
C++ Systems Programming on Linux

C++ Systems Programming on Linux

0



C++ Systems Programming on Linux

C++ Systems Programming on Linux

Until now, most topics were about standard C++. The standard does not contain
everything that is useful for good systems programming, such as:
• Creating, removing, renaming files and directories
• Efficient reading and writing of files
• Direct manual memory allocation from the kernel
• Networking
• Management of processes and threads

The Linux kernel in particular has a very extensive user-space C-API that can be
used to directly communicate with the kernel for all of those tasks.

1



C++ Systems Programming on Linux

POSIX and Linux API

POSIX is a standard that defines a C-API to communicate with the operating
system.
• The POSIX API is supported by most Unix-like operating systems (e.g.

Linux, Mac OS X)
• It is a pure C-API but can also be used directly in C++

• Consists of types, functions and constants defined in <unistd.h>,
<fcntl.h>, various <sys/*.h> files, and more

Linux defines additional types, functions and constants for Linux-specific
operations that are not defined by the standard.
• Documentation of the POSIX functions can be found in man pages (usually

in section 3posix or 3p)
• Linux-specific functions are also documented in man pages (usually in

section 2)

2



C++ Systems Programming on Linux Interacting with Files

File Descriptors

A very central concept in the POSIX API are so called file descriptors (fds).
• File descriptors have the type int
• They are used as a “handle” to:

• Files in the filesystem
• Directories in the filesystem
• Network sockets
• Many other kernel objects

• Usually, fds are created by a function (e.g. open()) and must be closed by
another function (e.g. close())

• When working with fds in C++, the RAII pattern can be very useful

3



C++ Systems Programming on Linux Interacting with Files

Opening and Creating Files (1)

To open and create files the open() function can be used. It must be included
from <sys/stat.h> and <fcntl.h>.
• int open(const char* path, int flags, mode_t mode)
• Opens the file at path with the given flags and returns an fd for that file
• If an error occurs, -1 is returned
• The third argument mode is optional and only required when a file is created
• flags is a bitmap (created with bitwise or) that must contain exactly one of

the following flags:
O_RDONLY Open the file only for reading.
O_RDWR Open the file for reading and writing.
O_WRONLY Open the file only for writing.

• close() must be used to close the fd returned by open() → RAII

4



C++ Systems Programming on Linux Interacting with Files

Opening and Creating Files (2)

There are more flags that can be combined with bitwise or:
O_CREAT If the file does not exist, it is created with the permission

bits taken from the mode argument
O_EXCL Can only be used in combination with O_CREAT. Causes

open() to fail and return an error when the file exists.
O_TRUNC If the file exists and it is opened for writing, truncate the

file, i.e. remove all its contents and set its length to 0.
Example:

#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h>
int main() {

int fd = open("/tmp/testfile", O_WRONLY | O_CREAT, 0600);
if (fd < 0) { /* error */ }
else { close(fd); }

}

5



C++ Systems Programming on Linux Interacting with Files

Reading and Writing from Files

To read from and write to files, read() and write() from the header
<unistd.h> can be used.
• ssize_t read(int fd, void* buf, size_t count)
• ssize_t write(int fd, const void* buf, size_t count)
• fd must be a valid file descriptor
• buf must be a memory buffer which has a size of at least count bytes
• The return value indicates how many bytes were actually read or written (can

be up to count)
• Both functions return -1 when an error occurs
• Note: Both functions may wait until data can actually be read or written

which can lead to deadlocks!

6



C++ Systems Programming on Linux Interacting with Files

File Positions and Seeking (1)

For an opened file the kernel remembers the current position in the file.
• read() and write() start reading or writing from the current position
• They both advance the current position by the number of bytes read or

written
The function lseek() (headers <sys/types.h> and <unistd.h>) can be used
to get or set the current position.
• off_t lseek(int fd, off_t offset, int whence)
• off_t is a signed integer type
• The current position is changed according to offset and whence, which is

one of the following:
SEEK_SET The current position is set to offset
SEEK_CUR offset is added to the current position
SEEK_END The current position is set to the end of the file plus offset

• lseek() returns the value of the new position, or -1 if an error occurred

7



C++ Systems Programming on Linux Interacting with Files

File Positions and Seeking (2)

Example:

int fd = open("/etc/passwd", O_RDWR);
auto fileSize = lseek(fd, 0, SEEK_END);
lseek(fd, -4, SEEK_CUR);
write(fd, "test", 4); // overwrite the last 4 bytes

Note: The current position is shared between all threads. Generally, read(),
write(), and lseek() should not be used concurrently on the same fd.

8



C++ Systems Programming on Linux Interacting with Files

Reading and Writing at Specific Offsets

There also exist two functions that read or write from a file without using the
current position: pread() and pwrite() from the header <unistd.h>.
• ssize_t pread(int fd, void* buf, size_t count, off_t offset)

• ssize_t pwrite(int fd, const void* buf, size_t count, off_t offset)

• Conceptually, those functions work like lseek(fd, offset, SEEK_SET)
followed by read() or write()

• However, they do not modify the current position in the file
• Should be used when reading from and writing to files from multiple threads

9



C++ Systems Programming on Linux Interacting with Files

Getting Metadata of Files

Meta data of files, such as the type of a file, its size, its owner, or the date it was
last modified, can be read with stat() or fstat(). Required headers:
<sys/types.h>, <sys/stat.h>, <unistd.h>.
• int stat(const char* filename, struct stat* statbuf)
• int fstat(int fd, struct stat* statbuf)
• The meta data of the file specified by filename or fd is written into
statbuf

• Returns 0 on success, -1 on error
• struct stat has several member variables:

mode_t st_mode The file mode (S_IFREG for regular file, S_IFDIR for
directory, S_IFLNK for symbolic link, …)

uid_t st_uid The user id of the owner
off_t st_size The total size in bytes
…

10



C++ Systems Programming on Linux Interacting with Files

Changing the Size of a File

Files can be resized by using the functions truncate() or ftruncate() from
the headers <sys/types.h> and <unistd.h>.
• int truncate(const char* path, off_t length)
• int ftruncate(int fd, off_t length)
• Sets the size of the file specified by path or fd to length bytes
• If the new length is larger than the old, zero bytes are appended at the end
• Returns 0 on success, -1 on error
• These functions are especially useful when files are used as a memory buffers,

e.g. for a buffer manager of a database system

11



C++ Systems Programming on Linux Interacting with Files

More File Functions

POSIX and Linux have many more functions that deal with files and directories:

mkdir() Create a directory
mkdirat() Create a subdirectory in a specific directory
openat() Open a file in a specific directory
unlink() Remove a file
unlinkat() Remove a file from a specific directory
rmdir() Remove an empty directory
chmod()/fchmod() Change the permissions of a file
chown()/fchown() Change the owner of a file
fsync() Force changes to a file to be written
…

12



C++ Systems Programming on Linux Memory Mapping

Memory Mapping

POSIX defines the function mmap() in the header <sys/mman.h> which can be
used to manage the virtual address space of a process.
• void* mmap(void* addr, size_t length, int prot, int flags,

int fd, off_t offset)
• Arguments have different meaning depending on flags
• On error, the special value MAP_FAILED is returned
• Always: If a pointer is returned successfully, it must be freed with munmap()
• int munmap(void* addr, size_t length)
• addr must be a value returned from mmap()
• length must be the same value passed to mmap()
• RAII should be used to ensure that munmap() is called

13



C++ Systems Programming on Linux Memory Mapping

Memory Mapping Files (1)

One use case for mmap() is to map the contents of a file into the virtual memory.
To map a file, the arguments are used as follows:
• addr: hint for the kernel which address to use, should be nullptr
• length: length of the returned memory mapping (usually multiple of page

size)
• prot: determines how the mapped pages may be accessed and is a

combination (with bitwise or) of the following flags:
PROT_EXEC pages may be executed
PROT_READ pages may be read
PROT_WRITE pages may be written
PROT_NONE pages may not be accessed

• flags: should be either MAP_SHARED (changes to the mapped memory are
written to the file) or MAP_PRIVATE (changes are not written to the file)

• fd: descriptor of an opened file
• offset: Offset into the file where the mapping should start (multiple of

page size)

14



C++ Systems Programming on Linux Memory Mapping

Memory Mapping Files (2)

Example of reading integers from file /tmp/ints:

int fd = open("/tmp/ints", O_RDONLY);
void* mappedFile = mmap(nullptr, 4096, PROT_READ, MAP_SHARED, fd, 0);
int* fileInts = static_cast<int*>(mappedFile);
for (int i = 0; i < 1024; ++i)

std::cout << fileInts[i] << std::endl;
munmap(mappedFile, 4096);
close(fd);

• Note: This assumes that integers are written in binary format to the file!
• Using mmap() to read from large files is often faster than using read()
• This is because with mmap() data is directly read from and written to the file

without copying it to a buffer first

15



C++ Systems Programming on Linux Memory Mapping

Using mmap for Memory Allocation
mmap() can also be used to allocate memory by not associating it with a file.
• flags must be MAP_PRIVATE | MAP_ANONYMOUS
• fd must be -1
• offset must be 0
• Other arguments have the same meaning
• Used by malloc() internally
• Should be used manually only to allocate very large regions of memory (at

least several MBs)
Example of allocating 100 MiB of memory:

void* mem = mmap(nullptr, 100 * (1ull << 20),
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);

// [...]
munmap(mem, 100 * (1ull << 20));

16



C++ Systems Programming on Linux Process Management

Creating Processes with fork
The most common way to start a new process in Linux is using fork() from the
headers <sys/types.h> and <unistd.h>.
• pid_t fork()
• When fork() is called, the process is duplicated (including its virtual

memory with all memory mappings, open file descriptors, etc.)
• In the original process, fork() returns the process id of the new process, or
-1 if an error occurred

• In the new process, fork() returns 0

std::cout << "start ";
if (fork() == 0) {

std::cout << "new ";
} else {

std::cout << "old ";
}
std::cout << "end ";

One possible output for this example is: start old end new end
17



C++ Systems Programming on Linux Process Management

Fine-Grained Process Creation with clone
For greater control over creating a process, clone() from <sched.h> (which is
also used by fork() internally) should be used.
• int clone(int (*fn)(void*), void* child_stack,

int flags, void* arg)
• Takes a function pointer that will be executed in the new process, the new

stack pointer for the process, flags, and an argument that will be passed to
the function

• Returns the process id of the new process
• flags is 0 or a bitwise or combination of the following:

CLONE_FILES File descriptors are shared between old and new process
CLONE_FS File system information is shared (e.g. the current direc-

tory)
CLONE_VM Virtual memory is shared
CLONE_PARENT The parent process of the new process will be the parent

of the current process
CLONE_THREAD The new process will be a thread in the same thread group
…

18



C++ Systems Programming on Linux Process Management

Executing Other Programs
To execute an entirely new program, execve() from <unistd.h> can be used.
• int execve(const char* pathname, char* const argv[],

char* const envp[])
• pathname is the path to binary that should be executed
• argv is a pointer to a null-terminated array for the program arguments
• envp is a pointer to a null-terminated array for the environment variables
• On success, the new program is executed, so the function does not return
• On error, returns -1
• execve() replaces the virtual memory of the old program by the new, but it

keeps all fds
• Is often used in combination with fork()

std::vector<const char*> args = {"/bin/ls", "/", nullptr};
std::vector<const char*> env = {"FOO=bar", nullptr};
if (fork() == 0) {

execve("/bin/ls", args.data(), env.data());
}

19



C++ Systems Programming on Linux Process Management

Linux Threads and Processes

A process can consist of several threads. There exist several identifiers to
distinguish processes:

TID: Unique identifier for each thread
PID: Identifier for processes. Equal for all threads within a process
TGID: Thread group identifier is a synonym for PID
PGID: Identifier for process groups. Equal for all processes within a process

group (children, siblings, ...)

• The first process within a group will have the same value for all of the above.
• The thread with the TID equal to the PID is called leader of the thread

group.
• Sometimes, programs display the TID and incorrectly call it PID.

20



C++ Systems Programming on Linux Process Management

Thread Pinning
Threads can control on which physical CPU cores they run by using
sched_setaffinity() from <sched.h>.
• int sched_setaffinitiy(pid_t pid, size_t cpusetsize

const cpu_set_t* mask)
• pid stands for the process id whose affinity should be set, or 0 which stands

for the current thread
• cpusetsize must be set to sizeof(cpu_set_t)
• mask is a pointer to a cpu_set_t which describes which CPU cores the

thread is allowed to run on
• Returns 0 on success, -1 on error
• Variables of type cpu_set_t can be modified with
CPU_ZERO(cpu_set_t* set) and
CPU_SET(int cpu, cpu_set_t* set)

cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(0, &set); CPU_SET(4, &set);
sched_setaffinity(0, sizeof(cpu_set_t), &set);

21



C++ Systems Programming on Linux Process Management

Signals

In POSIX systems like Linux, every process can receive signals.
• Signals can either be generated by hardware (e.g. on memory access

violations) or by software (by using kill())
• By default, a process is either terminated or does nothing when it receives a

signal
• A process can set a signal handler function which will be called when a signal

is received
• The most common signals are:

Signal Default Description
SIGSEGV terminate “segfault”, invalid memory access
SIGINT terminate interrupt from user, usually by pressing Ctrl + C
SIGTERM terminate process is terminated
SIGKILL terminate process is killed (cannot be caught with a signal

handler)
SIGCHLD ignore a child process terminated

22



C++ Systems Programming on Linux Process Management

Setting Signal Handlers (1)

Signal handlers can set by using sigaction() from the header <signal.h>.
• int sigaction(int signum, const struct sigaction* act,

struct sigaction* sigact)
• signum is the signal whose signal handler should be changed
• act is a pointer to the signal handler that should be set, or nullptr if an

existing signal handler should be removed
• If sigact is not nullptr, it will contain the old signal handler after the

function returns
• Returns 0 on success, -1 on error
• struct sigaction has several members, the most important one is:
void (*sa_handler)(int)

• sa_handler is a function pointer that points to the signal handler function
that takes the signal as only argument

23



C++ Systems Programming on Linux Process Management

Setting Signal Handlers (2)

As signal handlers can be called at any time while other code is running, they
should avoid to interfere with memory that is currently accessed.

void handler(int /*signal*/) {
std::cout << "Ctrl-C was pressed\n";
std::exit(1);

}
struct sigaction s{}; // Use {} here to zero-initialize
s.sa_handler = handler;
sigaction(SIGINT, &s, nullptr);

24



C++ Systems Programming on Linux Process Management

Sending Signals

A process can send a signal to itself or other process by using kill() from the
headers <sys/types.h> and <signal.h>.
• int kill(pid_t pid, int sig)
• pid is the process id of the process that should recieve the signal
• If pid is 0, the signal is sent to all processes in the process group
• If pid is -1, the signal is sent to all processes for which the calling process

has the permission
• Returns 0 on success, -1 on error
• With the signals SIGUSR1 and SIGUSR2 (“user-defined signals”) this can be

used for (limited) communication between processes

25



C++ Systems Programming on Linux Process Management

Inter-Process Communication with Pipes (1)
Using basic signals is often not sufficient for communication between processes.
pipe() (from <unistd.h>) can be used instead which creates two fds that are
connected to each other.
• int pipe(int pipefd[2])
• Takes a pointer to an array that can hold two integers
• Returns 0 on success, -1 on error
• Creates a unidirectional connection between pipefd[0] and pipefd[1]
• Everything that is written to pipefd[1] can be read from pipefd[0]
• Both fds must be closed eventually

int fds[2];
pipe(fds);
int readfd = fds[0]; int writefd = fds[1];
write(writefd, "hello", 5);
char buffer[5];
read(readfd, buffer, 5); // buffer now contains "hello"
close(readfd); close(writefd);

26



C++ Systems Programming on Linux Process Management

Inter-Process Communication with Pipes (2)
pipe() is usually used in combination with fork():

int fds[2]; pipe(fds);
int readfd = fds[0];
int writefd = fds[1];
if (fork() == 0) {

// We only need to read from the parent, so close writefd
close(writefd);
char buffer[6]; buffer[5] = 0;
read(readfd, buffer, 5);
std::cout << "parent wrote: " << buffer;
close(readfd);

} else {
// Likewise, close readfd
close(readfd);
write(writefd, "hello", 5);
close(writefd);

}

27



C++ Systems Programming on Linux Error Handling

Error Handling

Most functions use errno from the header <cerrno> for error handling.
• errno is a global variable that contains an error code
• Is set when a function returns an error (e.g. by returning -1)
• All possible values for errno are available as constants:

EINVAL Invalid argument
ENOENT No such file or directory (e.g. in open())
EACCES Permission denied
ENOMEM Not enough memory (e.g. for mmap())
…

• A description of the error can be retrieved with std::strerror() from
<cstring>

28

https://en.cppreference.com/w/cpp/header/cerrno

	C++ Systems Programming on Linux
	Interacting with Files
	Memory Mapping
	Process Management
	Error Handling


