Query Optimization Exercise Session 9

Andrey Gubichev

December 15, 2014

II example - 1 (Bui Nhat Nam, Nguyen Dinh Duy)

- Candidates: 3142, 4132, 3142, 4312, 3412

II example - 2

Start: $\left(\left(R_{1} R_{2}\right) R_{3}\right) R_{4}: 6004$

- assoc: $\left(R_{1}\left(R_{2} R_{3}\right)\right) R_{4}: 6064$
- assoc: $\left(R_{1} R_{2}\right)\left(R_{3} R_{4}\right): 7084$
- I j ex: $\left(\left(R_{1} R_{3}\right) R_{2}\right) R_{4}: 6084$
- I j ex: $\left(\left(R_{1} R_{2}\right) R_{4}\right) R_{3}: 6084$

Optimal: $\left(R_{1} R_{4}\right)\left(R_{2} R_{3}\right): 5444$

Order Preserving Joins: Example

Consider the following sequence of relations $R_{1}, R_{2}, R_{3}, R_{4}$ and their join graph:

Give a fully-parenthesized, optimal join-expression that abides by this order. Use $C_{o u t}$ as a cost function.

Order Preserving Joins: Baseline

Let's start off with a cost analysis of the left-deep tree:

$C_{\text {out }}=$

Order Preserving Joins: Baseline

Let's start off with a cost analysis of the left-deep tree:

$$
C_{\text {out }}=100
$$

Order Preserving Joins: Baseline

Let's start off with a cost analysis of the left-deep tree:

$$
C_{\text {out }}=100+100
$$

Order Preserving Joins: Baseline

Let's start off with a cost analysis of the left-deep tree:

Order Preserving Joins: Initialization

OrderPreservingJoins $\left(R=\left\{R_{1}, \ldots, R_{n}\right\}, P\right)$
Input: a set of relations to be joined and a set of predicates
Output:fills p, s, c, t
for each $1 \leq i \leq n\{$
$p[i, i]=$ predicates from P applicable to R_{i}
$P=P \backslash p[i, i]$
$s[i, i]=$ statistics for $\sigma_{p[i, i]}\left(R_{i}\right)$
$c[i, i]=\operatorname{costs}$ for $\sigma_{p[i, i]}\left(R_{i}\right)$
\}

predicates p				statistics s					costs C			
\emptyset				200				0				
	\emptyset				1				0			
		\emptyset				1				0		
			\emptyset				20				0	0

Order Preserving Joins: Constructing the Bushy Tree

01for each $2 \leq I \leq 4$ ascending (in text: $2 \leq I \leq n$)
02 for each $1 \leq i \leq 5-I$ (in text: $1 \leq i \leq n-I+1$)
$03 \quad j=i+I-1$
$04 \quad p[i, j]=$ predicates from P applicable to R_{i}, \ldots, R_{j}
$05 \quad P=P \backslash p[i, j]$
$06 s[i, j]=$ statistics derived from $s[i, j-1]$ and $s[j, j]$ including $p[i, j]$
$07 \quad c[i, j]=\infty$
08 for each $i \leq k<j$

$$
q=c[i, k]+c[k+1, j]+\text { costs for } s[i, k] \text { and } s[k+1, j] \text { and } p[i, j]
$$

$$
\text { if } q<c[i, j]
$$

$c[i, j]=q$
$t[i, j]=k$

$$
\begin{aligned}
\text { line } & = \\
l & = \\
i & = \\
j & = \\
k & = \\
q & =
\end{aligned}
$$

Order Preserving Joins: Constructing the Bushy Tree

01for each $2 \leq I \leq 4$ ascending (in text: $2 \leq I \leq n$)
02 for each $1 \leq i \leq 5-I$ (in text: $1 \leq i \leq n-I+1$)
$03 j=i+I-1$
$04 \quad p[i, j]=$ predicates from P applicable to R_{i}, \ldots, R_{j}
$05 \quad P=P \backslash p[i, j]$
$06 s[i, j]=$ statistics derived from $s[i, j-1]$ and $s[j, j]$ including $p[i, j]$
$07 \quad c[i, j]=\infty$
08 for each $i \leq k<j$
$10 \quad q=c[i, k]+c[k+1, j]+\operatorname{costs}$ for $s[i, k]$ and $s[k+1, j]$ and $p[i, j]$
11 if $q<c[i, j]$
$12 \quad \mathrm{c}[\mathrm{i}, \mathrm{j}]=\mathrm{q}$
$13 \quad \mathrm{t}[\mathrm{i}, \mathrm{j}]=\mathrm{k}$

predicates p				statistics s				costs c				split points t			
\emptyset	\{ $\boldsymbol{p}_{\mathbf{1}, \mathbf{2}}$ \}			200	100			0	∞						
	\emptyset				1				0						
		\emptyset				1				0					
			\emptyset				20				0				

$$
\begin{array}{rlrl}
\text { line } & = & & 08 \\
I & = & 2 \\
i & = & & 1 \\
j & = & 2 \\
k & = & & \\
q & = & &
\end{array}
$$

Order Preserving Joins: Constructing the Bushy Tree

```
01for each \(2 \leq I \leq 4\) ascending (in text: \(2 \leq I \leq n\) )
02 for each \(1 \leq i \leq 5-I\) (in text: \(1 \leq i \leq n-I+1\) )
\(03 \quad j=i+I-1\)
\(04 \quad p[i, j]=\) predicates from \(P\) applicable to \(R_{i}, \ldots, R_{j}\)
\(05 \quad P=P \backslash p[i, j]\)
\(06 s[i, j]=\) statistics derived from \(s[i, j-1]\) and \(s[j, j]\) including \(p[i, j]\)
\(07 \quad c[i, j]=\infty\)
08 for each \(i \leq k<j\)
\(10 \quad q=c[i, k]+c[k+1, j]+\) costs for \(s[i, k]\) and \(s[k+1, j]\) and \(p[i, j]\)
11 if \(q<c[i, j]\)
\(12 \quad c[i, j]=q\)
\(13 \quad t[i, j]=k\)
```

predicates p				statistics s				costs c				split points t	
\emptyset	\{ $\boldsymbol{p}_{\mathbf{1}, \mathbf{2}}$ \}			200	100			0	100			1	
	\emptyset				1				0				
		\emptyset				1				0			
			\emptyset				20				0		

$$
\begin{array}{rlrl}
\text { line } & = & & 13 \\
I & = & 2 \\
i & = & 1 \\
j & = & 2 \\
k & = & 1 \\
q & & & 0+0+200 \cdot 1 \cdot \frac{1}{2}=100
\end{array}
$$

Order Preserving Joins: Constructing the Bushy Tree

01 for each $2 \leq I \leq 4$ ascending (in text: $2 \leq I \leq n$)
02 for each $1 \leq i \leq 5-I$ (in text: $1 \leq i \leq n-I+1$)
$03 \quad j=i+I-1$
$04 \quad p[i, j]=$ predicates from P applicable to R_{i}, \ldots, R_{j}
$05 \quad P=P \backslash p[i, j]$
$06 s[i, j]=$ statistics derived from $s[i, j-1]$ and $s[j, j]$ including $p[i, j]$
$07 \quad c[i, j]=\infty$
08 for each $i \leq k<j$
$10 \quad q=c[i, k]+c[k+1, j]+$ costs for $s[i, k]$ and $s[k+1, j]$ and $p[i, j]$
11 if $q<c[i, j]$
$12 \quad \mathrm{c}[\mathrm{i}, \mathrm{j}]=\mathrm{q}$
$13 \quad \mathrm{t}[\mathrm{i}, \mathrm{j}]=\mathrm{k}$

predicates p				statistics s				costs c				split points t	
\emptyset	\{ $\boldsymbol{p}_{\mathbf{1}, \mathbf{2} \text { \} }}$			200	100			0	100			1	
	\emptyset	\emptyset			1	1			0	∞			
		\emptyset				1				0			
			\emptyset				20				0		

$$
\begin{aligned}
\text { line } & =11 \\
\boldsymbol{I} & =\mathbf{2} \\
\boldsymbol{i} & =2 \\
\boldsymbol{j} & =3 \\
\boldsymbol{k} & =2 \\
\boldsymbol{q} & =0+\mathbf{0}+\mathbf{1} \cdot \mathbf{1} \cdot \mathbf{1}=\mathbf{1}
\end{aligned}
$$

Order Preserving Joins: Constructing the Bushy Tree

01for each $2 \leq I \leq 4$ ascending (in text: $2 \leq I \leq n$)
02 for each $1 \leq i \leq 5-I$ (in text: $1 \leq i \leq n-I+1$)
$03 j=i+I-1$
$04 \quad p[i, j]=$ predicates from P applicable to R_{i}, \ldots, R_{j}
$05 \quad P=P \backslash p[i, j]$
$06 s[i, j]=$ statistics derived from $s[i, j-1]$ and $s[j, j]$ including $p[i, j]$
$07 \quad c[i, j]=\infty$
08 for each $i \leq k<j$
$10 \quad q=c[i, k]+c[k+1, j]+\operatorname{costs}$ for $s[i, k]$ and $s[k+1, j]$ and $p[i, j]$
11 if $q<c[i, j]$
$12 \quad \mathrm{c}[\mathrm{i}, \mathrm{j}]=\mathrm{q}$
$13 \quad \mathrm{t}[\mathrm{i}, \mathrm{j}]=\mathrm{k}$

predicates p				statistics s				costs c				split points t		
\emptyset	$\left\{\boldsymbol{p}_{\mathbf{1}, \mathbf{2}}\right\}$			200	100			0	100			1		
	\emptyset	\emptyset			1	1			0	1			2	
		\emptyset				1				0				
			\emptyset				20				0			

$$
\begin{aligned}
\text { line } & = & 13 \\
\boldsymbol{I}= & & 2 \\
i & = & 2 \\
j & = & 3 \\
k & = & 2 \\
\boldsymbol{q} & = & 1
\end{aligned}
$$

Order Preserving Joins: Constructing the Bushy Tree

01for each $2 \leq I \leq 4$ ascending (in text: $2 \leq I \leq n$)
02 for each $1 \leq i \leq 5-I$ (in text: $1 \leq i \leq n-I+1$)
$03 j=i+I-1$
$04 \quad p[i, j]=$ predicates from P applicable to R_{i}, \ldots, R_{j}
$05 \quad P=P \backslash p[i, j]$
$06 s[i, j]=$ statistics derived from $s[i, j-1]$ and $s[j, j]$ including $p[i, j]$
$07 \quad c[i, j]=\infty$
08 for each $i \leq k<j$
$10 \quad q=c[i, k]+c[k+1, j]+$ costs for $s[i, k]$ and $s[k+1, j]$ and $p[i, j]$
11 if $q<c[i, j]$
$12 \quad \mathrm{c}[\mathrm{i}, \mathrm{j}]=\mathrm{q}$
$13 \quad \mathrm{t}[\mathrm{i}, \mathrm{j}]=\mathrm{k}$

predicates p				statistics s				costs c				split points t		
\emptyset	\{ $\mathbf{p l}_{\mathbf{1}, \mathbf{2}}$ \}			200	100			0	100			1		
	\emptyset	\emptyset			1	1			0	1			2	
		\emptyset	$\left\{p_{3,4}\right\}$			1	2			0	∞			
			\emptyset				20				0			

$$
\begin{aligned}
& \text { line }=11 \\
& I=2 \\
& i=3 \\
& j=4 \\
& k=3 \\
& q=0+0+1 \cdot 20 \cdot \frac{1}{10}=2
\end{aligned}
$$

Order Preserving Joins: Constructing the Bushy Tree

01for each $2 \leq I \leq 4$ ascending (in text: $2 \leq I \leq n$)
02 for each $1 \leq i \leq 5-I$ (in text: $1 \leq i \leq n-I+1$)
$03 \quad j=i+I-1$
$04 \quad p[i, j]=$ predicates from P applicable to R_{i}, \ldots, R_{j}
$05 \quad P=P \backslash p[i, j]$
$06 s[i, j]=$ statistics derived from $s[i, j-1]$ and $s[j, j]$ including $p[i, j]$
$07 \quad c[i, j]=\infty$
08 for each $i \leq k<j$
$10 \quad q=c[i, k]+c[k+1, j]+$ costs for $s[i, k]$ and $s[k+1, j]$ and $p[i, j]$
11 if $q<c[i, j]$
$12 \quad \mathrm{c}[\mathrm{i}, \mathrm{j}]=\mathrm{q}$
$13 \quad \mathrm{t}[\mathrm{i}, \mathrm{j}]=\mathrm{k}$

predicates p				statistics s				costs c				split points t		
\emptyset	\{ $\mathbf{p l}_{\mathbf{1}, \mathbf{2}}$ \}			200	100			0	100			1		
	\emptyset	\emptyset			1	1			0	1			2	
		\emptyset	$\left\{p_{3,4}\right\}$			1	2			0	2			3
			\emptyset				20				0			

$$
\begin{array}{rlrl}
\text { line } & = & & 13 \\
I & = & 2 \\
i & = & 3 \\
j & = & 4 \\
k & = & 3 \\
\boldsymbol{q} & = & 2
\end{array}
$$

Order Preserving Joins: Calling extract-plan

i / j	1	2	3	4
1		1	1	1
2			2	3
3				3
4				

ExtractPlan $\left(R=\left\{R_{1}, \ldots, R_{n}\right\}, t, p\right)$
Input: a set of relations, arrays t and p
Output:a bushy join tree return ExtractPlanRec $(R, t, p, 1, n)$

ExtractPlanRec $\left(R=\left\{R_{1}, \ldots, R_{n}\right\}, t, p, i, j\right)$
if $i<j$
$T_{1}=\operatorname{ExtractPlanRec}(R, t, p, i, t[i, j])$
$T_{2}=\operatorname{ExtractPlanRec}(R, t, p, t[i, j]+1, j)$ return $T_{1} \bowtie_{p[i, j]}^{L} T_{2}$
else
return $\sigma_{p[i, j]} R_{i}$

Order Preserving Joins: extract-plan callstack

```
extract-subplan(..., \(\mathrm{i}=1, \mathrm{j}=4\) )
    extract-subplan(..., \(\mathrm{i}=1, \mathrm{j}=1\) )
    extract-subplan(..., \(\mathrm{i}=2, \mathrm{j}=4\) )
        extract-subplan(..., \(i=2, j=3)\)
            extract-subplan(..., \(i=2, j=2)\)
            extract-subplan(..., \(\mathrm{i}=3, \mathrm{j}=3\) )
        return \(\left(R_{2} \bowtie_{\text {true }} R_{3}\right)\)
        extract-subplan \((\ldots, i=4, j=4)\)
    return \(\left(\left(R_{2} \bowtie_{\text {true }} R_{3}\right) \bowtie_{p_{3,4}} R_{4}\right)\)
\(\operatorname{return}\left(R_{1} \bowtie_{p_{1,2} \wedge p_{1,4}}\left(\left(R_{2} \bowtie_{\text {true }} R_{3}\right) \bowtie_{p_{3,4}} R_{4}\right)\right)\)
```

The total cost of this plan is $c[1,4]=43$.

- Submit exercises to Andrey.Gubichev@in.tum.de
- Due December 22, 2014.

