Code Generation for Data Processing
 Lecture 13: Vectorization

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology
Technical University of Munich
Winter 2022/23

Parallel Data Processing

- Sequential execution has inherently limited performance
- Clock rate, data path lengths, speed of light, ...
- Parallelism is the key to substantial and scalable perf. improvements
- Modern systems have many levels of parallelism:
- Multiple nodes/systems, connected via network
- Different compute units (CPU, GPU, etc.), connected via PCle
- Multiple CPU sockets, connected via QPI (Intel) or HyperTransport (AMD)
- Multiple CPU cores
- Multiple threads per core
- Instruction-level parallelism (superscalar out-of-order execution)
- Data parallelism (SIMD)

Single Instruction, Multiple Data (SIMD)

- Idea: perform same operations on multiple data in parallel
- First computer with SIMD operations: MIT Lincoln Labs TX-2, 1957^{56}
- Wider use in HPC in 1970s with vector processors (Cray et al.)
- Ultimately replaced by much more scalable distributed machines
- SIMD-extensions for multimedia processing from 1990s onwards
- Often include very special instructions for image/video/audio processing
- Shift towards HPC and data processing around 2010
- Extensions for machine learning/AI in late 2010s

SIMD: Idea

- Multiple data elements are stored in vectors
- Size of data may differ, vector size is typically constant
- Single elements in vector referred to as lane
- (Vertical) Operations apply the same operation to all lanes

- Horizontal operations work on neighbored elements

SIMD ISAs: Design

- Vectors are often implemented as fixed-size wide registers
- Examples: ARM NEON 32×128-bit, Power QPX 32×256-bit
- Data types and element count is defined by instruction
- Some ISAs have dynamic vector sizes: ARM VFP, ARM SVE, RISC-V V
- Problematic for compilers: variable spill size, less constant folding
- Data types vary, e.g. i8/i16/i32/i64/f16/bf16/f32/f64/f128
- Sometimes only conversion, sometime with saturating arithmetic
- Masking allows to suppress operations for certain lanes
- Dedicated mask registers (AVX-512, SVE, RVV) allow for hardware masking
- Can also apply for memory operations, optionally suppressing faults
- Otherwise: software masking with another vector register

SIMD: Use Cases

- Dense linear algebra: vector/matrix operations
- Implementations: Intel MKL, OpenBLAS, ATLAS, ...
- Sparse linear algebra
- Needs gather/scatter instructions
- Image and video processing, manipulation, encoding
- String operations
- Implemented, e.g., in glibc, simdjson
- Cryptography

SIMD ISAs: Usage Considerations

- Very easy to implement in hardware
- Simple replication of functional units and larger vector registers
- Too large vectors, however, also cause problems (AVX-512)
- Offer significant speedups for certain applications
- With 4x parallelism, speed-ups of $\sim 3 x$ are achievable
- Caveat: non-trivial to program
- Optimized routines provided by libraries
- Compilers try to auto-vectorize, but often need guidance

SIMD Programming: (Inline) Assembly

- Idea: SIMD is too complicated, let programmer handle this
- Programmer specifies exact code (instrs, control flow, and registers)
- Inline assembly allows for integration into existing code
- Specification of register constraints and clobbers needed
- "Popular" for optimized libraries
+ Allows for best performance
- Very tedious to write, manual register allocation, non-portable
- No optimization across boundaries

SIMD Programming: Intrinsics

- Idea: deriving a SIMD schema is complicated, delegate to programmer
- Intrinsic functions correspond to hardware instructions
- __m128i _mm_add_epi32 (__m128i a, __m128i b)
- Programmer explicitly specifies vector data processing instructions compiler supplements registers, control flow, and scalar processing
+ Allows for very good performance, still exposes all operations
+ Compiler can to some degree optimize intrinsics
- GCC does not; Clang/LLVM does - intrinsics often lowered to LLVM-IR vectors
- Tedious to write, non-portable

Intrinsics for Unknown Vector Size

- Size not known at compile-time, but can be queried at runtime
- SVE: instruction incd adds number of vector lanes to register
- In C: behave like an incomplete type, except for parameters/returns
- Flexible code often slower than with assumed constant vector size
- Consequences:
- Cannot put such types in structures, arrays, sizeof
- Stack spilling implies variably-sized stack
- Instructions to set mask depending on bounds: whilelt, ...
- No loop peeling for tail required

Fault Suppression

- Variable-length vectors are problematic for buffers of unknown size
- Example: NUL-terminated C strings
- Classical approach: ensure alignment to prevent page faults
- These types of out-of-bounds reads are guaranteed to be non-harmful
- Downside: needs loop peeling code for start/end
- More recent approach: make hardware suppress exceptions
- Option 1: specify that masked out lanes do not produce faults
- Option 2: stop loading after first fault, store as mask in register
- Downside 1: increased complexity in hardware, may use microcode
- Downside 2: permits speculative vectorization at cost of more instructions

SIMD Programming: Target-independent Vector Extensions

- Idea: vectorization still complicated, but compiler can choose instrs.
- Programmer still specifies exact operations, but in target-independent way
- Often mixable with target-specific intrinsics
- Compiler maps operations to actual target instructions
- If no matching target instruction exists, use replacement code
- Inherent danger: might be less efficient than scalar code
- Often relies on explicit vector size

GCC Vector Extensions

```
#include <stdint.h>
typedef uint32_t uint32x4_t
    __attribute__((vector_size(16)));
uint32x4_t
addvec(uint32x4_t a, uint32x4_t b) {
    return a + b;
}
uint32x4_t
modvec(uint32x4_t a, uint32x4_t b) {
    return a % b;
}
```

addvec:
paddd xmm0, xmm1
ret
modvec:
movd ecx, xmm1
movd eax, xmm0
xor edx, edx
pextrd edi, xmm1, 1
div ecx
pextrd eax, xmm0, 1
pextrd ecx, xmm1, 2
mov esi, edx
xor edx, edx
div edi
pextrd eax, xmm0, 2
mov r8d, edx
xor edx, edx
div ecx
pextrd ecx, xmm1, 3
pextrd eax, xmm0, 3
movd xmm0, esi
pinsrd xmm0, r8d, 1
mov edi, edx
xor edx, edx
div ecx
movd xmm1, edi
pinsrd xmm1, edx, 1

SIMD Programming: Single Program, Multiple Data (SPMD)

- So far: manual vectorization
- Observation: same code is executed on multiple elements
- Idea: tell compiler to vectorize handling of single element
- Splice code for element into separate function
- Tell compiler to generate vectorized version of this function
- Function called in vector-parallel loop
- Needs annotation of variables
- Varying: variables that differ between lanes
- Uniform: variables that are guaranteed to be the same (basically: scalar values that are broadcasted if necessary)

SPMD: Example (OpenMP)

```
#pragma omp declare simd
int add(int x, int y) {
    return x + y;
}
```

- Compiler generates version that operates on vector

```
foo:
    add edi, esi
    mov eax, edi
    ret
```

_ZGVxN4vv_foo:
paddd xmm0, xmm1
ret

SPMD: Example (OpenMP)

```
#pragma omp declare simd uniform(y)
int add(int x, int y) {
    return x + y;
}
```

- Uniform: always same value

```
foo:
    add edi, esi
    mov eax, edi
    ret
_ZGVxN4vu_foo:
    movd xmm1, eax
    pshufd xmm2, xmm1, 0
    paddd xmm0, xmm2
    ret
```


SPMD: Example (OpenMP) - if/else

```
#pragma omp declare simd
int foo(int x, int y) {
    int res;
    if (x > y) res = x;
    else res = y - x;
        return res;
}
```

```
foo:
    mov eax, esi
    sub eax, edi
    cmp edi, esi
    cmovg eax, edi
    ret
_ZGVxN4vv_foo:
    movdqa xmm2, xmm0
    pcmpgtd xmm0, xmm1
    psubd xmm1, xmm2
    pblendvb xmm1, xmm2, xmm0
    movdqa xmm0, xmm1
    ret
```


SPMD to SIMD: Handling if/else

- Control flow solely depending on uniforms: nothing different
- Otherwise: control flow may diverge
- Different lanes may choose different execution paths
- But: CPU has only one control flow, so all paths must execute
- Condition becomes mask, mask determines result
- After insertion of masks, linearize control flow
- Relevant control flow now encoded in data through masks

SPMD to SIMD: Handling Loops

- Uniform loops: nothing different
- Otherwise: need to retain loop structure
- "active" mask added to all loop iterations
- Loop only terminates once all lanes terminate (active is zero)
- Lanes that terminated early need their values retained
- Approach also works for nested loops/conditions
- Irreducible loops need special handling ${ }^{57}$

SPMD Implementations on CPUs

- OpenMP SIMD functions
- Need to be combined with \#pragma omp simd loops
- Intel ispc ${ }^{58}$ (Implicit SPMD Program Compiler)
- Extension of C with keywords uniform, varying
- Still active and interesting history ${ }^{59}$
- OpenCL on CPU
- Very similar programming model
- But: higher complexity for communicating with rest of application
${ }^{58}$ M Pharr and WR Mark. "ispc: A SPMD compiler for high-performance CPU programming". In: InPar. 2012 , pp. 1-13.

SIMD Programming: SPMD on CPUs

- Semi-explicit vectorization
- Programmer chooses level of vectorization
- E.g., inner vs. outer loop
- Compiler does actual work
+ Allows simple formulation of complex control flow
- Compilers often fail at handling complex control flow well
- Loops are particularly problematic

SIMD Programming: Auto-vectorization

- Idea: programmer is too incompetent/busy, let compiler do vectorization
- Inherently difficult and problematic, after decades of research
- Recognizing and matching lots of patterns
- Instruction selection becomes more difficult
- Compiler lacks domain knowledge about permissible transformations
- Executive summary of the state of the art:
- Auto-vectorization works well for very simple cases
- For "medium complexity", code is often suboptimal
- In many cases, auto-vectorization fails on unmodified code

Auto-vectorization is Hard

- Biggest problem: data dependencies
- Resolving loop-carried dependencies is difficult
- Memory aliasing
- Overlapping arrays, or - worse - loop counter
- Loop body might impact loop count
- Function calls, e.g. for math functions
- Strided memory access (e.g., only every n-th element)
- Choosing vectorization level (outer loop might be better)
- Is vectorization profitable at all?
- Often black box to programmer, preventing fine-grained tuning

Auto-vectorization Strategies

- Inner Loop Vectorization: unroll innermost loop n times
- Try to compact loop body into vectors with n lanes
- Outer Loop Vectorization: unroll outer loop n times
- Try to compact loop body into vectors with n lanes
- Generally does not support diverging control flow in loop body
- Superword-level Parallelism (SLP): packing series of scalar stores
- Detect neighbored stores, try to fold operations into vectors

Vectorization - Summary

- SIMD is an easy way to improve performance numbers of CPUs
- Most general-purpose ISAs have one or more SIMD extensions
- Recent trend: variably-length vectors
- Inline Assembly: easiest for compiler, but extremely tedious
- Intrinsics: best trade-off towards performance and usability
- Target-independent operations: slightly increase portability
- SPMD: strategy dominant for GPU programming
- Auto-vectorization: very hard, unsuited for complex code

