
28 / 591

Textbook Query Optimization

2. Textbook Query Optimization

• Algebra Revisited

• Canonical Query Translation

• Logical Query Optimization

• Physical Query Optimization



29 / 591

Textbook Query Optimization Algebra Revisited

Algebra Revisited

The algebra needs some more thought:

• correctness is critical for query optimization

• can only be guaranteed by a formal model

• the algebra description in the introduction was too cursory

What we ultimately want to do with an algebraic model:

• decide if two algebraic expressions are equivalent (produce the same
result)

This is too difficult in practice (not computable in general), so we at least
want to:

• guarantee that two algebraic expressions are equivalent (for some
classes of expressions)

This still requires a strong formal model. We accept false negatives, but
not false positives.



30 / 591

Textbook Query Optimization Algebra Revisited

Tuples

Tuple:

• a (unordered) mapping from attribute names to values of a domain

• sample: [name: ”Sokrates”, age: 69]

Schema:

• a set of attributes with domain, written A(t)

• sample: {(name,string),(age, number)}

Note:

• simplified notation on the slides, but has to be kept in mind

• domain usually omitted when not relevant

• attribute names omitted when schema known



31 / 591

Textbook Query Optimization Algebra Revisited

Tuple Concatenation

• notation: t1 ◦ t2

• sample: [name: ”Sokrates”, age: 69]◦[country: ”Greece”]
= [name: ”Sokrates”, age: 69, country: ”Greece”]

• note: t1 ◦ t2 = t2 ◦ t1, tuples are unordered

Requirements/Effects:

• A(t1) ∩ A(t2) = ∅
• A(t1 ◦ t2) = A(t1) ∪ A(t2)



32 / 591

Textbook Query Optimization Algebra Revisited

Tuple Projection

Consider t = [name: ”Sokrates”, age: 69, country: ”Greece”]

Single Attribute:

• notation t.a

• sample: t.name = ”Sokrates”

Multiple Attributes:

• notation t|A

• sample: t|{name,age} = [name: ”Sokrates”, age: 69]

Requirements/Effects:

• a ∈ A(t), A ⊆ A(t)

• A(t|A) = A

• notice: t.a produces a value, t|A produces a tuple



33 / 591

Textbook Query Optimization Algebra Revisited

Relations

Relation:

• a set of tuples with the same schema

• sample: {[name: ”Sokrates”, age: 69], [name: ”Platon”, age: 45]}
Schema:

• schema of the contained tuples, written A(R)

• sample: {(name,string),(age, number)}



34 / 591

Textbook Query Optimization Algebra Revisited

Sets vs. Bags

• relations are sets of tuples

• real data is usually a multi set (bag)

Example: select age
from student

age

23
24
24
. . .

• we concentrate on sets first for simplicity

• many (but not all) set equivalences valid for bags

The optimizer must consider three different semantics:

• logical algebra operates on bags

• physical algebra operates on streams (order matters)

• explicit duplicate elimination ⇒ sets



35 / 591

Textbook Query Optimization Algebra Revisited

Set Operations

Set operations are part of the algebra:

• union (L ∪ R), intersection (L ∩ R), difference (L \ R)

• normal set semantic

• but: schema constraints

• for bags defined via frequencies (union → +, intersection → min,
difference → −)

Requirements/Effects:

• A(L) = A(R)

• A(L ∪ R) = A(L) = A(R), A(L ∩ R) = A(L) = A(R),
A(L \ R) = A(L) = A(R)



36 / 591

Textbook Query Optimization Algebra Revisited

Free Variables

Consider the predicate age = 62

• can only be evaluated when age has a meaning

• age behaves a free variable

• must be bound before the predicate can be evaluated

• notation: F(e) are the free variables of e

Note:

• free variables are essential for predicates

• free variables are also important for algebra expressions

• dependent join etc.



37 / 591

Textbook Query Optimization Algebra Revisited

Selection

Selection:

• notation: σp(R)

• sample: σa≥2({[a : 1], [a : 2], [a : 3]}) = {[a : 2], [a : 3]}
• predicates can be arbitrarily complex

• optimizer especially interested in predicates of the form
attrib = attrib or attrib = const

Requirements/Effects:

• F(p) ⊆ A(R)

• A(σp(R)) = A(R)



38 / 591

Textbook Query Optimization Algebra Revisited

Projection

Projection:

• notation: ΠA(R)

• sample: Π{a}({[a : 1, b : 1], [a : 2, b : 1]}) = {[a : 1], [a : 2]}
• eliminates duplicates for set semantic, keeps them for bag semantic

• note: usually written as Πa,b instead of the correct Π{a,b}

Requirements/Effects:

• A ⊆ A(R)

• A(ΠA(R)) = A



39 / 591

Textbook Query Optimization Algebra Revisited

Rename

Rename:

• notation: ρa→b(R)

• sample:
ρa→c({[a : 1, b : 1], [a : 2, b : 1]}) = {[c : 1, b : 1], [c : 2, b : 2]}?

• often a pure logical operator, no code generation

• important for the data flow

Requirements/Effects:

• a ∈ A(R), b 6∈ A(R)

• A(ρa→b(R)) = A(R) \ {a} ∪ {b}



40 / 591

Textbook Query Optimization Algebra Revisited

Join

Consider L = {[a : 1], [a : 2]},R = {[b : 1], [b : 3]}

Cross Product:

• notation: L× R

• sample: L× R = {[a : 1, b : 1], [a : 1, b : 3], [a : 2, b : 1], [a : 2, b : 3]}
Join:

• notation: L pR

• sample: L a=bR = {[a : 1, b : 1]}
• defined as σp(L× R)

Requirements/Effects:

• A(L) ∩ A(R) = ∅,F(p) ∈ (A(L) ∪ A(R))

• A(L× R) = A(L) ∪ AR



41 / 591

Textbook Query Optimization Algebra Revisited

Equivalences

Equivalences for selection and projection:

σp1∧p2(e) ≡ σp1(σp2(e)) (1)

σp1(σp2(e)) ≡ σp2(σp1(e)) (2)

ΠA1(ΠA2(e)) ≡ ΠA1(e) (3)

if A1 ⊆ A2

σp(ΠA(e)) ≡ ΠA(σp(e)) (4)

if F(p) ⊆ A

σp(e1 ∪ e2) ≡ σp(e1) ∪ σp(e2) (5)

σp(e1 ∩ e2) ≡ σp(e1) ∩ σp(e2) (6)

σp(e1 \ e2) ≡ σp(e1) \ σp(e2) (7)

ΠA(e1 ∪ e2) ≡ ΠA(e1) ∪ ΠA(e2) (8)



42 / 591

Textbook Query Optimization Algebra Revisited

Equivalences
Equivalences for joins:

e1 × e2 ≡ e2 × e1 (9)

e1 pe2 ≡ e2 pe1 (10)

(e1 × e2)× e3 ≡ e1 × (e2 × e3) (11)

(e1 p1e2) p2e3 ≡ e1 p1(e2 p2e3) (12)

σp(e1 × e2) ≡ e1 pe2 (13)

σp(e1 × e2) ≡ σp(e1)× e2 (14)

if F(p) ⊆ A(e1)

σp1(e1 p2e2) ≡ σp1(e1) p2e2 (15)

if F(p1) ⊆ A(e1)

ΠA(e1 × e2) ≡ ΠA1(e1)× ΠA2(e2) (16)

if A = A1 ∪ A2,A1 ⊆ A(e1),A2 ⊆ A(e2)



43 / 591

Textbook Query Optimization Canonical Query Translation

Canonical Query Translation

Canonical translation of SQL queries into algebra expressions.
Structure:

select distinct a1, . . . , an
from R1, . . . ,Rk

where p

Restrictions:

• only select distinct (sets instead of bags)

• no group by, order by, union, intersect, except

• only attributes in select clause (no computed values)

• no nested queries, no views

• not discussed here: NULL values



44 / 591

Textbook Query Optimization Canonical Query Translation

From Clause

1. Step: Translating the from clause

Let R1, . . . ,Rk be the relations in the from clause of the query.
Construct the expression:

F =

{
R1 if k = 1
((. . . (R1 × R2)× . . .)× Rk) else



45 / 591

Textbook Query Optimization Canonical Query Translation

Where Clause

2. Step: Translating the where clause

Let p be the predicate in the where clause of the query (if a where clause
exists).
Construct the expression:

W =

{
F if there is no where clause
σp(F ) otherwise



46 / 591

Textbook Query Optimization Canonical Query Translation

Select Clause

3. Step: Translating the select clause

Let a1, . . . , an (or ”*”) be the projection in the select clause of the query.
Construct the expression:

S =

{
W if the projection is ”*”
Πa1,...,an(W ) otherwise

4. Step: S is the canonical translation of the query.



47 / 591

Textbook Query Optimization Canonical Query Translation

Sample Query

select distinct s.sname
from student s, attend a, lecture l , professor p
where s.sno = a.asno and a.alno = l .lno and

l .lpno = p.pno and p.pname =′′ Sokrates ′′

Πsname

σsno=asno∧alno=lno∧lpno=pno∧pname=′′Sokrates′′

×

×

×

professorlectureattendstudent



48 / 591

Textbook Query Optimization Canonical Query Translation

Extension - Group By Clause

2.5. Step: Translating the group by clause. Not part of the ”canonical”
query translation!

Let g1, . . . , gm be the attributes in the group by clause and agg the
aggregations in the select clause of the query (if a group by clause exists).
Construct the expression:

G =

{
W if there is no group by clause
Γg1,...,gm;agg (W ) otherwise

use G instead of W in step 3.



49 / 591

Textbook Query Optimization Logical Query Optimization

Optimization Phases

Textbook query optimization steps:

1. translate the query into its canonical algebraic expression

2. perform logical query optimization

3. perform physical query optimization

we have already seen the translation, from now one assume that the
algebraic expression is given.



50 / 591

Textbook Query Optimization Logical Query Optimization

Concept of Logical Query Optimization

• foundation: algebraic equivalences

• algebraic equivalences span the potential search space

• given an initial algebraic expression: apply algebraic equivalences to
derive new (equivalent) algebraic expressions

• note: algebraic equivalences do not indicate a direction, they can be
applied in both ways

• the conditions attached to the equivalences have to be checked

Algebraic equivalences are essential:

• new equivalences increase the potential search space

• better plans

• but search more expensive



51 / 591

Textbook Query Optimization Logical Query Optimization

Performing Logical Query Optimization

Which plans are better?

• plans can only be compared if there is a cost function

• cost functions need details that are not available when only
considering logical algebra

• consequence: logical query optimization remains a heuristic



52 / 591

Textbook Query Optimization Logical Query Optimization

Performing Logical Query Optimization

Most algorithms for logical query optimization use the following strategies:

• organization of equivalences into groups

• directing equivalences

Directing means specifying a preferred side.
A directed equivalences is called a rewrite rule. The groups of rewrite rules
are applied sequentially to the initial algebraic expression. Rough goal:

reduce the size of intermediate results



53 / 591

Textbook Query Optimization Logical Query Optimization

Phases of Logical Query Optimization

1. break up conjunctive selection predicates
(equivalence (1) →)

2. push selections down
(equivalence (2) →, (14) →)

3. introduce joins
(equivalence (13) →)

4. determine join order
(equivalence (9), (10), (11), (12))

5. introduce and push down projections
(equivalence (3) ←, (4) ←, (16) →)



54 / 591

Textbook Query Optimization Logical Query Optimization

Step 1: Break up conjunctive selection predicates

• selection with simple predicates can be moved around easier

σpname=′′Sokrates′′

σsno=asno

σalno=lno

σlpno=pno

student attend lecture professor

×

×

×

Πsname



55 / 591

Textbook Query Optimization Logical Query Optimization

Step 2: Push Selections Down

• reduce the number of tuples early, reduces the work for later operators

σpname=′′Sokrates′′

σsno=asno

σalno=lno

σlpno=pno

student attend lecture professor

×

×

×

Πsname



56 / 591

Textbook Query Optimization Logical Query Optimization

Step 3: Introduce Joins

• joins are cheaper than cross products

lpno=pno

alno=lno

sno=asno

σpname=′′Sokrates′′

student attend lecture professor

Πsname



57 / 591

Textbook Query Optimization Logical Query Optimization

Step 4: Determine Join Order

• costs differ vastly

• difficult problem, NP hard (next chapter discusses only join ordering)

Observations in the sample plan:

• bottom most expression is
student sno=asnoattend

• the result is huge, all students, all their lectures

• in the result only one professor relevant
σname=′′Sokrates′′(professor)

• join this with lecture first, only lectures by him, much smaller



58 / 591

Textbook Query Optimization Logical Query Optimization

Step 4: Determine Join Order

• intermediate results much smaller

lpno=pno

alno=lno

sno=asno

σpname=′′Sokrates′′

studentattendlectureprofessor

Πsname



59 / 591

Textbook Query Optimization Logical Query Optimization

Step 5: Introduce and Push Down Projections
• eliminate redundant attributes
• only before pipeline breakers

Πlpno,lno

Πsname

professor lecture attend student

σpname=′′Sokrates′′

sno=asno

alno=lno

lpno=pno

Πpno

Πlno Πalno,asno

Πasno Πsno,sname



60 / 591

Textbook Query Optimization Logical Query Optimization

Limitations
Consider the following SQL query

select distinct s.sname
from student s, lecture l , attend a
where s.sno = a.asno and a.alno = l .lno and l .ltitle =′′ Logic ′′

Steps 1-2 could result in plan below. No further selection push down.

σalno=lno

σsno=asno

student attendlecture

×

×

Πsname

σltitle=′′Logic′′



61 / 591

Textbook Query Optimization Logical Query Optimization

Limitations

However a different join order would allow further push down:

σalno=lno

σsno=asno

student attend lecture

×

×

Πsname

σltitle=′′Logic′′

⇒

σalno=lno

σsno=asno

student attend lecture

×

×

Πsname

σltitle=′′Logic′′

• the phases are interdependent

• the separation can loose the optimal solution



62 / 591

Textbook Query Optimization Physical Query Optimization

Physical Query Optimization

• add more execution information to the plan

• allow for cost calculations

• select index structures/access paths

• choose operator implementations

• add property enforcer

• choose when to materialize (temp/DAGs)



63 / 591

Textbook Query Optimization Physical Query Optimization

Access Paths Selection

• scan+selection could be done by an index lookup

• multiple indices to choose from

• table scan might be the best, even if an index is available

• depends on selectivity, rule of thumb: 10%

• detailed statistics and costs required

• related problem: materialized views

• even more complex, as more than one operator could be substitued



64 / 591

Textbook Query Optimization Physical Query Optimization

Operator Selection

• replace a logical operator (e.g. ) with a physical one (e.g. HH)

• semantic restrictions: e.g. most join operators require equi-conditions

• BNL is better than NL

• SM and HH are usually better than both

• HH is often the best if not reusing sorts

• decission must be cost based

• even NL can be optimal!

• not only joins, has to be done for all operators



65 / 591

Textbook Query Optimization Physical Query Optimization

Property Enforcer

• certain physical operators need certain properties

• typical example: sort for SM

• other example: in a distributed database operators need the data
locally to operate

• many operator requirements can be modeled as properties (hashing
etc.)

• have to be guaranteed as needed



66 / 591

Textbook Query Optimization Physical Query Optimization

Materializing

• sometimes materializing is a good idea

• temp operator stores input on disk

• essential for multiple consumers (factorization, DAGs)

• also relevant for NL

• first pass expensive, further passes cheap



67 / 591

Textbook Query Optimization Physical Query Optimization

Physical Plan for Sample Query

SM
sno=asno

SM
alno=lno

sortsno

sortalno

sortasno

indexscanpname=′′Sokrates′′

sortlno

SM
lpno=pno

sortlpnosortpno

Πsno,snameΠasno

Πalno,asnoΠlno

Πpno

studentattendlectureprofessor

Πsname

Πlpno,lno



68 / 591

Textbook Query Optimization Physical Query Optimization

Outlook

• separation in two phases looses optimality

• many decissions (e.g. view resolution) important for logical
optimization

• textbook physical optimization is incomplete

• did not discuss cost calculations

• will look at this again in later chapters


