
Query Optimization
Exercise Session 8

Andrey Gubichev

December 8, 2014

1 / 15



Plan for today

I Two heuristics: Iterative DP, Quick Pick
I Meta-heuristics

2 / 15



Iterative DP

I Create all join trees with size up to k , get the cheapest one
I Replace the cheapest tree with the compound relation, start all

over again

3 / 15



Iterative Dynamic Programming

R3

30

R1

30

R2

100

R4

20
R5

10

R6

100

R7

15
R8

100

1
6

1
10

1
20

3
4

1
5

1
25 1

3

R1R3 R2R3 R3R4 R4R5 R5R6 R5R7 R7R8

150 300 30 150 200 6 500

4 / 15



Iterative Dynamic Programming

R3

30

R1

30

R2

100

R4

20
R5

10

R6

100

R7

15
R8

100

1
6

1
10

1
20

3
4

1
5

1
25 1

3

R1R3 R2R3 R3R4 R4R5 R5R6 R5R7 R7R8

150 300 30 150 200 6 500

4 / 15



Quick Pick

I Trees = {R1, . . . ,Rn}, Edges = list of edges
I pick a random edge e ∈ Edges that connects two trees in Trees
I exclude two selected trees from Trees, add the new tree to

Trees, Edges = Edges \ {e}
I repeat until the complete join tree is constructed

Question for the homework: How to check that an edge connects
two trees? what data structures to use?

5 / 15



Metaheuristics

6 / 15



II & SA
Iterative Improvement

I Get pseudo-random join tree
I Improve with random operation until local minimum is found
I If this yields a cheaper tree than previously known, keep it, else

throw it away
⇒ You’ll do a homework exercise on this.
I Rules for left-deep trees: swap and 3cycle
I Rules for bushy trees: commutativity, associativity, left/right

join exchange
Simulated Annealing

I Similar to II, but may keep worse tree (with decreasing
probability) to escape local minimum

I Parameter tuning is a nightmare. Consider the following
proposals for an “equilibrium”:

I # iterations = # relations
I # iterations = 16 × # relations
I “Would you bet your business on these numbers?”

7 / 15



II & SA
Iterative Improvement

I Get pseudo-random join tree
I Improve with random operation until local minimum is found
I If this yields a cheaper tree than previously known, keep it, else

throw it away
⇒ You’ll do a homework exercise on this.
I Rules for left-deep trees: swap and 3cycle
I Rules for bushy trees: commutativity, associativity, left/right

join exchange
Simulated Annealing

I Similar to II, but may keep worse tree (with decreasing
probability) to escape local minimum

I Parameter tuning is a nightmare. Consider the following
proposals for an “equilibrium”:

I # iterations = # relations

I # iterations = 16 × # relations
I “Would you bet your business on these numbers?”

7 / 15



II & SA
Iterative Improvement

I Get pseudo-random join tree
I Improve with random operation until local minimum is found
I If this yields a cheaper tree than previously known, keep it, else

throw it away
⇒ You’ll do a homework exercise on this.
I Rules for left-deep trees: swap and 3cycle
I Rules for bushy trees: commutativity, associativity, left/right

join exchange
Simulated Annealing

I Similar to II, but may keep worse tree (with decreasing
probability) to escape local minimum

I Parameter tuning is a nightmare. Consider the following
proposals for an “equilibrium”:

I # iterations = # relations
I # iterations = 16 × # relations

I “Would you bet your business on these numbers?”

7 / 15



II & SA
Iterative Improvement

I Get pseudo-random join tree
I Improve with random operation until local minimum is found
I If this yields a cheaper tree than previously known, keep it, else

throw it away
⇒ You’ll do a homework exercise on this.
I Rules for left-deep trees: swap and 3cycle
I Rules for bushy trees: commutativity, associativity, left/right

join exchange
Simulated Annealing

I Similar to II, but may keep worse tree (with decreasing
probability) to escape local minimum

I Parameter tuning is a nightmare. Consider the following
proposals for an “equilibrium”:

I # iterations = # relations
I # iterations = 16 × # relations
I “Would you bet your business on these numbers?”

7 / 15



Possible transformations

I Swap A on B → B on A
I 3Cycle A on (B on C )→ C on (A on B) (if possible)
I Associativity (A on B) on C → A on (B on C )

I Left Join exchange (A on B) on C → (A on C ) on B
I Right Join exchange A on (B on C )→ B on (A on C )

8 / 15



Iterative Improvement

R1

100
R2

50

R4

100
R3

200

0.5

0.004

0.1

0.01

./

./

./

R1 R2

R3

R4

I left deep trees only
(commutativity for base relations, 3Cycle)

I cost function: Cout

R1R2 R2R3 R3R4 R1R4 R1R2R3 R2R3R4 R1R3R4

2500 40 2000 100 2000 400 2000
9 / 15



Tabu Search

I In each step, take cheapest neighbor1 (even if more expensive
than current)

I Avoid cycles by keeping visited trees in a tabu-set

1i.e. join tree that can be produced with a single transformation
10 / 15



Genetic Algorithms

Big picture
I Create a “population”, i.e. create p random join trees
I Encode them using ordered list or ordinal number encoding
I Create the next generation

I Randomly mutate some members (e.g. exchange two relations)
I Pairs members of the population and create “crossovers”

I Select the best, kill the rest
Details

I Encodings
I Crossovers

11 / 15



Encoding

Ordered lists
I Simple
I Left-deep trees: Straight-forward
I Bushy trees: Label edges in join-graph, encode the processing

tree just like the execution engine will evaluate it
Ordinal numbers

I Are slightly more complex
I Manipulate a list of relations (careful: indexes are 1-based)
I Left-deep trees: (((R1 B R4)B R3)B R2)B R5

7→ 13211

I Bushy trees: (R3 B (R1 B R2))B (R4 B R5)

7→ 12 21 23 12

12 / 15



Encoding

Ordered lists
I Simple
I Left-deep trees: Straight-forward
I Bushy trees: Label edges in join-graph, encode the processing

tree just like the execution engine will evaluate it
Ordinal numbers

I Are slightly more complex
I Manipulate a list of relations (careful: indexes are 1-based)
I Left-deep trees: (((R1 B R4)B R3)B R2)B R5 7→ 13211
I Bushy trees: (R3 B (R1 B R2))B (R4 B R5)

7→ 12 21 23 12

12 / 15



Encoding

Ordered lists
I Simple
I Left-deep trees: Straight-forward
I Bushy trees: Label edges in join-graph, encode the processing

tree just like the execution engine will evaluate it
Ordinal numbers

I Are slightly more complex
I Manipulate a list of relations (careful: indexes are 1-based)
I Left-deep trees: (((R1 B R4)B R3)B R2)B R5 7→ 13211
I Bushy trees: (R3 B (R1 B R2))B (R4 B R5) 7→ 12 21 23 12

12 / 15



Crossover

Subsequence exchange for ordered list encoding
I Select subsequence in parent 1, e.g. abcdef gh
I Reorder subsequence according to the order in parent 2

Subsequence exchange for ordinal number encoding
I Swap two sequcences of same length and same offset
I What if we get duplicates?

Subset exchange for ordered list encoding
I Find random subsequeces in both parents that have the same

length and contain the same relations
I Exchange them to create two children

13 / 15



Quick Pick, Genetic Algorithm

R3

30

R1

30

R2

100

R4

20
R5

10

R6

100

R7

15
R8

100

1
6

1
10

1
20

3
4

1
5

1
25 1

3

14 / 15



Info

I Submit exercises to Andrey.Gubichev@in.tum.de
I Due December 15, 2014.

15 / 15


