
1

Cloud-Based Data Processing

Distributed Data – Part 2

Jana Giceva

 Identify workloads and usage requirements

 e.g., availability, scalability, data consistency, disaster recovery

 Identify critical components and paths

 Establish availability metrics

 mean time to recovery (MTTR) and mean time between failures (MTBF)

 Use these to determine when to add redundancy and to determine the SLAs to customers

 Define the availability targets

Reliable cloud application

2

 Availability = uptime = fraction of time that a service is functioning correctly

 “two nines” = 99% up = down 3.7 days/year

 “three nines” = 99.9% up = down 8.8 hours/year

 “four nines” = 99.99% up = down 53 minutes/year

 “five nines” = 99.999% up = down 5.3 minutes/year

 Service-Level Objective (SLO):

percentage of requests that need to return a correct response time within a specified timeout, as

measured by the client over a certain period of time.

e.g., “99.9% of requests in a day get a response in 200 ms”

 Service-Level Agreement (SLA):

contract specifying some SLO, penalties for violation

Availability

3

 Do a failure mode analysis (FMA)

identify the types of failures your application may experience and possible recovery strategies

 Create a redundancy plan based on the business needs and factors

 Design for scalability and use load-balancing to distribute requests

 Implement resiliency strategy

 Manage the data: store, back-up and replicate data

 Choose the replication method

 Document the failover and failback process

 Plan for data recovery

 Efficient monitoring and fault-recovery

Reliable cloud application II

4

Fault-tolerance

 Failure: system as a whole is not working

 Fault: some part of the system is not working

 Node fault – crash (crash-stop/crash-recovery), deviating from algorithm (Byzantine)

 Network fault – dropping or significantly delaying messages

 Fault tolerance:

System as a whole continues working, despite faults.

(some maximum number of faults assumed)

 Single point of failure (SPOF):

node/network link whose fault leads to a failure

Terminology

6

 Failure detector:

Algorithm that detects whether another node is faulty

 Perfect failure detector:

labels a node as faulty if and only if it has crashed

 Typical implementation for crash-stop/crash-recovery:

send message, await response, label node as crashed if no reply within some timeout

 Problem: cannot tell the different between

 a crashed node,

 temporarily unresponsive node,

 lost message and

 delayed message

Failure detectors

7

 No shared memory, but message passing over an unreliable network with variable delays

 System may suffer from partial failures

 Each process may experience unreliable processing pauses

 Machines have unreliable clocks

 The truth is defined by the majority requires reaching a quorum.

A reliable system from unreliable components

8

Unreliable networks and

Models of distributed systems

 Datacenters internal networks

are asynchronous:

 Your request may be lost

 Your request may be waiting in a

queue and will be delivered later

 The remote node may have failed

 The remote node may have temporarily stopped responding, but will start responding again later

 The remote node may have processed your request, but the response has been lost

 The remote node may have processed your request, but the response has been delayed

 Typical we handle these problems by sending a response message, but even that may be lost

 Supported with a timeout: when to give up on waiting and assume the response is not going to arrive.

Unreliable components (network)

10

 Need to automatically detect faulty nodes:

 A load balancer needs to stop sending requests to a node that is dead

 A distributed database with a single-leader replication, if the leader fails,

one of the followers needs to be promoted to be a leader

 Timeouts and unbounded delays

 How long should a timeout be?

e.g., a short timeout detects faults faster, but can declare a node dead prematurely and cause a domino

 Challenge: asynchronous networks (with unbounded delivery delays) and

lack of guarantee that each server can handle requests within some maximum time.

 Network congestion and queuing

 The variability of packet delays is most often due to queueing

 Especially visible when the system is close to its maximum capacity

Detecting faults

11

When designing a distributed algorithm, we use a system model to specify

our assumptions about what faults may occur.

 Capture assumptions in a system model consisting of:

 Network behavior (e.g., message loss)

 Node behavior (e.g., crashes)

 Timing behavior (e.g., latency).

 There is a specific choice of models for each of these parts.

System models

12

 No network is perfectly reliable

 e.g., accidentally unplug the wrong cable, sharks and cows can cause damage and interruption to long-

distance networks, or a network may be temporarily overloaded (e.g., by a DoS attack).

 Assume a bi-directional point-to-point communication between two nodes, with one of:

 Reliable (perfect) links

a message is received if and only if it is sent. Messages may be reordered.

 Fair-loss links:

a message may be lost, duplicated or reordered. By retrying, a message eventually gets through.

 Arbitrary links (active adversary):

a malicious adversary may interfere with messages (spy, modify, drop, spoof, replay).

 Network partition some links dropping / delaying all messages for an extended period of time.

System model: network behavior

13

Each node executes a specified algorithm, assuming one of the following:

 Crash-stop (fail-stop):

a node is faulty if it crashes (at any moment). After crashing, it stops executing forever.

 Crash-recovery (fail-recovery):

a node may crash at any moment, losing its in-memory state. It may resume executing, sometime later.

 Byzantine (fail-arbitrary):

a node is faulty if it deviates from the algorithm. Faulty nodes may do anything, including crashing or

malicious behavior.

A node that is not faulty, is called correct.

System model: node behavior

14

Assume one of the following for the network and nodes:

 Synchronous:

message latency no greater than a known upper bound.

Nodes execute algorithm at a known speed.

 Partially synchronous:

The system is asynchronous for some finite (but unknown) periods of time, synchronous otherwise.

 Asynchronous:

Messages may be delayed arbitrarily. Nodes can pause execution arbitrarily. No timing guarantees at all.

System model: synchrony (timing) assumptions

15

 Networks usually have quite predictable latency, which can occasionally increase:

 Message loss requiring retry

 Congestion/contention causing queuing

 Network/route reconfiguration

 Nodes usually execute code at a predictable speed, with occasional pauses:

 OS scheduling issues (e.g., priority inversion)

 Stop-the-world garbage collection pauses

 Page faults, swap, thrashing

 Real time operating systems (RTOS) provide scheduling guarantees,

but most distributed systems do not use RTOS.

Violations of synchrony in practice

16

For each of the three parts, pick one:

 Network:

reliable, fair-loss, or arbitrary

 Nodes:

crash-stop, crash-recovery, or Byzantine

 Timing:

synchronous, partially-synchronous, or asynchronous

This is the basis for any distributed algorithm. If your assumptions are wrong, all bets are off!

System models summary

17

Unreliability of clocks

 Distributed systems often need to measure time, e.g.:

 Schedulers, timeouts, failure detectors, retry timers,

 Performance measurements, statistics, profiling

 Log files and databases: record when an event occurred

 Data with time-limited validity (e.g., cache entries)

 Determine order of events across several nodes

 We distinguish two types of clocks:

 Physical clocks: count number of seconds elapsed

 Logical clocks: count events, e.g., messages sent

Clocks and time in distributed systems

19

 Quartz clocks (wristwatch, computer and phones, etc.) are cheap but not totally accurate.

 Quartz clock error: drift

 One clock runs slightly faster, another slower

 Drift is measured in parts per million (ppm).

1 ppm = 1 microsecond/second = 86 ms/day = 32s/year

 Most computer clocks correct within 50 ppm

 For greater accuracy, use atomic clocks.

 Leap seconds – to keep the UTC and TAI in sync (linked to the rotation of earth)

 Computers and time

 Unix time: number of seconds since 1 January 1970 (epoch) – not counting leap seconds

 ISO 8601: year, month, day, hour, minute, second and timezone offset relative to UTC

 To be correct, software that works with timestamps needs to know about leap seconds.

Physical clocks

20

 Computers track physical time/UTC with a quartz clock

 Due to clock drift, clock error gradually increases.

 Clock skew: difference between two clocks at a point in time

 Solution: periodically get the current time from a server that has a more accurate time source

(atomic clock or GPS receiver)

 Protocols: Network Time Protocol (NTP), Precision Time Protocol (PTP)

 Make multiple requests to the same server,

use statistics to reduce error due to variations in network latency

 Reduces clock skew to a few milliseconds in good network conditions.

Clock synchronization

21

// BAD

long startTime = System.currentTimeMillis();

doSomething();

long endTime = System.currentTimeMillis();

long elapsedMillis = endTime – startTime;

// elapsedMillis may be negative!

// GOOD

long startTime = System.nanoTime();

doSomething();

long endTime = System.nanoTime();

long elapsedNanos = endTime – startTime;

// elapsedNanos is always >= 0

Time-of-day and monotonic clocks

22

 NTP client steps the clock during this

 Time-of-day clock:

 Time since a fixed date (e.g., 1 January 1970 epoch)

 May suddenly move forwards or backwards (NTP stepping), subject to leap second adjustments

 Timestamps can be compared across nodes (if synced)

 Java: System.curretTimeMillis()

 Linux: clock_gettime(CLOCK_REALTIME)

 Monotonic clock:

 Time since arbitrary point (e.g., when the machine booted up)

 Always moves forward at near constant speed

 Good for measuring elapsed time on a single node

 Java: System.nanoTime():

 Linux: clock_gettime(CLOCK_MONOTONIC)

Time-of-day and monotonic clocks

23

 When getting the time from a server, the uncertainty is based on:

 the expected quartz drift since your last sync,

 the reference server’s uncertainty,

 and the network round-trip time to the reference server.

e.g., A system may be 90% confident that the time now is between 10.3 and 10.5 seconds past the minute.

 Most systems do not expose this uncertainty

Notable exception: Google’s TrueTime API, which explicitly reports the confidence interval on the local clock.

 When you ask it for the current time, you get back

two values [earliest, latest], which are the earliest possible and the latest possible timestamp.

 Used in Spanner (to be covered in a few weeks).

Clock readings should have a confidence interval

24

Ordering of messages

25

 Physical clock: count number of seconds elapsed

 Logical clock: count number of events occurred

Physical timestamps: useful for many things, but may be inconsistent with causality.

Logical clocks: designed to capture causal dependencies

𝑒1 → 𝑒2
yields

(𝑇 𝑒1 < 𝑇 𝑒2)

Distributed systems/algorithms typically cover two types of logical clocks:

 Lamport clocks

 Vector clocks

Logical vs. physical clocks

26

 When we want to detect concurrent events, we use vector clocks:

 Assume n nodes in the system, 𝑁 = < 𝑁1, 𝑁2, … , 𝑁𝑛 >

 Vector timestamp of event a is 𝑉(𝑎) =< 𝑡1, 𝑡2, … , 𝑡𝑛 >

 𝑡𝑖 , is number of events observed by node 𝑁𝑖

 Each node has a current vector timestamp 𝑇

 On event at node 𝑁𝑖, increment vector element 𝑇[𝑖]

 Attach current vector timestamp to each message

 Recipient merges message vector into its logical vector

Vector clocks

27

 Assuming the vector of nodes is

𝑁 = 𝐴,𝐵, 𝐶

 The vector timestamp of an event 𝑒 represents a set of events:

𝑒 and its causal dependencies: 𝑒 ∪ a a → 𝑒}

 For example, 2,2,0 represents

the first two events from 𝐴, the first two events from 𝐵,and no events from 𝐶

Vector clocks example

28

 In a distributed system, the truth is defined by the majority

 A single node cannot trust its own judgement of a situation

 Many distributed algorithms rely on a quorum, i.e., voting among the nodes.

 Including when to declare a node as dead

 Quorums are especially important for our upcoming discussion on consensus (next week).

Majority decides the truth

29

Broadcast protocols

30

 Broadcast (multicast) is a group communication:

 One node sends message, all nodes in the group deliver it

 Set of group members may be fixed (static) or dynamic

 If one node is faulty, remaining group members carry on

 Build upon system models:

 Can be best-effort (may drop messages) or

reliable (non-faulty nodes deliver every message by retransmitting dropped messages).

 Asynchronous/partially synchronous timing model

 no upper bound on message latency

Broadcast protocols

31

 Assume network provides point-to-point send/receive.

 After broadcast algorithm receives a message from the network,

it may buffer/queue it before delivering to the application.

Receiving versus delivering

32

Application Application

Broadcast algorithm

(middleware)

Network

Broadcast algorithm

(middleware)

Broadcast algorithm

(middleware)

broadcast deliver

send receive send receive

Node A Node B

 FIFO broadcast

if 𝑚1 and 𝑚2 are broadcast by the application of the same node, and broadcast(𝑚1) → broadcast (𝑚2),

then 𝑚1 must be delivered before 𝑚2

 Causal broadcast

if broadcast(𝑚1) → broadcast (𝑚2), then 𝑚1 must be delivered before 𝑚2

 Total order broadcast

if 𝑚1 is delivered before 𝑚2 on one node, then 𝑚1 must be delivered before 𝑚2 on all nodes

 FIFO-total order broadcast

combination of FIFO broadcast and total order broadcast

Forms of reliable broadcast

33

 Messages sent by the same node must

be delivered in the order they were sent.

 Messages sent by different nodes can be

delivered in any order.

 Valid orders:

(𝑚2, 𝑚1, 𝑚3) or (𝑚1, 𝑚2, 𝑚3) or (𝑚1, 𝑚3, 𝑚2)

FIFO broadcast

34

 Causally related messages must be

delivered in causal order.

 Concurrent messages can be delivered

in any order.

 Here:

broadcast(𝑚1) → broadcast (𝑚2) and

broadcast(𝑚1) → broadcast (𝑚3)

→

valid orders are

(𝑚1, 𝑚2, 𝑚3) or (𝑚1, 𝑚3, 𝑚2)

Causal broadcast

35

 All nodes must deliver messages

in the same order

here (𝑚1, 𝑚2, 𝑚3)

 This includes a node’s delivery to itself.

Total order broadcast

36

 Single leader approach:

 One node is designated as a leader

 To broadcast message, send it to the leader: leader broadcasts it via FIFO broadcast

 Problem: leader crashes no more messages delivered

 Changing the leader safely is difficult

 Logical clocks approach:

 Attach a vector timestamp to every message

 Deliver messages in total order of timestamps

 Problem: how do you know if you have seen all messages with timestamp <T?

 Need to use FIFO links and wait for message with timestamp >=T from every node.

 In both approaches a crash from a single node can stop all other nodes from

being able to deliver messages.

 Need a fault-tolerant total order broadcast.

Total order broadcast algorithms

37

 Last week’s replication was “implemented” using the best-effort broadcast:

a client broadcasts every read or write to all of the replicas,

but the protocol is unreliable (requests may be lost) and provides no ordering guarantees.

 Replication with total order broadcast:

every node delivers the same messages in the same order

 State machine replication (SMR):

 FIFO-total order broadcast every update to all replicas

 Replica delivers update message: apply it to own state

 Applying an update is deterministic

 Replica is a state machine:

starts in a fixed initial state, and

goes through same sequence of state transitions in the same order

 all replicas end up in the same state

Replication using broadcast

38

on request to perform update u do

send u via FIFO-total order broadcast

end on

on delivering u through FIFO-total order broadcast do

update state using arbitrary deterministic logic

end on

 Closely related ideas:

 Serializable transactions (execute in delivery order)

 Blockchains, distributed ledgers, smart contracts

 Limitations:

 Cannot update state immediately, have to wait for delivery through broadcast

 Need fault-tolerant total order broadcast (next week)!

State machine replication

39

 Leader database replica, ensures total order broadcast.

 Follower F applies the transaction log in commit order.

Database leader replication

40

 State machine replication uses (FIFO-) total order broadcast.

 Can we use weaker forms of broadcast too?

 If replica state updates are commutative, replicas can process updates in different orders

and still end up in the same state.

 Updates 𝑓 and 𝑔 are commutative if 𝑓 𝑔 𝑥 = 𝑔 𝑓 𝑥

Replication using causal (and weaker) broadcast

41

broadcast assumptions about state update function

Total order Deterministic (SMR)

Causal Deterministic, concurrent updates commute

Reliable Deterministic, all updates commute

Best-effort Deterministic, commutative, idempotent, tolerates message loss

The material covered in this class is mainly based on:

 The book “Designing Data-Intensive Applications – The Big Ideas Behind Reliable, Scalable, and

Maintainable Systems” by Martin Kleppmann (Chapters 8 and part of 9) (link)

 Slides from “Distributed Systems” course from University of Cambridge (link)

Some information about application-level design were based on material from:

 Microsoft’s Azure Application Architecture Guide

 Design Reliable Applications (link)

 Design for self-healing (link)

References

42

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://martin.kleppmann.com/2020/11/18/distributed-systems-and-elliptic-curves.html
https://docs.microsoft.com/en-us/azure/architecture/framework/resiliency/overview
https://docs.microsoft.com/en-us/azure/architecture/guide/design-principles/self-healing

