

ПΠ

Database System Concepts for Non-Computer Scientist - WiSe 23/24 Alice Rey (rey@in.tum.de) http://db.in.tum.de/teaching/ws2324/DBSandere/?lang=en

Sheet 05

Exercise 1

Consider the entity relationship diagram from exercise sheet 3:

Refine the relational schema that you created in sheet 4 from the ER-Diagram. Underline keys and find appropriate data types. As a reminder, here is the un-refined schema:

$$City : \{[name : string, state : string]\}$$
(1)

Station :
$$\{[name : string, \#platforms : integer]\}$$
 (2)

$$Train : \{ [trainNo: integer, \#wagons: integer] \}$$
(3)

For the relationships in the model, we create the following relations:

Solution:

During refinement, we merge relations for binary relationships into relations for entities, if the relations have the same key and it was a 1:N, N:1 or 1:1 relationship in the ER-model. Note: A binary 1:N relationship can be merged into the entity with the N next to it.

Doing so we can merge the (4) relation into (2). (5) gets merged into (3). And same for the *end* relation, which also gets merged into *train*.

 $(4) \mapsto (2), (5) \mapsto (3), (6) \mapsto (3)$

Thus, we end up with the following schema:

In our model the train number is uniquely identifying a connection between two cities (possibly involving serveral stations). An ICE starting in Munich (*startStationName*) and going to Berlin (*endStationName*) has a unique train number. When the train returns it has a different train number. Therefore, in the *connects* relation, the (*trainNo*, *fromStationName*)-pair and the (*trainNo*, *toStationName*)-pair are both valid keys (as they are both uniquely identifying a tuple in the relation).

Exercise 2

For additional practice, consider the hospital example, again. This time take the entity relationship diagram and transform it into a relational schema. Then, optimize it by eliminating relations.

This is obviously a large example but practice is very helpful. However, if you want to save time, you could focus on the difficult parts: employs, works, $consists_of$, Doctors + has

Solution:

a) Create a relational schema

The un-refined translation yields the following relations for the entities in the model:

Hospital	$: \{ [address : string, \#beds : int] \}$	(8)
Department	: $\{[address : string, name : string]\}$	(9)
Room	: $\{[address : string, name : string, roomNo : int]\}$	(10)
Employee	: $\{[\underline{id}:\underline{int}, \underline{salary}:\underline{int}]\}$	(11)
Nurse	$: \{ [\underline{\mathrm{id}} : \underline{\mathrm{int}}] \}$	(12)
Doctor	: $\{[\underline{id} : \underline{int}, area : string]\}$	(13)
Shift	: $\{[date : date, from : time, to : time]\}$	(14)

For the relationships in the model, we create the following relations:

$consists_of$:	$\{[address : string, departmentName : string]\}$	(15)
contains	:	${[address : string, departmentName : string,}$	(16)
		$\underline{\text{roomNo}: \text{int}}]$	
employs	:	$\{[address : string, id : int]\}$	(17)
supervises	:	$\{[nurseId : int, doctorId : int]\}$	(18)
doctor_has	:	$\{ [\underline{\text{doctorId}} : \underline{\text{int}}, \underline{\text{address}} : \underline{\text{string}}, \underline{\text{departmentName}} : \underline{\text{string}}, $	(19)
		roomNo: int]	
runs	:	$\{ [doctorId : int, address : string, name : string] \}$	(20)
works	:	$\{[employeeId:int,date:date,from:time,to:time,$	(21)
		address : string, name : string]}	

There are several alternative translation options:

1. The *is_a* relationship could have also been translated by merging the attributes of the *Employee* into the *Nurse* and *Doctor* relation:

Nurse : $\{[\underline{id} : \underline{int}, \underline{salary} : \underline{int}]\}$ Doctor : $\{[\underline{id} : \underline{int}, \underline{area} : \underline{string}, \underline{salary} : \underline{int}]\}$

2. In the 1:1 relation *has* between *Doctor* and *Room* we could have also chosen the key of the *Room* as a key.

b) Refine the relational schema

Next, we refine the relational schema by combining relations.

All binary relations with 1:1, 1:N, N:1 can be refined in the following way:

First, we can eliminate all relations that originate from weak relationships in the ER-model. In this case we do not have to add additional keys to the entity we merge them into because they already have this key because they are weak entities:

$$(15) \mapsto (9), (16) \mapsto (10)$$

Next, we take care of the *has* relation between *Doctor* and *Room*. This is a 1:1 relation and can therefore be merged into *Doctor* or *Room*. We choose to merge it into room, as this requires us to only add one attribute to *Room* instead of four to *Doctor*:

$$(19) \mapsto (10)$$

Now, there is no binary relation left with a 1:1, 1:N or N:1 functionality. Therefore, we are done and end up with the following relational schema:

Hospital	: $\{[address : string, \#beds : int]\}$
Department	: $\{[address : string, name : string]\}$
Room	$: \ \{[\underline{address}: string, name: string, roomNo: int, doctorId: int]\}$
Employee	: $\{[\underline{id}:\underline{int}, salary: int]\}$
Nurse	$: \{ [\underline{\mathrm{id}} : \underline{\mathrm{int}}] \}$
Doctor	: $\{[\underline{id}:\underline{int}, area: string]\}$
Shift	: $\{[date : date, from : time, to : time]\}$

For the relationships in the model, we create the following relations: