
16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 1

Physical Data Organisation
Topics:

• Storage hierarchy
• External storage
• Storage structures
• ISAM
• B-Trees
• Hashing
• Clustering



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 2

Overview: Storage Hierarchy

Register

L1/L2/L3 
Cache

Main Memory

Disk 

Tape



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 3

1 – 8 Byte/Register
Compiler

8 – 128 Byte/Cache
cache-controller

upper GB-range,
4 – 64 KB block size

operating system

upper TB-range
user 

PB-range
user

1 K (Kilo)     = 103

1 M (Mega) = 106

1 G (Giga)   = 109

1 T (Tera)    = 1012

1 P (Peta)   = 1015

Rough magnitude, 
rapidly outdated!

Overview: Storage Hierarchy

Register

L1/L2/L3 
Cache

Main Memory

Disk 

Tape



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 4

<   1ns

<  10 ns

< 100 ns

< 10 ms

secs

Overview: Storage Hierarchy

Register

L1/L2/L3 
Cache

Main Memory

Disk 

Tape

1 n (nano)  = 10-9

1 μ (micro) = 10-6

1 m (milli)   = 10-3

(Flash-Memory
Lower TB-range, 
< 100 μs)



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 5

Idea (1min)

Building (10min)

City (1.5h)

Pluto (2 years)

Andromeda

(2000 years)

< 1ns
register
< 10ns

L1/L2/L3 Cache
< 100ns

Main Memory
< 10 ms

Disk 

secs
Tape

Factor 105

Overview: Storage Hierarchy

(Mars (2 month))



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 6

Magnetic Disks

Sector: 
Unit to read or write, 
1-8 KB

Track: 
Formed of sectors of 
equal size

© www2.cs.uic.edu



16-Jan-19
Database System Concepts for Non-
Computer Scientists WS 2018/2019

7

Read Data from Disk
Seek Time: positioning of arm and head to the 

track

Latency: Rotation to the beginning of the sector
½ rotation of the disk (on average)

Transfer Time: Transfer sector from disk to 
main memory

Increasing range of disk transfer rates from the inner diameter 
to the outer diameter of the disk



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 8

Random versus Chained IO
Random I/O

Every time positioning of the arm, head, and rotation
Chained IO

Positioning, then read sectors track-wise

Chained IO is one to two maginitude faster 
than random I/O

à Need to consider this gap in algorithms!



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 9

Time to read 1000 blocks of size 8 KB?
ts:4ms; tr:2ms; ttr:0.1ms; ttrack-to-track seek time:0.5ms  

(63 sectors per track)
Random access:

trnd = 1000 * t
= 1000 * (ts + tr + ttr) = 1000 * (4 + 2 + 0.1)
= 1000 * 6.1 = 6100 ms

Sequential access:
tseq = ts + tr + 1000 * ttr + N * ttrack-to-track seek time

= ts + tr + 1000 * 0.1 + (16 * 1000)/63 * 0.5
= 4 + 2 + 100 + 126 = 232 ms

Random versus Chained IO



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 10

replace
Main Memory

fill

disk ~ persistent DB

Buffer Management



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 11

Fill and replace pages
=System buffer is divided in frames of equal size  
=A frame can be filled with one page (block, sector)
=Overflow pages are swapped on disk

Disk (swap device)
Main Memory
0 4K 8K 12K

28K

44K

60K

40K

48K

24K20K16K

32K 36K

56K52K

P480

P123

Frames Page



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 12

Addressing tuples on disk



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 13

Moving within a page



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 14

Moving from one page to
another 

Forward



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 15

With the next move 
the „Forward“ on 

page 4711 is altered
(no more Forward 

to page 4812)

Moving from one page to
another 



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 16

Data Transfer
Simple query execution:
select * from students where studNr=26120;

Get one tuple after the other to the main memory 
and evaluate predicates.

à Most expensive way L
à Mostly only a small fraction of the tuples 

fulfills the query



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 17

Index Structures
• Index structures are used to keep the data volume 

to be transferred from disk to main memory small 
• Only that part of the data which is really needed to 

answer the query is transferred
• Two main indexing methods:

o Hierarchical (trees)
o Partitioning (Hashing)



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 18

Hierarchical Indexes
We consider two hierarchical index structures:
• ISAM (Index-Sequential Access Method)
• B-Trees

• ISAM is the predecessor of B-Trees
• Main idea: sort tuples on the indexed attribute 

and create an index file on it 
• Similar to a thumb index in a book



16-Jan-19
Database System Concepts for Non-
Computer Scientists WS 2018/2019

19

Example

…5 9

1 2 3 4 5 6 7 8 …

Datapages
Page 1 Page 2 Page n

Index pages

Sorted  à



16-Jan-19
Database System Concepts for Non-
Computer Scientists WS 2018/2019

20

Example cont.
• Student with student number 13542 is searched 

• During query execution you go through the index
pages and look for the place where 13542 fits

• From there you get the referenced data page
• Advantage: Number of index pages is much less 

than number of data pages, i.e. you save I/O

• You can also answer range queries, e.g. all StudNr
between 765 and 1232: find as a start the first fitting 
data page for 765 and from there on you can go 
sequentially through the data pages until StudNr
1232



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 21

Problems with ISAM
Simple and fast search but maintenance of index is 
expensive:
• Inserting a tuple in a full data page: need to make 

room in dividing data page into two à we need to 
keep the sorting

• This creates a new entry on an index page 
• Inserting an entry in a full index page leads to 

shifting the entries to make room
• Although the number of index pages is smaller than 

the number of data pages going through the index 
pages can nevertheless take a long time



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 22

Advancement
Idea: 
Why not have index pages for the index 
pages? 

à This is in principle the idea of a B-Tree



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 23

B-Tree

…

48 51 53

45

1 2 3 4 15 …

Data pages
Page 1 Page 2 Page n

Index pages

Sorted  à

17 20

Index pages 54 809 29 35



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 24

B-Trees
Trees in Informatics
… have nodes
… have edges
… have a root (at the top!)
… have leaves (at the bottom!)
… are often balanced

(otherwise in extreme cases rather a chain)

Schematic depiction of a
balanced tree:

Root

Leaves



16-Jan-19
Database System Concepts for Non-

Computer Scientists WS 2018/2019
25

Properties of a B-Tree
B-Tree of degree i has following properties:

• Every path from the root to a leaf has the same length

• Every node ‒ except the root ‒ has at least i and at 

most 2i entries (in the example above i=2)

• Entries in every node are sorted 

• Every node – except the leaves – with n entries has 

n+1 children



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 26

• Let 
p0, k1, p1, k2, . . . kn, pn
be entries in a node (pj are page identifier, kj keys)

Then the following holds:
1. Sub-tree in p0 contains only keys smaller than k1
2. pj has a sub-tree with keys between kj and kj+1
3. Sub-tree being referenced by pn contains only keys 

greater than kn

Properties of a B-Tree

p0 pj... pn
k1
d1

kj
dj

kj+1
dj+1

kn
dn

...



16-Jan-19
Database System Concepts for Non-
Computer Scientists WS 2018/2019

27

Node Structure

S1
D1

S2
D2

P0 P1 P2

D.. 
Further Data S.. Search 

Key

P..
 

Poin
ter

 

(P
ag

eN
r)

Tree properties: 
• One node is one page
• Tree is balanced
• Node utilization at least 50%



16-Jan-19
Database System Concepts for Non-
Computer Scientists WS 2018/2019

28

Insert Algorithm
1. Find the proper leaf node to insert new key
2. Insert key there
3. If node full 

i. Divide node into two and extract median
ii. Insert all keys smaller than median into left node,  

all keys greater than median into right node
iii. Insert median in parent node and adapt pointers

4. If parent node full
i. If root node then create new root node, insert median, 

and adapt pointers
ii. Otherwise repeat 3. with parent node



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 29

Delete Algorithm
Read the literature or example on
lecture website



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 30

Gradual Assembly of a B-Tree 
of Degree i=2
See: 
https://db.in.tum.de/teaching/ws1819/DBSandere/BTreeExample.pdf

In the internet there are a number of animation programs 
for B-Trees – no warranty!

https://www.cs.usfca.edu/~galles/visualization/BTree.html
looks quite good, but uses a different notation for the 
maximal node size and does not handle node 
underflows.

https://www.db.in.tum.de/teaching/ws1819/DBSandere/BTreeExample.pdf
https://www.cs.usfca.edu/~galles/visualization/BTree.html


16-Jan-19
Database System Concepts for Non-
Computer Scientists WS 2018/2019

31

B+-Trees
• Performance of a B-Tree heavily depends on height: 

on average log (n) page accesses to read one data 
element
(k=degree of branching, n=number of indexed data 
elements)
à preferably high degree of branching of the inner 
nodes

• Storing data in the inner nodes reduces branching 
degree

• B+-Trees only store reference keys in inner nodes –
data itself is stored in leaf nodes

• Usually leaf nodes are bidirectionally linked in order to 
enable fast sequential search

k



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 32

Structure B+-Tree 

…

45

…

Data pages, sorted, bidirectionally linked

Page 1 Page 2 Page n

15
D15

17
D17

20
D20

Index pages9 29 35

1
D1

2
D2

Index

…



16-Jan-19
Database System Concepts for Non-

Computer Scientists WS 2018/2019
33

Prefix B+-Trees
• Further Improvement by use of prefixes of reference keys, 

e.g. with long strings as keys 

• You only have to find a reference key which separates the 

left and the right sub-tree:

Ø Disestablishment   <= E < Incomprehensibility

Ø Systemprogram <= ? < Systemprogrammer



16-Jan-19
Database System Concepts for Non-

Computer Scientists WS 2018/2019
34

Students
StudNr Name Semester
25403 Jonas 12
29120 Theophrastos 2
29555 Feuerbach 2
27550 Schopenhauer 6

Several Indexes on the 
same Data

When

• Index on StudNr?

• Index on Name?

• Index on Semester?

Primary index – Secondary index



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 35

Secondary indexes

Data pages, sorted, 
bidirectionally linked

…

45

1
D1

15
D15 …

Page 1 Page 2 Page n

17
D17

Index pages
9 29 35

2
D2

20
D20

Primary index

Secondary index

…

Index pages 

…



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 36

DDL: Create Index
CREATE [UNIQUE] INDEX index_name
ON table_name (column_name1 [, column_name2, …])

Example: 

CREATE INDEX full_name
ON Person (Last_Name, First_Name)



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 37

Partitioning 
What is Hashing?

• (to hash = zerhacken)

• Storing tuples in a defined memory area

• Hash function: mapping tuples (key values) 
to a fixed set of function values (memory area)

• Optimal hash function: 
o injective (no identical function values for different arguments)
o surjective (no waste of memory)

• Typical hash function h: h (x) = x mod N 
set of function values thereby {0,..., N-1}



16-Jan-19
Database System Concepts for Non-

Computer Scientists WS 2018/2019
38

Example Hashing
• Example hash function h(x) = x mod 3

0

1
(27550, ’Schopenhauer’, 6)

2
(24002, ’Xenokrates’, 18)

(25403, ’Jonas’, 12) 



16-Jan-19
Database System Concepts for Non-

Computer Scientists WS 2018/2019
39

Collisions
Collision handling

0

1
(27550, ’Schopenhauer’, 6)

●

2
(24002, ’Xenokrates’, 18)

●

(25403, ’Jonas’, 12) 

(26120, ’Fichte’, 10)

●

(28106, ’Carnap’, 3)
…

Inefficiently with not forseen quantity of data 

Way out: extensible (dynamic) Hashing

à further indirection via directory



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 40

Advantages / Disadvantages  
Hashing
+ Few accesses to external storage

constant cost: O(1), generally 1-2
+ Simple implementation

- Collision handling necessary
- Pre-allocation of memory area
- Not dynamic resp. only with adjustment 
- No range queries, only point queries



16-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 41

Interleaved Storing


