Query Optimization Exercise Session 8

Andrey Gubichev

December 8, 2014

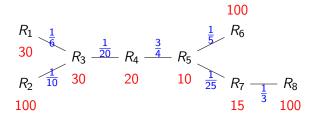
Plan for today

- ► Two heuristics: Iterative DP, Quick Pick
- Meta-heuristics

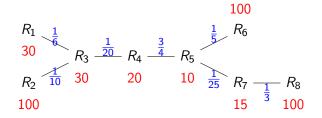
Iterative DP

- Create all join trees with size up to k, get the cheapest one
- Replace the cheapest tree with the compound relation, start all over again

Iterative Dynamic Programming



Iterative Dynamic Programming



R_1R_3	R_2R_3	R_3R_4	R_4R_5	R_5R_6	R_5R_7	R_7R_8
150	300	30	150	200	6	500

Quick Pick

- Trees = { R_1, \ldots, R_n }, Edges = list of edges
- pick a random edge $e \in Edges$ that connects two trees in *Trees*
- exclude two selected trees from *Trees*, add the new tree to *Trees*, *Edges* = *Edges* \ {*e*}
- repeat until the complete join tree is constructed

Question for the homework: How to check that an edge connects two trees? what data structures to use?

Metaheuristics

Iterative Improvement

- Get pseudo-random join tree
- Improve with random operation until local minimum is found
- If this yields a cheaper tree than previously known, keep it, else throw it away
- \Rightarrow You'll do a homework exercise on this.
 - ► Rules for left-deep trees: *swap* and *3cycle*
 - Rules for bushy trees: commutativity, associativity, left/right join exchange

- Similar to II, but may keep worse tree (with decreasing probability) to escape local minimum
- Parameter tuning is a nightmare. Consider the following proposals for an "equilibrium":

Iterative Improvement

- Get pseudo-random join tree
- Improve with random operation until local minimum is found
- If this yields a cheaper tree than previously known, keep it, else throw it away
- \Rightarrow You'll do a homework exercise on this.
 - ► Rules for left-deep trees: *swap* and *3cycle*
 - Rules for bushy trees: commutativity, associativity, left/right join exchange

- Similar to II, but may keep worse tree (with decreasing probability) to escape local minimum
- Parameter tuning is a nightmare. Consider the following proposals for an "equilibrium":
 - # iterations = # relations

Iterative Improvement

- Get pseudo-random join tree
- Improve with random operation until local minimum is found
- If this yields a cheaper tree than previously known, keep it, else throw it away
- \Rightarrow You'll do a homework exercise on this.
 - ► Rules for left-deep trees: *swap* and *3cycle*
 - Rules for bushy trees: commutativity, associativity, left/right join exchange

- Similar to II, but may keep worse tree (with decreasing probability) to escape local minimum
- Parameter tuning is a nightmare. Consider the following proposals for an "equilibrium":
 - # iterations = # relations
 - # iterations = $16 \times #$ relations

Iterative Improvement

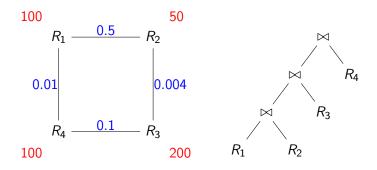
- Get pseudo-random join tree
- Improve with random operation until local minimum is found
- If this yields a cheaper tree than previously known, keep it, else throw it away
- \Rightarrow You'll do a homework exercise on this.
 - ► Rules for left-deep trees: *swap* and *3cycle*
 - Rules for bushy trees: commutativity, associativity, left/right join exchange

- Similar to II, but may keep worse tree (with decreasing probability) to escape local minimum
- Parameter tuning is a nightmare. Consider the following proposals for an "equilibrium":
 - # iterations = # relations
 - # iterations = $16 \times #$ relations
 - "Would you bet your business on these numbers?"

Possible transformations

- $\blacktriangleright Swap A \bowtie B \rightarrow B \bowtie A$
- ▶ 3Cycle $A \bowtie (B \bowtie C) \rightarrow C \bowtie (A \bowtie B)$ (if possible)
- Associativity $(A \bowtie B) \bowtie C \rightarrow A \bowtie (B \bowtie C)$
- Left Join exchange $(A \bowtie B) \bowtie C \rightarrow (A \bowtie C) \bowtie B$
- ▶ Right Join exchange $A \bowtie (B \bowtie C) \rightarrow B \bowtie (A \bowtie C)$

Iterative Improvement



 left deep trees only (commutativity for base relations, 3Cycle)

cost function: Cout

				$R_1R_2R_3$		
2500	40	2000	100	2000	400	2000

- In each step, take cheapest neighbor¹ (even if more expensive than current)
- Avoid cycles by keeping visited trees in a tabu-set

 $^{^{1}\}ensuremath{\text{i.e.}}$ join tree that can be produced with a single transformation

Genetic Algorithms

Big picture

- Create a "population", i.e. create p random join trees
- Encode them using ordered list or ordinal number encoding
- Create the next generation
 - Randomly mutate some members (e.g. exchange two relations)
 - Pairs members of the population and create "crossovers"
- Select the best, kill the rest

Details

- Encodings
- Crossovers

Encoding

Ordered lists

- Simple
- Left-deep trees: Straight-forward
- Bushy trees: Label edges in join-graph, encode the processing tree just like the execution engine will evaluate it

Ordinal numbers

- Are slightly more complex
- Manipulate a list of relations (careful: indexes are 1-based)
- Left-deep trees: $(((R_1 \bowtie R_4) \bowtie R_3) \bowtie R_2) \bowtie R_5$
- Bushy trees: $(R_3 \bowtie (R_1 \bowtie R_2)) \bowtie (R_4 \bowtie R_5)$

Encoding

Ordered lists

- Simple
- Left-deep trees: Straight-forward
- Bushy trees: Label edges in join-graph, encode the processing tree just like the execution engine will evaluate it

Ordinal numbers

- Are slightly more complex
- Manipulate a list of relations (careful: indexes are 1-based)
- ▶ Left-deep trees: $(((R_1 \bowtie R_4) \bowtie R_3) \bowtie R_2) \bowtie R_5 \mapsto 13211$
- Bushy trees: $(R_3 \bowtie (R_1 \bowtie R_2)) \bowtie (R_4 \bowtie R_5)$

Encoding

Ordered lists

- Simple
- Left-deep trees: Straight-forward
- Bushy trees: Label edges in join-graph, encode the processing tree just like the execution engine will evaluate it

Ordinal numbers

- Are slightly more complex
- Manipulate a list of relations (careful: indexes are 1-based)
- ▶ Left-deep trees: $(((R_1 \bowtie R_4) \bowtie R_3) \bowtie R_2) \bowtie R_5 \mapsto 13211$
- ▶ Bushy trees: $(R_3 \bowtie (R_1 \bowtie R_2)) \bowtie (R_4 \bowtie R_5) \mapsto 12212312$

Crossover

Subsequence exchange for ordered list encoding

- ► Select subsequence in parent 1, e.g. *abc<u>def</u>gh*
- ▶ Reorder subsequence according to the order in parent 2

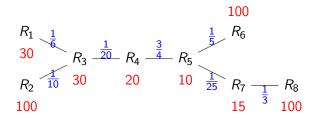
Subsequence exchange for ordinal number encoding

- Swap two sequcences of same length and same offset
- What if we get duplicates?

Subset exchange for ordered list encoding

- Find random subsequeces in both parents that have the same length and contain the same relations
- Exchange them to create two children

Quick Pick, Genetic Algorithm



Info

- Submit exercises to Andrey.Gubichev@in.tum.de
- Due December 15, 2014.