
TU München, Fakultät für Informatik
Lehrstuhl III: Datenbanksysteme

Prof. Alfons Kemper, Ph.D.

Database System Concepts for Non-Computer Scientist - WiSe 23/24
Alice Rey (rey@in.tum.de)

http://db.in.tum.de/teaching/ws2324/DBSandere/?lang=en

Sheet 05

Exercise 1
Consider the entity relationship diagram from exercise sheet 3:

Station
#platforms

name

Citylocated_in

name

state

Train

trainNo #wagons

start connects end

departure

arrival

1N

11

1 1

N
NN

Refine the relational schema that you created in sheet 4 from the ER-Diagram. Underline
keys and find appropriate data types. As a reminder, here is the un-refined schema:

City : {[name : string, state : string]} (1)
Station : {[name : string,#platforms : integer]} (2)

Train : {[trainNo : integer,#wagons : integer]} (3)

For the relationships in the model, we create the following relations:

located_in : {[stationName : string, cityName : string, cityState : string]} (4)
start : {[trainNo : integer, stationName : string]} (5)
end : {[trainNo : integer, stationName : string]} (6)

connects : {[fromStationName : string, toStationName : string, (7)
trainNo : integer,departure : date, arrival : date]}

1



Solution:
During refinement, we merge relations for binary relationships into relations for entities, if
the relations have the same key and it was a 1:N, N:1 or 1:1 relationship in the ER-model.
Note: A binary 1:N relationship can be merged into the entity with the N next to it.
Doing so we can merge the (4) relation into (2). (5) gets merged into (3). And same for the
end relation, which also gets merged into train.

(4) 7→ (2), (5) 7→ (3), (6) 7→ (3)
Thus, we end up with the following schema:

City : {[name : string, state : string]}
Station : {[name : string,#platforms : integer,

cityName : string, state : string]}
Train : {[trainNo : integer,#wagons : integer,

startStationName : string, endStationName : string]}
connects : {[fromStationName : string, toStationName : string,

trainNo : integer,departure : date, arrival : date]}

In our model the train number is uniquely identifying a connection between two cities
(possibly involving serveral stations). An ICE starting in Munich (startStationName) and
going to Berlin (endStationName) has a unique train number. When the train returns it
has a different train number. Therefore, in the connects relation, the (trainNo, fromStati-
onName)-pair and the (trainNo, toStationName)-pair are both valid keys (as they are both
uniquely identifying a tuple in the relation).

Exercise 2
For additional practice, consider the hospital example, again. This time take the entity rela-
tionship diagram and transform it into a relational schema. Then, optimize it by eliminating
relations.
This is obviously a large example but practice is very helpful. However, if you want to save
time, you could focus on the difficult parts: employs, works, consists_of, Doctors + has

2



Hospital Departmentconsists_of
N1

address #beds name

Room

contains

number

1

Employee

employs

N

M

salary

id

is_a is_a

Nurse Doctorsuper-
visesN M

runs

M

N
has

1

N

works

Shift

date

from

to

1

M

N

1

area

Solution:

a) Create a relational schema
The un-refined translation yields the following relations for the entities in the model:

Hospital : {[address : string,#beds : int]} (8)
Department : {[address : string,name : string]} (9)

Room : {[address : string,name : string, roomNo : int]} (10)
Employee : {[id : int, salary : int]} (11)

Nurse : {[id : int]} (12)
Doctor : {[id : int, area : string]} (13)

Shift : {[date : date, from : time, to : time} (14)

3



For the relationships in the model, we create the following relations:

consists_of : {[address : string,departmentName : string]} (15)
contains : {[address : string,departmentName : string, (16)

roomNo : int]}
employs : {[address : string, id : int]} (17)

supervises : {[nurseId : int,doctorId : int]} (18)
doctor_has : {[doctorId : int, address : string,departmentName : string, (19)

roomNo : int]}
runs : {[doctorId : int, address : string,name : string]} (20)

works : {[employeeId : int,date : date, from : time, to : time, (21)
address : string,name : string]}

There are several alternative translation options:
1. The is_a relationship could have also been translated by merging the attributes of the
Employee into the Nurse and Doctor relation:

Nurse : {[id : int, salary : int]}
Doctor : {[id : int, area : string, salary : int]}

2. In the 1:1 relation has between Doctor and Room we could have also chosen the key of
the Room as a key.

b) Refine the relational schema
Next, we refine the relational schema by combining relations.
All binary relations with 1:1, 1:N, N:1 can be refined in the following way:
First, we can eliminate all relations that originate from weak relationships in the ER-model.
In this case we do not have to add additional keys to the entity we merge them into because
they already have this key because they are weak entities:

(15) 7→ (9), (16) 7→ (10)
Next, we take care of the has relation between Doctor and Room. This is a 1:1 relation and
can therefore be merged into Doctor or Room. We choose to merge it into room, as this
requires us to only add one attribute to Room instead of four to Doctor :

(19) 7→ (10)
Now, there is no binary relation left with a 1:1, 1:N or N:1 functionality. Therefore, we are
done and end up with the following relational schema:

Hospital : {[address : string,#beds : int]}
Department : {[address : string,name : string]}

Room : {[address : string,name : string, roomNo : int,doctorId : int]}
Employee : {[id : int, salary : int]}

Nurse : {[id : int]}
Doctor : {[id : int, area : string]}

Shift : {[date : date, from : time, to : time}

4



For the relationships in the model, we create the following relations:

employs : {[address : string, id : int]}
supervises : {[nurseId : int,doctorId : int]}

runs : {[doctorId : int, address : string,name : string]}
works : {[employeeId : int,date : date, from : time, to : time,

address : string,name : string]}

5


