::cout << "Hello\n";
}

};

struct Foo {
int a;
Bar b;
// Default constructor is
// implicitly defined, does
// nothing with a, calls
// default constructor of b

};

262

https://en.cppreference.com/w/cpp/language/initializer_list

Classes Constructors and Destructors

Initializer List
• The initializer list specifies how member variables are initialized before the

body of the constructor is executed
• Other constructors can be called in the initializer list
• Members should be initialized in the order of their definition
• Members are initialized to their default value if not specified in the list
• const member variables can only be initialized in the initializer list

struct Foo {
int a = 123; float b; const char c;
// default constructor initializes a (to 123), b, and c
Foo() : b(2.5), c(7) {}
// initializes a and b to the given values
Foo(int a, float b, char c) : a(a), b(b), c(c) {}
Foo(float f) : Foo() {

// First the default constructor is called, then the body
// of this constructor is executed
b *= f;

}
};

263

Classes Constructors and Destructors

Initializing Objects

• When an object of class type is initialized, an appropriate constructor is
executed

• Arguments given in the initialization are passed to the constructor
• C++ has several types of initialization that are very similar but unfortunately

have subtle differences:
• default initialization (Foo f;)
• value initialization (Foo f{}; and Foo())
• direct initialization (Foo f(1, 2, 3);)
• list initialization (Foo f{1, 2, 3};)
• copy initialization (Foo f = g;)

• Simplified syntax: class-type identifier(arguments); or
class-type identifier{arguments};

264

https://en.cppreference.com/w/cpp/language/initialization

Classes Constructors and Destructors

Converting and Explicit Constructors

• Constructors with exactly one argument are treated specially: They are used
for explicit and implicit conversions

• If implicit conversion with such constructors is not desired, the keyword
explicit can be used to disallow it

• Generally, you should use explicit unless you have a good reason not to

struct Foo {
Foo(int i);

};
void print_foo(Foo f);
// Implicit conversion,
// calls Foo::Foo(int)
print_foo(123);
// Explicit conversion,
// calls Foo::Foo(int)
static_cast<Foo>(123);

struct Bar {
explicit Bar(int i);

};
void print_bar(Bar f);
// Implicit conversion,
// compiler error!
print_bar(123);
// Explicit conversion,
// calls Bar::Bar(int)
static_cast<Bar>(123);

265

https://en.cppreference.com/w/cpp/language/converting_constructor

Classes Constructors and Destructors

Copy Constructors

• Constructors of a class C that have a single argument of type C& or
const C& (preferred) are called copy constructors

• They are often called implicitly by the compiler whenever it is necessary to
copy an object

• The copy constructor if often implicitly defined by the compiler

struct Foo {
Foo(const Foo& other) { /* ... */ }

};
void doFoo(Foo f);
Foo f;
Foo g(f); // Call copy constructor explicitly
doFoo(g); // Copy constructor is called implicitly

266

https://en.cppreference.com/w/cpp/language/copy_constructor

Classes Constructors and Destructors

Destructors

• The destructor is a special function that is called when the lifetime of an
object ends

• The destructor has no return type, no arguments, no const- or ref-qualifiers,
and its name is ~class-name

• For objects with automatic storage duration (e.g. local variables) the
destructor is called implicitly at the end of the scope in reverse order of their
definition

Foo a;
Bar b;
{

Baz c;
// c.~Baz() is called;

}
// b.~Bar() is called
// a.~Foo() is called

267

https://en.cppreference.com/w/cpp/language/destructor

Classes Constructors and Destructors

Writing Destructors

• The destructor is a regular function that can contain any code
• Most of the time the destructor is used to explicitly free resources
• Destructors of member variables are called automatically at the end in reverse

order

struct Foo {
Bar a;
Bar b;
~Foo() {

std::cout << "Bye\n";
// b.~Bar() is called
// a.~Bar() is called

}
};

268

Classes Member Access Control

Member Access Control
• Every member of a class has public, protected, or private access
• When the class is defined with class, the default access is private
• When the class is defined with struct, the default access is public
• public members can be accessed by everyone, protected members only by

the class itself and its subclasses, private members only by the class itself

class Foo {
int a; // a is private
public:
// All following declarations are public
int b;
int getA() const { return a; }
protected:
// All following declarations are protected
int c;
public:
// All following declarations are public
static int getX() { return 123; }

};

269

https://en.cppreference.com/w/cpp/language/access

Classes Member Access Control

Friend Declarations (1)

A class body can contain friend declarations
• A friend declaration grants a function or another class access to the private

and protected members of the class which contains the declaration
• Syntax: friend function-declaration ;

• Declares a function as a friend of the class
• Syntax: friend function-definition ;

• Defines a non-member function and declares it as a friend of the class
• Syntax: friend class-specifier ;

• Declares another class as a friend of this class

Notes
• Friendship is non-transitive and cannot be inherited
• Access specifiers have no influence on friend declarations (i.e. they can

appear in private: or public: sections)

270

https://en.cppreference.com/w/cpp/language/friend

Classes Member Access Control

Friend Declarations (2)

Example

class A {
int a;
friend class B;
friend void foo(A&);

};
class B {

friend class C;
void bar(A& a) {

a.a = 42; // OK
}

};
class C {

void foo(A& a) {
a.a = 42; // ERROR

}
};
void foo(A& a) {

a.a = 42; // OK
}

271

Classes Member Access Control

Nested Types

• For nested types classes behave just like a namespace
• Nested types are accessed with the scope resolution operator ::
• Nested types are friends of their parent

struct A {
struct B {

int getI(const A& a) {
return a.i; // OK, B is friend of A

}
};
private:
int i;

};
A::B b; // reference nested type B of class A

272

Classes Constness of Members

Constness of Member Variables

• Accessing a member variable through a non-const lvalue yields a non-const
lvalue if the member is non-const and a const lvalue otherwise

• Accessing a member variable through a const lvalue yields a const lvalue
• Exception: Member variables declared with mutable yield a non-const lvalue

even when accessed through a const lvalue

struct Foo {
int i;
const int c;
mutable int m;

}
Foo& foo = /* ... */;
const Foo& cfoo = /* ... */;

Expression Value Category
foo.i non-const lvalue
foo.c const lvalue
foo.m non-const lvalue
cfoo.i const lvalue
cfoo.c const lvalue
cfoo.m non-const lvalue

273

Classes Constness of Members

Constness and Member Functions

• The value category through which a non-static member function is accessed
is taken into account for overload resolution

• For non-const lvalues non-const overloads are preferred over const ones
• For const lvalues only const-(ref-)qualified functions are selected

struct Foo {
int getA() { return 1; }
int getA() const { return 2; }
int getB() & { return getA(); }
int getB() const& { return getA(); }
int getC() const { return getA(); }
int getD() { return 3; }

};
Foo& foo = /* ... */;
const Foo& cfoo = /* ... */;

Expression Value
foo.getA() 1
foo.getB() 1
foo.getC() 2
foo.getD() 3
cfoo.getA() 2
cfoo.getB() 2
cfoo.getC() 2
cfoo.getD() error

274

Classes Constness of Members

Casting and CV-qualifiers
• When using static_cast, reinterpret_cast, or dynamic_cast,

cv-qualifiers cannot be “casted away”
• const_cast must be used instead
• Syntax: const_cast < new_type > (expression)
• new_type may be a pointer or reference to a class type
• expression and new_type must have same type ignoring their cv-qualifiers
• The result of const_cast is a value of type new_type
• Modifying a const object through a non-const access path is undefined

behavior!

struct Foo {
int a;

};
const Foo f{123};
Foo& fref = const_cast<Foo&>(f); // OK, cast is allowed
int b = fref.a; // OK, accessing value is allowed
fref.a = 42; // undefined behavior

275

https://en.cppreference.com/w/cpp/language/const_cast

Classes Constness of Members

Use Cases for const_cast
Most common use case of const_cast: Avoid code duplication in member
function overloads.
• A class may contain a const and non-const overload of the same function

with identical code
• Should only be used when absolutely necessary (i.e. not for simple overloads)

class A {
int* numbers;
int& foo() {

int i = /* ... */;
// do some incredibly complicated computation to
// get a value for i
return numbers[i]

}
const int& foo() const {

// OK as long as foo() does not modify the object
return const_cast<A&>(*this).foo();

}
};

276

Classes Operator Overloading

Operator Overloading

• Classes can have special member functions to overload built-in operators like
+, ==, etc.

• Many overloaded operators can also be written as non-member functions
• Syntax: return-type operator op (arguments)
• Overloaded operator functions are selected with the regular overload

resolution
• Overloaded operators are not required to have meaningful semantics
• Almost all operators can be overloaded, exceptions are: :: (scope

resolution), . (member access), .* (member pointer access), ?: (ternary
operator)

• This includes “unusual” operators like: = (assignment), () (call),
* (dereference), & (address-of), , (comma)

277

https://en.cppreference.com/w/cpp/language/operators

Classes Operator Overloading

Arithmetic Operators
The expression lhs op rhs is mostly equivalent to lhs.operator op(rhs) or
operator op(lhs, rhs) for binary operators.
• As calls to overloaded operators are treated like regular function calls, the

overloaded versions of || and && lose their special behaviors
• Should be const and take const references
• Usually return a value and not a reference
• The unary + and − operators can be overloaded as well

struct Int {
int i;
Int operator+(const Int& other) const { return Int{i + other.i}; }
Int operator-() const { return Int{-i}; };

};
Int operator*(const Int& a, const Int& b) { return Int{a.i * b.i}; }

Int a{123}; Int b{456};

a + b; /* is equivalent to */ a.operator+(b);
a * b; /* is equivalent to */ operator*(a, b);
-a; /* is equivalent to */ a.operator-();

278

https://en.cppreference.com/w/cpp/language/operator_arithmetic

Classes Operator Overloading

Comparison Operators

All binary comparison operators (<, <=, >, >=, ==, !=, <=>) can be overloaded.
• Should be const and take const references
• Return bool, except for <=> (see next slide)
• If only operator<=> is implemented, <, <=, >, and >= work as well
• operator== must be implemented separately
• If operator== is implemented, != works as well

struct Int {
int i;
std::strong_ordering operator<=>(const Int& a) const {

return i <=> a.i;
}
bool operator==(const Int& a) const { return i == a.i; }

};
Int a{123}; Int b{456};
a < b; /* is equivalent to */ (a.operator<=>(b)) < 0;
a == b; /* is equivalent to */ a.operator==(b);

279

https://en.cppreference.com/w/cpp/language/operator_comparison

Classes Operator Overloading

Three-Way Comparison (1)

The overloaded operator<=> should return one of the following three types from
<compare>: std::partial_ordering, std::weak_ordering,
std::strong_ordering.
• When comparing two values a and b with ord = (a <=> b), then ord has

one of the three types and can be compared to 0:
• ord == 0 ⇔ a == b
• ord < 0 ⇔ a < b
• ord > 0 ⇔ a > b
• std::strong_ordering can be converted to std::weak_ordering and
std::partial_ordering

• std::weak_ordering can be converted to std::partial_ordering

280

https://en.cppreference.com/w/cpp/utility/compare/partial_ordering

Classes Operator Overloading

Three-Way Comparison (2)

std::partial_ordering should be used when two values can potentially be
unordered, i.e. a <= b and a >= b could be false.
Possible values:
• std::partial_ordering::less
• std::partial_ordering::equivalent
• std::partial_ordering::greater
• std::partial_ordering::unordered

281

Classes Operator Overloading

Three-Way Comparison (3)

std::weak_ordering or std::strong_ordering should be used when two
values are always ordered (i.e. we have total order).
Possible values:
• std::weak_ordering::less
• std::weak_ordering::equivalent
• std::weak_ordering::greater
• std::strong_ordering::less
• std::strong_ordering::equivalent
• std::strong_ordering::greater
• With std::strong_odering equal values must also be “indistinguishable”,

i.e. behave the same in all aspects

282

Classes Operator Overloading

Increment and Decrement Operators
Overloaded pre- and post-increment and -decrement operators are distinguished
by an (unused) int argument.
• C& operator++(); C& operator--(); overloads the pre-increment or

-decrement operator, usually modifies the object and then returns *this
• C operator++(int); C operator--(int); overloads the

post-increment or -decrement operator, usually copies the object before
modifying it and then returns the unmodified copy

struct Int {
int i;
Int& operator++() { ++i; return *this; }
Int operator--(int) { Int copy{*this}; --i; return copy; }

};
Int a{123};
++a; // a.i is now 124
a++; // ERROR: post-increment is not overloaded
Int b = a--; // b.i is 124, a.i is 123
--b; // ERROR: pre-decrement is not overloaded

283

https://en.cppreference.com/w/cpp/language/operator_incdec

Classes Operator Overloading

Subscript Operator

Classes that behave like containers or pointers usually override the subscript
operator [].
• a[b] is equivalent to a.operator[](b)
• Type of b can be anything, for array-like containers it is usually size_t

struct Foo { /* ... */ };
struct FooContainer {

Foo* fooArray;
Foo& operator[](size_t n) { return fooArray[n]; }
const Foo& operator[](size_t n) const { return fooArray[n]; }

};

284

https://en.cppreference.com/w/cpp/language/operator_member_access

Classes Operator Overloading

Dereference Operators

Classes that behave like pointers usually override the operators * (dereference)
and -> (member of pointer).
• operator*() usually returns a reference
• operator->() should return a pointer or an object that itself has an

overloaded -> operator

struct Foo { /* ... */ };
struct FooPtr {

Foo* ptr;
Foo& operator*() { return *ptr; }
const Foo& operator*() const { return *ptr; }
Foo* operator->() { return ptr; }
const Foo* operator->() const { return ptr; }

};

285

https://en.cppreference.com/w/cpp/language/operator_member_access

Classes Operator Overloading

Assignment Operators

• The simple assignment operator is often used together with the copy
constructor and should have the same semantics

• All assignment operators usually return *this

struct Int {
int i;
Foo& operator=(const Foo& other) { i = other.i; return *this; }
Foo& operator+=(const Foo& other) { i += other.i; return *this; }

};
Foo a{123};
a = Foo{456}; // a.i is now 456
a += Foo{1}; // a.i is now 457

286

https://en.cppreference.com/w/cpp/language/operator_assignment

Classes Operator Overloading

Conversion Operators
A class C can use converting constructors to convert values of other types to type
C. Similarly, conversion operators can be used to convert objects of type C to
other types.
Syntax: operator type ()
• Conversion operators have the implicit return type type
• They are usually declared as const
• The explicit keyword can be used to prevent implicit conversions
• Explicit conversions are done with static_cast
• operator bool() is usually overloaded to be able to use objects in an if

statement

struct Int {
int i;
operator int() const {

return i;
}

};
Int a{123};
int x = a; // OK, x is 123

struct Float {
float f;
explicit operator float() const {

return f;
}

};
Float b{1.0};
float y = b; // ERROR, implicit conversion
float y = static_cast<float>(b); // OK

287

https://en.cppreference.com/w/cpp/language/cast_operator

Classes Operator Overloading

Argument-Dependent Lookup

• Overloaded operators are usually defined in the same namespace as the type
of one of their arguments

• Regular unqualified lookup would not allow the following example to compile
• To fix this, unqualified names of functions are also looked up in the

namespaces of all arguments
• This is called Argument Dependent Lookup (ADL)

namespace A { class X {}; X operator+(const X&, const X&); }
int main() {

A::X x, y;
operator+(x, y); // Need operator+ from namespace A
A::operator+(x, y); // OK
x + y; // How to specify namespace here?

// -> ADL finds A::operator+()
}

288

https://en.cppreference.com/w/cpp/language/adl

Classes Defaulted and Deleted Member Functions

Defaulted Member Functions
• Most of the time the implementation of default constructors, copy

constructors, copy assignment operators, and destructors is trivial
• To let the compiler generate the trivial implementation automatically,
= default; can be used instead of a function body

struct Foo {
Bar b;
Foo() = default; /* equivalent to: */ Foo() {}
~Foo() = default; /* equivalent to: */ ~Foo() {}

Foo(const Foo& f) = default;
/* equivalent to: */
Foo(const Foo& f) : b(f.b) {}

Foo& operator=(const Foo& f) = default;
/* equivalent to: */
Foo& operator=(const Foo& f) {

b = f.b; return *this;
}

};
289

https://en.cppreference.com/w/cpp/language/member_functions#Special_member_functions

Classes Defaulted and Deleted Member Functions

Defaulted Comparison Operators
All comparison operators can be defaulted.
• Defaulted comparison operators must return bool, except <=>
• Defaulted operator== compares each member for equality, members must

define operator==
• Defaulted operator<=> lexicographically compares members by using <=>,

members must define operator<=>
• Defaulting operator<=> also defaults operator==
• Defaulted <, <=, >, or >= use operator<=>

struct Int128 {
int64_t x; int64_t y;
std::strong_ordering operator<=>(const Int&) const = default;

};
Int128 a{0, 123}; Int128 b{1, 0};
a < b; // true
a == b; // false
a <=> b; // std::strong_ordering::less

290

https://en.cppreference.com/w/cpp/language/default_comparisons

Classes Defaulted and Deleted Member Functions

Deleted Member Functions

• Sometimes, implicitly generated constructors or assignment operators are not
wanted

• Writing = delete; instead of a function body explicitly forbids implicit
definitions

• In other cases the compiler implicitly deletes a constructor in which case
writing = default; enables it again

struct Foo {
Foo(const Foo&) = delete;

};
Foo f; // Default constructor is defined implicitly
Foo g(f); // ERROR: copy constructor is deleted

291

https://en.cppreference.com/w/cpp/language/function#Deleted_functions

Other User-Defined Types

Other User-Defined Types

292

Other User-Defined Types Unions

Unions
• In addition to regular classes declared with class or struct, there is

another special class type declared with union
• In a union only one member may be “active”, all members use the same

storage
• Size of the union is equal to size of largest member
• Alignment of the union is equal to largest alignment among members
• Strict aliasing rule still applies with unions!
• Most of the time there are better alternatives to unions, e.g.
std::array<std::byte, N> or std::variant

union Foo {
int a;
double b;

};
sizeof(Foo) == 8;
alignof(Foo) == 8;

Foo f; // No member is active
f.a = 1; // a is active
std::cout << f.b; // Undefined behavior!
f.b = 12.34; // Now, b is active
std::cout << f.b; // OK

293

https://en.cppreference.com/w/cpp/language/union

Other User-Defined Types Enums

Enums
• C++ also has user-defined enumeration types
• Typically used like integral types with a restricted range of values
• Also used to be able to use descriptive names instead of “magic” integer

values
• Syntax: enum-key name { enum-list };
• enum-key can be enum, enum class, or enum struct
• enum-list consists of comma-separated entries with the following syntax:
name [= value]

• When value is not specified, it is automatically chosen starting from 0

enum Color {
Red, // Red == 0
Blue, // Blue == 1
Green, // Green == 2
White = 10,
Black, // Black == 11
Transparent = White // Transparent == 10

};

294

https://en.cppreference.com/w/cpp/language/enum

Other User-Defined Types Enums

Using Enum Values

• Names from the enum list can be accessed with the scope resolution operator
• When enum is used as keyword, names are also introduced in the enclosing

namespace
• Enums declared with enum can be converted implicitly to int
• Enums can be converted to integers and vice versa with static_cast
• enum class and enum struct are equivalent
• Guideline: Use enum class unless you have a good reason not to

Color::Red; // Access with scope resolution operator
Blue; // Access from enclosing namespace
int i = Color::Green; // i == 2, implicit conversion
int j = static_cast<int>(Color::White); // j == 10
Color c = static_cast<Color>(11); // c == Color::Black

295

Other User-Defined Types Type Aliases

Type Aliases
• Names of types that are nested deeply in multiple namespaces or classes can

become very long
• Sometimes it is useful to declare a nested type that refers to another, existing

type
• For this type aliases can be used
• Syntax: using name = type;
• name is the name of the alias, type must be an existing type
• For compatibility with C type aliases can also be defined with typedef with

a different syntax but this should never be used in modern C++ code

namespace A::B::C { struct D { struct E {}; }; }
using E = A::B::C::D::E;
E e; // e has type A::B::C::D::E
struct MyContainer {

using value_type = int;
};
MyContainer::value_type i = 123; // i is an int

296

https://en.cppreference.com/w/cpp/language/type_alias

Other User-Defined Types Type Aliases

Common Type Aliases

In C++ the following aliases are defined in the std namespace and are commonly
used:

intN_t: Integer types with exactly N bits, usually defined for 8, 16, 32, and
64 bits

uintN_t: Similar to intN_t but unsigned
size_t: Used by the standard library containers everywhere a size or index

is needed, also result type of sizeof and alignof
uintptr_t: An integer type that is guaranteed to be able to hold all possible

values that result from a reinterpret_cast from any pointer
intptr_t: Similar to uintptr_t but signed

ptrdiff_t: Result type of expressions that subtract two pointers
max_align_t: Type which has alignment as least as large as all other scalar

types

297

Iterators

Iterators

298

Iterators

Iterators: A Short Overview

Iterators are objects that can be thought of as pointer abstractions
• Problem: Different element access methods for each container
• Therefore: Container types not easily exchangable in code
• Solution: Iterators abstract over element access and provide pointer-like

interface
• Allow for easy exchange of underlying container type
• The standard library defines multiple iterator types as containers have varying

capabilities (random access, traversable in both directions, …)

Be careful: When writing to a container, all existing iterators are invalidated and
can no longer be used (some exceptions apply)!

299

https://en.cppreference.com/w/cpp/iterator

Iterators

Iterators: An Example (1)

All containers have a begin and an end iterator:
std::vector<std::string> vec = {"one", "two", "three", "four"};
auto it = vec.begin();
auto end = vec.end();

The begin iterator points to the first element of the container:
std::cout << *it; // prints "one"
std::cout << it->size(); // prints 3

The end iterator points to the first element after the container. Dereferencing it
results in undefined behavior:
*end; // undefined behavior

An iterator can be incremented (just like a pointer) to point at the next element:
++it; // Prefer to use pre-increment
std::cout << *it; // prints "two"

300

https://en.cppreference.com/w/cpp/iterator

Iterators

Iterators: An Example (2)

Iterators can be checked for equality. Comparing to the end iterator is used to
check whether iteration is done:
// prints "three,four,"
for (; it != end; ++it) {

std::cout << *it << ",";
}

This can be streamlined with a range-based for loop:
for (auto elem : vec) {

std::cout << elem << ","; // prints "one,two,three,four,"
}

Such a loop requires the range expression (here: vec) to have a begin() and
end() member.
vec.begin() is assigned to an internal iterator which is dereferenced, assigned
to the range declaration (here: auto elem), and then incremented until it equals
vec.end().

301

https://en.cppreference.com/w/cpp/iterator

Iterators

Iterators: An Example (3)
Iterators can also simplify dynamic insertion and deletion:
for (it = vec.begin(); it != vec.end(); ++it) {

if (it->size == 3) {
it = vec.insert(it,"foo");
// it now points to the newly inserted element
++it;

}
}
//vec == {"foo", "one", "foo", "two", "three", "four"}

for (it = vec.begin(); it != vec.end(); ++it) {
if (it->size == 3) {

it = vec.erase(it);
// erase returns a new, valid iterator
// pointing at the next element

}
}
//vec == {"three", "four"}

302

https://en.cppreference.com/w/cpp/iterator

Iterators

input_iterator, output_iterator
The standard library defines several concepts for different kinds of iterators in the
<iterator> header. std::input/output_iterator are the most basic
iterators. They have the following features:
• Equality comparison: Checks if two iterators point to the same position
• Dereferencable with the * and -> operators
• Incrementable, to point at the next element in sequence
• A dereferenced std::input_iterator can only by read
• A dereferenced std::output_iterator can only be written to

As the most restrictive iterators, they have a few limitations:
• Single-pass only: They cannot be decremented
• Only allow equality comparison, <, >=, etc. not supported
• Can only be incremented by one (i.e. it + 2 does not work)

Used in single-pass algorithms such as find() (std::input_iterator) or
copy() (Copying from an std::input_iterator to an
std::output_iterator)

303

https://en.cppreference.com/w/cpp/iterator/input_iterator

Iterators

forward_iterator, bidirectional_iterator

std::forward_iterator combines std::input_iterator and
std::output_iterator
• All the features and restrictions shared between input- and output iterator

apply
• Dereferenced iterator can be read and written to

std::bidirectional_iterator generalizes std::forward_iterator
• Additionally allows decrementing (walking backwards)
• Therefore supports multi-pass algorithms traversing the container multiple

times
• All other restrictions of std::forward_iterator still apply

304

https://en.cppreference.com/w/cpp/iterator/bidirectional_iterator

Iterators

random_access_iterator, contiguous_iterator

std::random_access_iterator generalizes
std::bidirectional_iterator
• Additionally allows random access with operator[]
• Supports relational operators, such as < or >=
• Can be incremented or decremented by any amount (i.e. it + 2 does work)

std::contiguous_iterator generalizes std::random_access_iterator
• Guarantees that elements are stored in memory contiguously
• This means that iterators of this category can be used interchangeably with

pointers: &*(it + n) == (&*it) + n

305

	Classes
	Members
	Forward Declarations
	Constructors and Destructors
	Member Access Control
	Constness of Members
	Operator Overloading
	Defaulted and Deleted Member Functions

	Other User-Defined Types
	Unions
	Enums
	Type Aliases

	Iterators

