
30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 1

TRANSACTIONS

1. Read balance of A from DB into Variable a: read(A,a);
2. Subtract 50.- Euro from the balance: a:= a – 50;
3. Write new balance back into DB: write(A,a);
4. Read balance of B from DB into Variable b: read(B,b);

5. Add 50,- Euro to balance: b := b + 50;
6. Write new balance back into DB: write(B, b);

Example: Transfer Euro 50 from A to B

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 2

Definition: Transaction

Sequence of DML/DDL statements

Transforms the data base from one consistent state to
another consistent state

TRANSACTIONS

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 3

Transactions obey the following four properties

• Atomicity: "All or Nothing"-Property (error isolation)
• Undo changes if there is a problem
• Consistency: Maintaining DB consistency (defined integrity

constraints)
Ø Check integrity constraints at the end of a TA

• Isolation: Execution as if it is the only transaction in the system (no
impact on other parallel transactions)

à Synchronize operations of concurrent TAs
• Durability: Holding all committed updates even if the system fails or

restarts (persistency)
à Redo changes if there is a problem

ACID-Principle

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 4

Database Failures

Time

T2

T1

t1 t2 t3

Crash

30-Jan-19
Database System Concepts for Non-
Computer Scientists WS 2018/2019 5

Types of Failures:
R1-R4 Recovery

1. Abort of a single TA (application, system)
• R1 Recovery: Undo a single TA

2. System crash: lose main memory, keep disk
• R2 Recovery: Redo committed TAs
• R3 Recovery: Undo active TAs

2. System crash with loss of disks
• R4 Recovery: Read backup of DB from

tape

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 6

What’s the task of the application
programmer?

Ø Define borders of transactions
• as large as necessary
• as small as possible

The database system guarantees the ACID
properties

ACID-Principle cont.

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 7

Ø begin of transaction (BOT): Starts a new TA

Ø commit: End a TA (success).

ØApplication wants to make all changes durable.

Ø abort: End a TA (failure).

ØApplication wants to undo all changes.

ØN.B. Many APIs (e.g., JDBC) have an auto-commit option:

ØEvery SQL statement run in its own TA.

Programming with Transactions

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 8

begin;

insert into Lectures

values (5275, `Kernphysik`, 3, 2141);
insert into Professors

values (2141, `Meitner`, `FP`, 205);

commit;

SQL Example

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 9

Database-Scheduler

Transaction-Manager TM
Scheduler

Recovery-Manager
Buffer-Manager

Data-Manager

T2 T3T1 Tn......

Storage System

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 10

In multi-user operation following
concurrency anomalies can occur:

Lost Update
Dirty Read
Non-Repeatable Read
Phantom Reads

Concurrency Anomalies

30-Jan-19
Database System Concepts for Non-

Computer Scientists WS 2018/2019
11

Lost Update:
Anomalies (2)

Step T1 T2

1 read(A, a1)

2 a1 = a1 – 300

3 read(A, a2)

4 a2 = a2 *1,03

5 write(A, a2)

6 write(A, a1)

7 read(B, b1)

8 b1 = b1 + 300

9 write(B, b1)

T1 transfers 300 € from

account A to B.

T2 credits account A

3% interest.

Interesting steps:

5 and 6

update of TA 2
without (again)

reading A overwritten
and thereby lost.

t
i
m
e

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 12

Dirty Read
Anomalies (3)

Step T1 T2
1 read(A, a1)
2 a1 = a1 – 300
3 write(A, a1)
4 read(A, a2)
5 a2 = a2 * 1,03
6 write(A, a2)
7 read(B, b1)
8 ...
9 abort

T1 transfers 300 € from
account A to B.

T2 credits account A
3% interest.

Interesting steps:
4 and 9

T1 is aborted,
but T2 has credited

account A the interest in
steps 5/6 - computed
based on the ‚wrong‘

value of A.

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 13

Non-Repeatabe Read
Anomalies (4)

Step T1 T2
1 select distinct deptnr

from emp
where salary < 1000

2 update emp
set salary = salary + 10
where deptnr = 2

3 select distinct deptnr
from emp
where salary < 1000

T1 lists (twice) all
department numbers
where there exists an
employee with a salary
less than 1000.

T2 grants salary
increases to all
employees from
department number 2.

The update of T2
might affect the result

of the query in T1.

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 14

Phantom Read
Anomalies (5)

Step T1 T2
1 select

sum(balance)
from accounts

2 insert into
accounts values
(C, 1000)

3 select
sum(balance)
from accounts

T1 reads twice the sum
of all account balances.

T2 inserts a new
account with a balance

of 1000 €.

T1 computes two
different sums.

30-Jan-19
Database System Concepts for Non-
Computer Scientists WS 2018/2019

15

Criterion for correctness (goal):
Ø logical single user mode, i.e. avoiding all

multi user anomalies

Formal criterion for correctness :
Serializability:

Parallel execution of a set of transactions is
serializable, if there exists one serial execution
of the same set of transactions, yielding the
- same data base state and
- the same results as the original execution

Synchronization (1)

30-Jan-19
Database System Concepts for Non-
Computer Scientists WS 2018/2019

16

But: Serializability restricts parallel
execution of transactions
è Accepting anomalies enables less
hindrance of transactions
use very carefully!!

How to guarantee serializability?
… via locking
… via snapshotting
…

Synchronization (2)

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 17

Example: RX-locking (simple)
Two lock modes:

Read (R)-lock
Write- or exclusive (X)-lock

Compatibility matrix:

"+" means: lock is granted
"-" means: lock conflict

Locking (1)

none R X
R + + -
X + - -

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 18

• With lock conflict requesting transaction has to
wait until incompatible lock(s) is (are) removed

• Blocking and deadlocks possible
• Locks are potentially held until end of transaction

Possible optimizations:
• Hierarchical locking
• Reduced consistency level
• Multi version approach

Locking (2)

30-Jan-19
Database System Concepts for Non-
Computer Scientists WS 2018/2019

19

Incompatibility of a lock request:
à Transaction has to wait

Deadlock:

Search for deadlocks in periodical time intervals
(adjustable), usually done by cycle detection,
resolved by abort of transaction(s)

Timeout: Maximum time for waiting for a lock
(adjustable), abort of transaction when reached

Locking (3)

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 20

Deadlock Detection
Wait-for Graph

T1 ® T2 ® T3 ® T4 ® T1

T2 ® T3 ® T5 ® T2

=AbortT3 will resolve both cycles

=Alternative: Deadlock detection with timeouts. Pros/cons?

T1

T4 T3

T5

T2

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 21

Four Consistency levels (isolation levels)
determined by the anomalies which may occur
Lost Update always avoided: write locks until end
of transaction

Default: Serializable

Consistency levels SQL

Dirty Read Non-Repeatable Read Phantoms
Read Uncommitted + + +
Read Committed - + +
Repeatable Read - - +
Serializable - - -

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 23

Consistency levels PostgreSQL (1)

Dirty
Read

Non-Repeatable Read Phantoms

Read Uncommitted + - + +
Read Committed - + +
Repeatable Read - - + -
Serializable - - -

=

No anomalies ≠ serializable !! (phantoms still possible)

Critique: definition of anomalies stem from a synchronization
method using locking

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 24

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 25

Snapshot Isolation: Each transaction sees the
database in that state it was in when the
transaction started
== reads the last committed values that existed at
the time it started
à All reads made in a transaction will see a
consistent snapshot of the database
à Transaction itself will successfully commit only if
no updates it has made conflict with any
concurrent updates made since that snapshot
à Only write-write conflicts checked before
commit

Multi-Version Concurrency
Control in PostgreSQL (1)

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 26

• Such a write-write conflict will cause the
transaction to abort

Multi-version concurrency
control in PostgreSQL (2)

• Snapshot isolation is implemented by
multi-version concurrency control (MVCC)

• Advantage: no reader waits for a writer
no writer waits for a reader

• Disadvantage: needs more space for new
versions (no update in place)

needs cleaning
à Good if mainly read transactions

30-Jan-19 Database System Concepts for Non-
Computer Scientists WS 2018/2019 27

snapshot isolation may lead to
non serializable schedules
à serializable snapshot isolation

Multi-version concurrency
control in PostgreSQL (3)

Example: write skew anomaly
T1, T2 start concurrently on the same snapshot
T1 sets V1 to V1 – 200, checks that V1+V2 >= 0
T2 sets V2 to V2 – 200, checks that V1+V2 >= 0
both finally concurrently commit
none has seen the update performed by the other

à no serializable schedule
but no non-repeatable read anomaly!

