
395

Code Generation for Data Processing
Lecture 13: Vectorization

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2022/23



396

Parallel Data Processing

I Sequential execution has inherently limited performance
I Clock rate, data path lengths, speed of light, . . .

I Parallelism is the key to substantial and scalable perf. improvements
I Modern systems have many levels of parallelism:

I Multiple nodes/systems, connected via network
I Different compute units (CPU, GPU, etc.), connected via PCIe
I Multiple CPU sockets, connected via QPI (Intel) or HyperTransport (AMD)
I Multiple CPU cores
I Multiple threads per core
I Instruction-level parallelism (superscalar out-of-order execution)
I Data parallelism (SIMD)



397

Single Instruction, Multiple Data (SIMD)

I Idea: perform same operations on multiple data in parallel

I First computer with SIMD operations: MIT Lincoln Labs TX-2, 195756

I Wider use in HPC in 1970s with vector processors (Cray et al.)
I Ultimately replaced by much more scalable distributed machines

I SIMD-extensions for multimedia processing from 1990s onwards
I Often include very special instructions for image/video/audio processing

I Shift towards HPC and data processing around 2010
I Extensions for machine learning/AI in late 2010s

56W Clark et al. The Lincoln TX-2 Computer. Apr. 1957. .

http://www.bitsavers.org/pdf/mit/tx-2/TX-2_Papers_WJCC_57.pdf


398

SIMD: Idea

I Multiple data elements are stored in vectors
I Size of data may differ, vector size is typically constant
I Single elements in vector referred to as lane

I (Vertical) Operations apply the same operation to all lanes

+
1

1

2

+
2

2

4

+
3

3

6

+
4

4

8

lane 3 lane 2 lane 1 lane 0
src 1

src 2

result

I Horizontal operations work on neighbored elements



399

SIMD ISAs: Design

I Vectors are often implemented as fixed-size wide registers
I Examples: ARM NEON 32×128-bit, Power QPX 32×256-bit
I Data types and element count is defined by instruction

I Some ISAs have dynamic vector sizes: ARM VFP, ARM SVE, RISC-V V
I Problematic for compilers: variable spill size, less constant folding

I Data types vary, e.g. i8/i16/i32/i64/f16/bf16/f32/f64/f128
I Sometimes only conversion, sometime with saturating arithmetic

I Masking allows to suppress operations for certain lanes
I Dedicated mask registers (AVX-512, SVE, RVV) allow for hardware masking
I Can also apply for memory operations, optionally suppressing faults
I Otherwise: software masking with another vector register



400

x86

MMX
SSE–SSE4.2

AES

AES Crypt.

CVT16/F16C

FP16

AVX AVX2

Gather/Scatter

KNC/ICMI

Mask registers

AVX-512

ARM

VFP

Configurable VL

ARMv6 (packed ops.)ARMv7 NEON
ARMv8 NEON

SVE

Impl.-def. VL
Fault-suppression

Power
AltiVec

128-bit registers
Data stream

VSX

FP128

QPX

MIPS
Rel. V FPU

32-bit FP

MDMX
MSA

1990 1995 2000 2005 2010 2015



401

SIMD: Use Cases

I Dense linear algebra: vector/matrix operations
I Implementations: Intel MKL, OpenBLAS, ATLAS, . . .

I Sparse linear algebra
I Needs gather/scatter instructions

I Image and video processing, manipulation, encoding

I String operations
I Implemented, e.g., in glibc, simdjson

I Cryptography



402

SIMD ISAs: Usage Considerations

I Very easy to implement in hardware
I Simple replication of functional units and larger vector registers
I Too large vectors, however, also cause problems (AVX-512)

I Offer significant speedups for certain applications
I With 4x parallelism, speed-ups of ∼3x are achievable

I Caveat: non-trivial to program
I Optimized routines provided by libraries
I Compilers try to auto-vectorize, but often need guidance



403

SIMD Programming: (Inline) Assembly

I Idea: SIMD is too complicated, let programmer handle this
I Programmer specifies exact code (instrs, control flow, and registers)
I Inline assembly allows for integration into existing code

I Specification of register constraints and clobbers needed

I “Popular” for optimized libraries

+ Allows for best performance
− Very tedious to write, manual register allocation, non-portable
− No optimization across boundaries



404

SIMD Programming: Intrinsics

I Idea: deriving a SIMD schema is complicated, delegate to programmer
I Intrinsic functions correspond to hardware instructions

I __m128i _mm_add_epi32 (__m128i a, __m128i b)
I Programmer explicitly specifies vector data processing instructions

compiler supplements registers, control flow, and scalar processing

+ Allows for very good performance, still exposes all operations
+ Compiler can to some degree optimize intrinsics

I GCC does not; Clang/LLVM does – intrinsics often lowered to LLVM-IR
vectors

− Tedious to write, non-portable



405

Intrinsics for Unknown Vector Size

I Size not known at compile-time, but can be queried at runtime
I SVE: instruction incd adds number of vector lanes to register

I In C: behave like an incomplete type, except for parameters/returns
I Flexible code often slower than with assumed constant vector size

I Consequences:
I Cannot put such types in structures, arrays, sizeof
I Stack spilling implies variably-sized stack

I Instructions to set mask depending on bounds: whilelt, . . .
I No loop peeling for tail required



406

Fault Suppression

I Variable-length vectors are problematic for buffers of unknown size
I Example: NUL-terminated C strings

I Classical approach: ensure alignment to prevent page faults
I These types of out-of-bounds reads are guaranteed to be non-harmful
I Downside: needs loop peeling code for start/end

I More recent approach: make hardware suppress exceptions
I Option 1: specify that masked out lanes do not produce faults
I Option 2: stop loading after first fault, store as mask in register
I Downside 1: increased complexity in hardware, may use microcode
I Downside 2: permits speculative vectorization at cost of more instructions



407

SIMD Programming: Target-independent Vector Extensions

I Idea: vectorization still complicated, but compiler can choose instrs.
I Programmer still specifies exact operations, but in target-independent way
I Often mixable with target-specific intrinsics

I Compiler maps operations to actual target instructions
I If no matching target instruction exists, use replacement code

I Inherent danger: might be less efficient than scalar code

I Often relies on explicit vector size



408

GCC Vector Extensions

#include <stdint.h>

typedef uint32_t uint32x4_t
__attribute__((vector_size(16)));

uint32x4_t
addvec(uint32x4_t a, uint32x4_t b) {

return a + b;
}

uint32x4_t
modvec(uint32x4_t a, uint32x4_t b) {

return a % b;
}

addvec:
paddd xmm0, xmm1
ret

modvec:
movd ecx, xmm1
movd eax, xmm0
xor edx, edx
pextrd edi, xmm1, 1
div ecx
pextrd eax, xmm0, 1
pextrd ecx, xmm1, 2
mov esi, edx
xor edx, edx
div edi
pextrd eax, xmm0, 2
mov r8d, edx
xor edx, edx
div ecx
pextrd ecx, xmm1, 3
pextrd eax, xmm0, 3
movd xmm0, esi
pinsrd xmm0, r8d, 1
mov edi, edx
xor edx, edx
div ecx
movd xmm1, edi
pinsrd xmm1, edx, 1
punpcklqdq xmm0, xmm1
ret



409

SIMD Programming: Single Program, Multiple Data (SPMD)

I So far: manual vectorization
I Observation: same code is executed on multiple elements
I Idea: tell compiler to vectorize handling of single element

I Splice code for element into separate function
I Tell compiler to generate vectorized version of this function
I Function called in vector-parallel loop

I Needs annotation of variables
I Varying: variables that differ between lanes
I Uniform: variables that are guaranteed to be the same

(basically: scalar values that are broadcasted if necessary)



410

SPMD: Example (OpenMP)

#pragma omp declare simd
int add(int x, int y) {
return x + y;

}

I Compiler generates version
that operates on vector

foo:
add edi, esi
mov eax, edi
ret

_ZGVxN4vv_foo:
paddd xmm0, xmm1
ret



411

SPMD: Example (OpenMP)

#pragma omp declare simd uniform(y)
int add(int x, int y) {
return x + y;

}

I Uniform: always same value

foo:
add edi, esi
mov eax, edi
ret

_ZGVxN4vu_foo:
movd xmm1, eax
pshufd xmm2, xmm1, 0
paddd xmm0, xmm2
ret



412

SPMD: Example (OpenMP) – if/else

#pragma omp declare simd
int foo(int x, int y) {

int res;
if (x > y) res = x;
else res = y - x;
return res;

}

I Diverging control flow:
all paths are executed

foo:
mov eax, esi
sub eax, edi
cmp edi, esi
cmovg eax, edi
ret

_ZGVxN4vv_foo:
movdqa xmm2, xmm0
pcmpgtd xmm0, xmm1
psubd xmm1, xmm2
pblendvb xmm1, xmm2, xmm0
movdqa xmm0, xmm1
ret



413

SPMD to SIMD: Handling if/else

I Control flow solely depending on uniforms: nothing different
I Otherwise: control flow may diverge

I Different lanes may choose different execution paths
I But: CPU has only one control flow, so all paths must execute

I Condition becomes mask, mask determines result
I After insertion of masks, linearize control flow

I Relevant control flow now encoded in data through masks



414

SPMD to SIMD: Handling Loops

I Uniform loops: nothing different
I Otherwise: need to retain loop structure

I “active” mask added to all loop iterations
I Loop only terminates once all lanes terminate (active is zero)
I Lanes that terminated early need their values retained

I Approach also works for nested loops/conditions

I Irreducible loops need special handling57

57R Karrenberg and S Hack. “Whole-function vectorization”. In: CGO. 2011, pp. 141–150.



415

SPMD Implementations on CPUs

I OpenMP SIMD functions
I Need to be combined with #pragma omp simd loops

I Intel ispc58 (Implicit SPMD Program Compiler)
I Extension of C with keywords uniform, varying
I Still active and interesting history59

I OpenCL on CPU
I Very similar programming model
I But: higher complexity for communicating with rest of application

58M Pharr and WR Mark. “ispc: A SPMD compiler for high-performance CPU programming”. In: InPar. 2012, pp. 1–13.
59https://pharr.org/matt/blog/2018/04/30/ispc-all

https://pharr.org/matt/blog/2018/04/30/ispc-all


416

SIMD Programming: SPMD on CPUs

I Semi-explicit vectorization
I Programmer chooses level of vectorization

I E.g., inner vs. outer loop
I Compiler does actual work

+ Allows simple formulation of complex control flow
− Compilers often fail at handling complex control flow well

I Loops are particularly problematic



417

SIMD Programming: Auto-vectorization

I Idea: programmer is too incompetent/busy, let compiler do vectorization

I Inherently difficult and problematic, after decades of research
I Recognizing and matching lots of patterns
I Instruction selection becomes more difficult
I Compiler lacks domain knowledge about permissible transformations

I Executive summary of the state of the art:
I Auto-vectorization works well for very simple cases
I For “medium complexity”, code is often suboptimal
I In many cases, auto-vectorization fails on unmodified code



418

Auto-vectorization is Hard

I Biggest problem: data dependencies
I Resolving loop-carried dependencies is difficult

I Memory aliasing
I Overlapping arrays, or – worse – loop counter

I Loop body might impact loop count
I Function calls, e.g. for math functions
I Strided memory access (e.g., only every n-th element)
I Choosing vectorization level (outer loop might be better)

I Is vectorization profitable at all?
I Often black box to programmer, preventing fine-grained tuning



419

Auto-vectorization Strategies

I Inner Loop Vectorization: unroll innermost loop n times
I Try to compact loop body into vectors with n lanes

I Outer Loop Vectorization: unroll outer loop n times
I Try to compact loop body into vectors with n lanes
I Generally does not support diverging control flow in loop body

I Superword-level Parallelism (SLP): packing series of scalar stores
I Detect neighbored stores, try to fold operations into vectors



420

Vectorization – Summary

I SIMD is an easy way to improve performance numbers of CPUs
I Most general-purpose ISAs have one or more SIMD extensions
I Recent trend: variably-length vectors

I Inline Assembly: easiest for compiler, but extremely tedious
I Intrinsics: best trade-off towards performance and usability
I Target-independent operations: slightly increase portability
I SPMD: strategy dominant for GPU programming
I Auto-vectorization: very hard, unsuited for complex code


	Vectorization

