Query Optimization: Exercise Session 6

Bernhard Radke

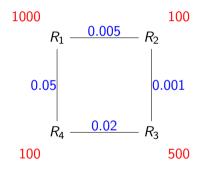
November 26, 2018

Lecture Evaluation

- Register for the course in TUMonline
- Evaluation will be done next week in the lecture on December 3
- Bring your laptop

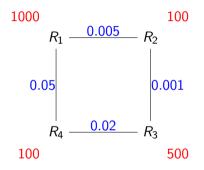
Maximum Value Precedence (MVP) [1]

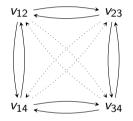
Weighted Directed Join Graph (WDJG)



Query graph to $WDJG = (V, E_p, E_v)$:

- \blacktriangleright nodes V = joins
- physical edges E_p between "adjacent" joins (share one relation)
- virtual edges E_v everywhere else
- $\mathcal{R}(v)$: relations participating in join v
- Observation: every spanning tree in the WDJG leads to a join tree



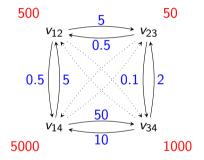


Weights and Costs:

edge weights:

$$w_{u,v} = \begin{cases} \frac{|\aleph_u|}{|\mathcal{R}(u) \cap \mathcal{R}(v)|} & \text{if } (u,v) \in E_p\\ 1 & \text{if } (u,v) \in E_v \end{cases}$$

▶ node costs: *C*_{out} of the join



Effective Spanning Tree (EST)

Three conditions:

- 1. EST is binary
- 2. For every non-leaf node v_i , for every edge $v_j \rightarrow v_i$ there is a common base relation between v_i and the subtree with the root v_i
- 3. For every node $v_i = R \bowtie S$ with two incoming edges $v_k \rightarrow v_i$ and $v_j \rightarrow v_i$
 - \triangleright R or S can be present at most in one of the subtrees v_k or v_j
 - unless the subtree v_j (or v_k) contains both R and S

MVP - informally

Construct an EST in two steps:

Step 1 - Choose an edge to reduce the cost of an expensive operation

- Start with the most expensive node
- Find the incoming edge that reduces the cost the most
- Add the edge to the EST and check the conditions
- Update the WDJG
- Repeat until
 - no edges can reduce costs anymore or
 - no further nodes to consider

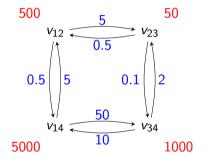
Step 2 - Find edges causing minimum increase to the result of joins

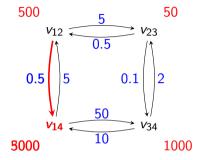
- ► Similar to Step 1
- Start with the cheapest node
- Find the incoming edge that increases the cost the least

Example

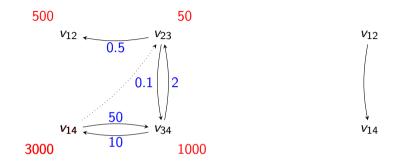
We start with a graph without virtual edges. Two cost lists:

- for the Step 1: $Q_1 = v_{14}, v_{34}, v_{12}, v_{23}$
- ▶ for the Step 2: $Q_2 = \emptyset$

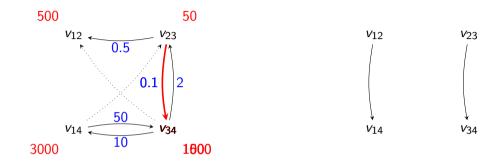




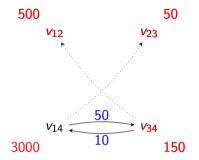
$$\begin{array}{l} Q_1 = v_{14}, v_{34}, v_{12}, v_{23}; \ Q_2 = \emptyset \\ \text{Consider } v_{14}, \text{ select the edge } v_{12} \rightarrow v_{14} \\ \text{After } v_{12} \text{ is executed, } |R_1 \bowtie R_2| = 500 \\ \text{Replace } R_1 \text{ by } R_1 \bowtie R_2 \text{ in } v_{14} = R_1 \bowtie R_4: \ v_{14} = (R_1 \bowtie R_2) \bowtie R_4 \\ cost(v_{14}) = 500 * 100 * 0.05 + 500 = 3000 \end{array}$$

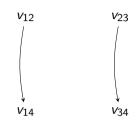


Move $v_{12} \rightarrow v_{14}$ to EST Update WDJG, remove edges $v_{14} \rightarrow v_{12}$ and $v_{12} \rightarrow v_{23}$, add edge $v_{14} \rightarrow v_{23}$ $Q_1 = v_{14}, v_{34}, v_{12}, v_{23}; Q_2 = \emptyset$ Consider v_{14} , no more incoming edges with w < 1 $Q_1 = V_{34}, V_{12}, V_{23}; Q_2 = V_{14}$

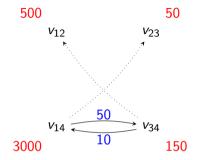


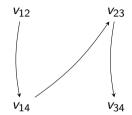
$$\begin{array}{l} Q_1 = v_{34}, v_{12}, v_{23}; \; Q_2 = v_{14} \\ \text{Consider } v_{34}, \; \text{select the edge } v_{23} \rightarrow v_{34} \\ \text{Recompute cost: } \; cost(v_{34}) = 50 * 100 * 0.02 + 50 = 150 \\ \text{Move to EST, Update WDJG} \\ Q_1 = v_{12}, v_{34}, v_{23}; \; Q_2 = v_{14} \end{array}$$





 $Q_1 = v_{12}, v_{34}, v_{23}; Q_2 = v_{14}$ Consider v_{12} , no edges v_{34}, v_{23} : no incoming edges with w < 1 $Q_1 = \emptyset; Q_2 = v_{23}, v_{34}, v_{12}, v_{14}$ End of Step 1





 $Q_2 = v_{23}, v_{34}, v_{12}, v_{14}$ Consider v_{23} , edge $v_{14} \rightarrow v_{23}$ Adding the edge would not violate EST conditions Add edge to EST Done.

Dynamic Programming

Overview

- generate optimal join trees bottom up
- start from optimal join trees of size one (relations)
- build larger join trees by (re-)using optimal solutions for smaller sizes

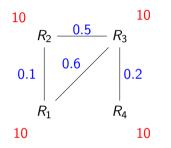
First Approach: DPsizeLinear [2]

- Enumerate increasing in size
- Generate linear trees by adding a single relation at a time

Modifications/Extensions:

- enumerate in integer order
- generate bushy trees by considering all pairs of subproblems

Example



- Enumerate connected-subgraph-complement pairs
- Query Simplification
- Reordering constraints for non-inner joins

Lecture Evaluation

Remember to bring your laptop for the lecture evaluation next week

- Slides: db.in.tum.de/teaching/ws1819/queryopt
- Exercise task: gitlab
- Questions, Comments, etc: mattermost @ mattermost.db.in.tum.de/qo18
- Exercise due: 9 AM next monday

Info

[1] C. Lee, C. Shih, and Y. Chen.

Optimizing large join queries using A graph-based approach. *IEEE Trans. Knowl. Data Eng.*, 13(2):298–315, 2001.

 P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path selection in a relational database management system. In Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data, Boston, Massachusetts, May 30 - June 1., pages 23–34, 1979.