Query Optimization

Exercise Session 11

Andrey Gubichev

January 12, 2015

A: A branch of mathematics concerning the study of finite or countable discrete structures.
Q: What is ?

A: A branch of mathematics concerning the study of finite or countable discrete structures.

Q: What is combinatorics?

Combinatorics 101

Given a set of n elements, how many distinct k-element subsets can be formed?

Combinatorics 101

Given a set of n elements, how many distinct k-element subsets can be formed?

$$
\binom{n}{k}=\frac{n!}{(n-k)!\cdot k!}
$$

Combinatorics 101

Given a set of n elements, how many distinct k-element subsets can be formed?

$$
\binom{n}{k}=\frac{n!}{(n-k)!\cdot k!}
$$

Example: Choose 3 out of $5:\binom{5}{3}=\frac{5!}{2!\cdot 3!}=\frac{120}{2 \cdot 6}=10$

Direct, Uniform, Distinct

Waters/Yao Bottom-Up

Given m pages with n tuples on each page, e.g. a total of $N=m \cdot n$ tuples:

- How many distinct subsets of size k exist?

Waters/Yao Bottom-Up

Given m pages with n tuples on each page, e.g. a total of $N=m \cdot n$ tuples:

- How many distinct subsets of size k exist? $\binom{N}{k}$
- How many distinct subsets of size k exist, where a page does not contain any chosen tuples? Choose k from all but one page, i.e. from $N-n$ tuples:

Waters/Yao Bottom-Up

Given m pages with n tuples on each page, e.g. a total of $N=m \cdot n$ tuples:

- How many distinct subsets of size k exist? $\binom{N}{k}$
- How many distinct subsets of size k exist, where a page does not contain any chosen tuples? Choose k from all but one page, i.e. from $N-n$ tuples: $\binom{N-n}{k}$
So the probability that a page contains none of the k tuples is

Waters/Yao Bottom-Up

Given m pages with n tuples on each page, e.g. a total of $N=m \cdot n$ tuples:

- How many distinct subsets of size k exist? $\binom{N}{k}$
- How many distinct subsets of size k exist, where a page does not contain any chosen tuples? Choose k from all but one page, i.e. from $N-n$ tuples: $\binom{N-n}{k}$
So the probability that a page contains none of the k tuples is

$$
p:=\frac{\binom{N-n}{k}}{\binom{N}{k}}
$$

- What is the probability that a certains page contains at least one tuple?

Waters/Yao Bottom-Up

Given m pages with n tuples on each page, e.g. a total of $N=m \cdot n$ tuples:

- How many distinct subsets of size k exist? $\binom{N}{k}$
- How many distinct subsets of size k exist, where a page does not contain any chosen tuples? Choose k from all but one page, i.e. from $N-n$ tuples: $\binom{N-n}{k}$
So the probability that a page contains none of the k tuples is

$$
p:=\frac{\binom{N-n}{k}}{\binom{N}{k}}
$$

- What is the probability that a certains page contains at least one tuple? $1-p \ldots$ unless all pages have to be involved ($k>N-n$).
- Multiplied by the number of pages, we get the number of qualifying pages, denoted $\overline{\mathcal{Y}}_{n}^{N, m}(k)$.

Approximation

$$
\begin{aligned}
& \text { Let } m=50, n=1000 \Rightarrow N=50 k, k=100 \\
& \text { Yao (exact) }: p=\frac{\binom{N-n}{k}}{\binom{N}{k}}=\prod_{i=0}^{k-1} \frac{N-n-i}{N-i}=\prod_{i=0}^{99} \frac{49 k-i}{50 k-i}=13.2 \% \\
& \quad \text { Waters }: p \approx\left(1-\frac{k}{N}\right)^{n}
\end{aligned}
$$

Approximation

$$
\begin{aligned}
& \text { Let } m=50, n=1000 \Rightarrow N=50 k, k=100 \\
& \text { Yao (exact) }: p=\frac{\binom{N-n}{k}}{\binom{k}{k}}=\prod_{i=0}^{k-1} \frac{N-n-i}{N-i}=\prod_{i=0}^{99} \frac{49 k-i}{50 k-i}=13.2 \% \\
& \quad \text { Waters : } p \approx\left(1-\frac{k}{N}\right)^{n} \approx 13.5 \%
\end{aligned}
$$

Direct, Uniform, Non-Distinct

Combinatorics 101 revisited

- Now with replacement: How many distinct multisets exist chosing k from n ?

Combinatorics 101 revisited

- Now with replacement: How many distinct multisets exist chosing k from n ?
As many as there are distinct sets chosing k from $n+k-1$!

Combinatorics 101 revisited

- Now with replacement: How many distinct multisets exist chosing k from n ? As many as there are distinct sets chosing k from $n+k-1$!
- Bijection between multisets and sets. From multiset to set: $f:\left(x_{1}, x_{2}, \ldots, x_{k}\right) \mapsto\left(x_{1}+0, x_{2}+1, \ldots, x_{k}+(k-1)\right)$

Combinatorics 101 revisited

- Now with replacement: How many distinct multisets exist chosing k from n ?
As many as there are distinct sets chosing k from $n+k-1$!
- Bijection between multisets and sets. From multiset to set:

$$
f:\left(x_{1}, x_{2}, \ldots, x_{k}\right) \mapsto\left(x_{1}+0, x_{2}+1, \ldots, x_{k}+(k-1)\right)
$$

- Example: Choose 2 from 4
- \# sets: $\binom{4}{2}$
- \# multisets: $\left({ }_{2}^{4+2-1}\right)$

Cheung

- Like Yao, but not necessarily distinct
- Same formula as Yao, but:
- We don't need to distinguish cases when computing the probability that a bucket contains at least one item
- We substitue N by $N+k-1$ to compute \tilde{p}

Direct, Non-Uniform, Distinct

Direct, Non-Uniform, Distinct

Assume that $n_{j}>0 \forall j \in[1, m]$, then the expected number of qualifying pages is

$$
\sum_{j=1}^{m}\left(1-\frac{\binom{N-n_{j}}{k}}{\binom{N}{k}}\right)
$$

With $N=\sum_{j=1}^{m} n_{j}$.

Distribution Function

- The number of possibilities to select $x\left(x \leq n_{j}\right)$ items from bucket j is $\binom{n_{j}}{x}$.
- The number of possibilities to draw the remaining $k-x$ items from other buckets is $\binom{N-n_{j}}{k-x}$.
- Recall: The number of possibilities to draw k items from N is $\binom{N}{k}$.
\Rightarrow The probability that x items qualify from bucket j is

$$
\frac{\binom{n_{j}}{x}\binom{N-n_{j}}{k-x}}{\binom{N}{k}}
$$

Sequential, Uniform, Distinct

Sequential, Uniform, Distinct

- Estimate the distribution of distance between two qualifying tuples
- Bitvector B, b bits are set to 1
- First, let's find the distribution of number of zeros
- before first 1
- between two consecutive 1 s
- after last 1
- B-j-1 positions for i
- every bitvector has $b-1$ sequences of a form $10 \ldots 01$
$-\frac{(B-j-1)\binom{B-j-2}{b-2}}{(b-1)\binom{B}{b}}=\frac{\binom{B-j-1}{b-1}}{\binom{B}{b}}$
- now, the expected number of $0 \mathrm{~s}: \frac{B-b}{b+1}$
- then, the expected total number of bits between first and last 1 :

Sequential, Uniform, Distinct

- Estimate the distribution of distance between two qualifying tuples
- Bitvector B, b bits are set to 1
- First, let's find the distribution of number of zeros
- before first 1
- between two consecutive 1 s
- after last 1
- B-j-1 positions for i
- every bitvector has $b-1$ sequences of a form $10 \ldots 01$
$-\frac{(B-j-1)\binom{B-j-2}{b-2}}{(b-1)\binom{B}{b}}=\frac{\binom{B-j-1}{b-1}}{\binom{B}{b}}$
- now, the expected number of $0 \mathrm{~s}: \frac{B-b}{b+1}$
- then, the expected total number of bits between first and last 1: $B-\frac{B-b}{b+1}=\frac{B b+b}{b+1}$

Histograms

A histogram $H_{A}: B \rightarrow \mathbb{N}$ over a relation R partitions the domain of the aggregated attribute A into disjoint buckets B, such that

$$
\begin{aligned}
& \qquad H_{A}(b)=|\{r \mid r \in R \wedge R . A \in b\}| \\
& \text { and thus } \sum_{b \in B} H_{A}(b)=|R| .
\end{aligned}
$$

Histograms

A rough histogram might look like this:

Using Histograms (3)

Given a histogram, we can approximate the selectivities as follows:

$$
\begin{array}{ll}
A=c & \frac{\sum_{b \in B: c \in b} H_{A}(b)}{\sum_{b \in B} H_{A}(b)} \\
A>c & \frac{\sum_{b \in B: c \in b} \frac{\max (b)-c}{\max (b)-\min (b)} H_{A}(b)+\sum_{b \in B: \min (b)>c} H_{A}(b)}{\sum_{b \in B} H_{A}(b)} \\
A_{1}=A_{2} & \frac{\sum_{b_{1} \in B_{1}, b_{2} \in B_{2}, b^{\prime}=b_{1} \cap b_{2}: b^{\prime} \neq \emptyset} \frac{\max \left(b^{\prime}\right)-\min \left(b^{\prime}\right)}{\max \left(b_{1}\right)-\min \left(b_{1}\right)} H_{A_{1}}\left(b_{1}\right) \frac{\max \left(b^{\prime}\right)-\min \left(b^{\prime}\right)}{\max \left(b_{2}\right)-\min \left(b_{2}\right)} H_{A_{2}}\left(b_{2}\right.}{\sum_{b_{1} \in B_{1}} H_{A_{1}}\left(b_{1}\right) \sum_{b_{2} \in B_{2}} H_{A_{2}}\left(b_{2}\right)}
\end{array}
$$

Info

- Exercises due January 19, 2015.

