
TU München, Fakultät für Informatik
Lehrstuhl III: Datenbanksysteme

Prof. Alfons Kemper, Ph.D.

Database System Concepts for Non-Computer Scientist - WiSe 23/24
Alice Rey (rey@in.tum.de)

http://db.in.tum.de/teaching/ws2324/DBSandere/?lang=en

Sheet 06

Exercise 1
Consider the following ER-diagram:

A BR
1N

A BR
NN

1)

2)
a x y b

a x y bz

z

Refine and transform this diagram into a database schema (SQL DDL). You can assume
that each attribute is an integer. Use not null, primary key, references, unique and
cascade when possible/necessary.
Solution:
1)

create table A (
a int not null primary key,
x int

);

create table B (
b int not null primary key,
y int

);

create table R (
a int not null references A primary key,
b int not null references B,
z int

);

Alternatively, we can merge the R relation into the A relation. Remember, a relationship
can be merged into the entity with the same key or (graphically) the one on the “N”-side.

1



create table A (
a int not null primary key,
x int,
b int references B,
z int

);

The downside of this is that we now have information about the relation R inside of the A
relation (namely, the z and b attribute). If R is a sparse relationship (not many tuples in
A are connected to B), then we end up with a lot of null values.
Also take note of how the foreign keys in R (that is, R.a and R.b) are marked as not null.
Once R is merged into A, the reference to B (that is, A.b) becomes nullable. The reason
for this is that the entity relationship diagram specifies that each tuple in A has zero or
one partners in B. We need the nullable for A.b, otherwise zero partners would not work.
This is not necessary if we translate R as its own relation because in this case the “zero
partner”-case is expressed by simply not having a tuple in R.
2)

create table A (
a int not null primary key,
x int

);

create table B (
b int not null primary key,
y int

);

create table R (
a int not null references A,
b int not null references B,
z int,
primary key(a, b)

);

Here we can not merge R into any of the relations. Remember, N-to-M relationships can
not be refined. Note that we have to use R.a and R.b together as the primary key because
neither attribute is unique on its own. In addition, we actually have to use this primary key
for a correct translation of the entity relationship model. Otherwise, we have the following
problem: Assume a relation A with values (1, 1) and B with (2, 2). Without a primary
key on a and b in R, we could have the entries (a=1, b=2, z1) and (a=1, b=2, z2). This
would mean that one entry in A can map to the same entry in B multiple times, which is
not allowed in entity relationship models. Therefore, we have to exclude this and use the
primary key constraint in R.

Exercise 2
In the following ER-diagram, we model people (person). The married relation models the
German law (i.e., each person can have at most one spouse). The parent_of is to be inter-
preted in the traditional biological way (i.e., each person has exactly one mother and one
father).

2



Person parent_of

married

SSN

Name
parent

child

First, refine the diagram by adding the min/max notation. Then, create SQL-statements
that would create the corresponding tables in a database system. Use not null, primary
key, references, unique and cascade when possible/necessary.
Solution:
First, we add the min/max notation to the ER-diagram:

Person parent_of

married

SSN

Name
parent

child0..1 0..1

0..*

0..2

The following SQL statements created the desired tables:
create table Person (

ssn char(9) not null primary key,
name varchar(50) not null

);

create table married (
ssn_partner_1 char(9) not null references person(ssn) on delete cascade,
ssn_partner_2 char(9) not null references person(ssn) on delete cascade,
unique (ssn_partner_1),
primary key (ssn_partner_2)

);

create table parent_of (
ssn_child char(9) not null references person(ssn) on delete cascade,
ssn_parent char(9) not null references person(ssn) on delete cascade,
primary key(ssn_child, ssn_parent)

);

3



In DB2 (IBM’s flagship database system) all attributes which are part of the primary key
have to be marked explicitly as not null, implicitly they are nullable. In general, making
the primary key not nullable makes a lot of sense, as we do want actual values in our
key attributes to be able to identify tuples. The SQL standard from 1992 (SQL92) actually
enforces this rule and requires that all attributes that are part of a primary key are implicitly
not null in the system. However, some database systems fail to implement this correctly
and, therefore, diverge from the standard (e.g., DB2). Therefore, it might be a smart choice
to explicitly declare the primary key attributes as not null and thus be on the safe side.
In the married relation, we can choose either of the partners to be the primary key. The
other one should be marked as unique, this way we enforce that each person is only married
to one other person.
In the parent_of relation, we have to use both child and parent as the primary key. Using
only the child attribute does not work because every person has two parents and therefore
occurs twice in the parent_of relation. Using only the parent attribute fails in a similar
wary: each person can have multiple children and can therefore occur any number of times
in the parent_of relation.
As discussed in the lecture there are some alternatives for translating the entity relationship
model into SQL statements. For example the on delete cascade semantic in the married
relation could be left out. In this case it would not be possible to remove people from the
person table as long as they are still married.
Another option for such a change, would be to merge the married relation into the person
relation. This is possible because married is a 1-to-1 relationship. However, this would lead
to many null in the person relation, as many people are not married. This would waste
space and is therefore not to be recommended.
One change, that would actually change the entity relationship model (and is therefore not
part of the question, but an interesting alternative) is to make the parent_of relation into
a ternary relation with mother, father, and child. We could then translate the relation as
follows:

create table parent_of (
ssn_child char(9) not null references person(ssn) on delete cascade,
ssn_monther char(9) references person(ssn) on delete set null,
ssn_father char(9) references person(ssn) on delete set null,
primary key(child)

);

Exercise 3
Write your first SQL query !
You can setup your own database system and import the university schema (on our web-
site: https://db.in.tum.de/teaching/ws2021/DBSandere/uni_schema.sql) or use the
Hyper WebInterface (https://hyper-db.de/interface.html).
Try finding the name and the semester of all students (this is mainly to validate that you
have access to a working database).
Solution:

select name, semester from students;

4

https://db.in.tum.de/teaching/ws2021/DBSandere/uni_schema.sql
https://hyper-db.de/interface.html

