
1

Cloud-Based Data Processing

OLAP in the cloud

Jana Giceva

 Traditional data warehousing systems are built for:

 Predictable, slow-evolving internal data

 Relational data, structured in a star- or snowflake schema

 Complex ETL (extract-transform-load) pipelines and physical tuning (compression, layout, etc.)

 Limited number of users and use-cases

Traditional OLAP / data warehouses

2

img src: https://panoply.io/data-warehouse-guide

 Data in the cloud:

 Dynamic, external sources: web, logs, mobile devices, sensor data, etc.

 ELT (extract-load-transform) instead of ETL – data transformation is done inside the system

 Often in semi-structured data format (e.g., JSON, XML, Avro)

 Access required by many users, with very different use-cases

Cloud-based data

3img src: InterWorks

Are DW still relevant in the era of BigData?

4

SELECT * FROM Data WHERE

field LIKE ‘%XYZ%’;

SELECT pageURL, pageRank

FROM Rankings WHERE

pageRank > X;

JOIN

Source: Pavlo et al. (2009). A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD

 Schemas are a good idea (parsing text is slow)

 Auxiliary data structures help boost performance (value indexes, join indexes)

 Optimized algorithms and storage structures: layout, data formatting, order of execution, choice of algorithm

 Architecture: shared-nothing

 Important architectural dimensions and methods

 Storage:

 Columnar storage, compression, data pruning

 Table partitioning, distribution

 Query engine:

 Vectorized or JIT code-gen

 Query optimization

 Fine- and coarse-grained parallelism and multi-tenancy

 Cluster:

 (Meta-) data sharing

 Resource allocation and management

Data warehouse system architecture

5

 Data layout: column-store vs. row-store

 Column-stores only read relevant data (skip irrelevant data by skipping unrelated columns)

 Suitable for analytical workloads (better use of CPU caches, SIMD registers, lightweight compression).

 E.g., Parquet, ODC, etc.

 Storage format: compression is key!

 Trades I/O for CPU and good fit for large datasets (storage) and I/O intensive workloads

 Excellent synergy with column-stores

 E.g., RLE, gzip, LZ4, etc.

 Pruning: skip irrelevant data using a MinMax index.

 Data is usually ordered can maintain a sparse MinMax index

 Allows to skip irrelevant data horizontally (rows).

Data warehouse storage

6

 Data is spread based on a key

 Functions: hash, range, list

 Distribution (system-driven)

 Goal: parallelism

 Give each compute node a piece of the data

 Each query has work on every piece (keep everyone busy)

 Partitioning (user-specified)

 Goal: data lifecycle management

 Data warehouse e.g., keeps last six months

 Every night: load one new day, drop the oldest partition

 Goal: improve access pattern

 When querying for May, drop P1,P3,P4 (partition pruning).

Table partitioning and distribution

7

img src: P.Boncz (CWI)

Scalability is not as important unless you can make the most out of the underlying hardware.

 Vectorized execution

 Data is pipelined in batches (of few thousand rows) to save I/O, and greatly improve cache efficiency.

 E.g., Actian Vortex, Hive, Drill, Snowflake, MySQL’s Heatwave accelerator, etc.

 And/or JIT code generation

 Generate a program that executes the exact query plan, JIT compile it, and run on your data.

 E.g., Tableau/HyPer/Umbra, SingleStore, AWS Redshift, etc.

Query Execution

8

Scalable system Cores Time [s]

Spark 128 857

Giraph 128 596

GraphX 128 419

SingleThreaded 1 275

Src: McSherry et al. Scalability! But at what COST? HotOS’15

 Design considerations for scalability, elasticity, fault-tolerance, good performance.

 Should we keep compute and storage tightly coupled?

 Separate tiers, different challenges at cloud-scale for cloud-data:

 Storage:

 Abstracting from the storage format

 Distribution and partitioning of data even more relevant at cloud-scale

 Data caching models across the (deep) storage hierarchy (cost/performance)

 Query execution:

 Distributed query execution: combine scale-out and scale-up

 Global resource-aware scheduling

 Distributed query optimization

 Service form factor

 Reserved-capacity services vs. serverless instances

Cloud-native warehouses

9

 There is no data locality

 To create elasticity, compute needs to be de-coupled from storage

 i.e., AWS S3 files are always stored remotely

 high latency (100-200ms) and slow bandwidth (20-125MB/s)

 Distribution and partitioning is very common

 Distribution – allows jobs to be parallelized

 Partitioning – data-pruning or data lifecycle management

 Some locality can be created by caching

 Caching in memory (e.g., Spark)

 Caching on local ephemeral disk (e.g., DBIO cache in Databricks, Vertica EON, etc.)

 0.03ms latency, ~500MB/S bandwidth, ~500GB size (per core)

Data placement in the Cloud

10

Shared-nothing cloud data warehouse

11

 Shared nothing data warehouse

 dominant system architecture for high-

performance data warehousing.

 Scales well for star-schema queries

as very little bandwidth is required to join

 a small (broadcast) dimensions table with

 a large (partitioned) fact table.

 Elegant design with homogeneous nodes

Shared-nothing architecture

12

Disk Disk Disk Disk

DB DBDB DB

Network

Local

storage

Every query processor node (DB) has its own

local attached storage (disk).

Data is horizontally partitioned across the

processor nodes.

Each node is only responsible for the rows on

its own local disks

 Classic shared-nothing design with locally

attached storage

 The execution engine is ParAccel DBMS

 Classic MPP, JIT C++

 Leverages standard AWS services:

 EC2 + EBS + S3, Virtual Private Cloud

 Redshift cluster: Leader + Compute nodes

 Leader parses a query and builds an optimal

execution plan.

 Creates compiled code and distributes it to

the compute nodes for processing.

 Aggregates the results before returning the

result to the client.

Example: old version of Amazon (AWS) Redshift

13

 The leader distributes data to the slices and apportions workload to them.

 The number of slices per node depends on the node size.

 Within a node, Redshift can decide how to distribute data between the slices (or the user can specify

the distribution key, to better match the query’s joins and aggregations).

A Redshift Instance

15

NODE Slice 1 Slice 2

Each compute node has

dedicated CPU, memory and

locally attached disk storage.

Memory, storage, and data

partitioned among the slices.

NODE Slice 1 Slice 2

Leader

Hash and round-robin table

partitioning / distribution.

Within a slice

16

ID NAME AGE DATE

Columns stored in 1MB blocks.

Min and Max value of each

block retained in a zone map.

Rich collection of compression

options (RLE, dictionary, gzip, etc.)

Data stored in columns, sorted by:

• Compound sort key

• Interleaved sort key

(multidimensional sorting)

 Each 1MB block is replicated

on a different compute node

 Data blocks (1MB) are

also stored on S3

 S3 triply replicates each block

Fault tolerance

17

NODE Slice 1 Slice 2 NODE Slice 1 Slice 2

Leader

S3

 Assume node 1 fails:

 Option #1:

node 2 processes load until

node 1 is restored

 Option #2:

new node is instantiated

 node 3 processes

workload using data in S3

 until the local disks are

restored

Handling node failures

18

NODE Slice 1 Slice 2 NODE Slice 1 Slice 2

Leader

S3

 Tightly couples compute and storage resources

 Heterogeneous workloads

 a system configuration that is ideal for bulk loading (high I/O bandwidth, light compute)

 is poor fit for complex queries (low I/O bandwidth, heavy compute).

 Membership changes

 if the set of nodes changes potentially a large volume of data needs to be reshuffled

 Online upgrades

 possible but very hard when everything is coupled and expected to be homogeneous.

 This makes it problematic to use it in the cloud setting

Drawbacks of shared-nothing architecture

20

Shared-storage architectures

Separating compute and storage

21

 Evolution of cloud-data warehouse architectures over the years

 Engines maintain state comprised of: cache, metadata, transaction log, and data

 The first step is decoupling of storage and compute – more flexible scaling

 Both layers can scale-up or down independently

 Storage is abundant and cheaper than compute

 User only pays for the compute needed to query a working subset of the data

Separating Compute and Storage

22

Caches

Metadata

Transaction Log

Data

Caches

Metadata

Transaction Log

Data

Caches

Metadata

Transaction Log

Data

On-premise

architecture

Storage-separate

architecture

State-separate

architecture

Disaggregated Compute-Storage Architectures

23

 Advantages:

 Elasticity: storage and compute resources

need to be scaled independently

 Availability: tolerate cluster and node failures

 Heterogeneous workloads: high I/O

bandwidth or heavy compute

 Key features:

 Disaggregation of compute and storage

 Multi-tenancy

 Elastic data warehouses

 Local SSDs caching

 Cloud storage service, e.g., AWS S3,

Google Cloud Storage, Azure Blob Storage

 Examples:

 Snowflake, new AWS Redshift

Src: Li et al. Cloud-Native Databases, VLDB’22

Example: Snowflake

25

img src: Dageville et al. (2016) The Snowflake Elastic Data Warehouse. SIGMOD

The Brain: Key data

management services.

The Muscle: Shared-nothing

execution engine (virtual

warehouse)

The Storage: Shared-storage

for data and query results.

 Tables are horizontally partitioned into large immutable files

 Similar to blocks or pages in a traditional database system

 Within each file:

 The values of each attribute (column) are grouped together

 Heavily compressed (e.g., gzip, RLE, etc.)

 For accelerated query processing:

 MinMax value of each column of each file of each table are

kept in a catalog

 used for pruning at runtime.

Snowflake’s table storage

26

ID

NAME

AGE

ID

VALUES

NAME

VALUES

AGE

VALUES

 Dynamically created cluster of EC2 instances

 Pure compute resources

 Can be created, destroyed, and resized at any time

 Local disk cache file headers and table columns

 Three sizing mechanisms:

 Number of EC2 instances

 Size of each instance (#cores, I/O capacity)

Snowflake’s virtual warehouses

27

Virtual Warehouse

Cluster of

EC2 instances

Local data

cache layer

 Each query mapped to exactly one virtual warehouse

 Each VW may run multiple queries in parallel

 Every VW has access to the same shared table without needed to copy data

 Designed for the cloud

 Compute and storage independently scalable

 Data stored in S3/Azure/GFS but with own closed format (you need to load/trasform)

 Virtual warehouses composed of clusters of compute (AWS EC2) instances

 Queries can be given exactly the compute resources they need

 Query execution is still statefull

 and is not “serverless”

 No management knobs

 No indices, no create/update stats, no distribution keys, etc.

 Can directly query unstructured data (JSON)

Snowflake summary

29

Disaggregated Compute-Memory-Storage Arch.

30

 Advantages:

 Elasticity: storage and compute resources

need to be scaled independently

 Centralized scheduling: schedule the

resources for better utilization

 Complex workloads: cope with the large

intermediate results

 Key features:

 Disaggregation of compute and storage

 Shuffle-memory layer for speeding up joins

 Multi-tenancy, serverless

 Local SSDs for caching

 Cloud Storage Service: e.g., S3, CGS, etc.

 Examples:

 BigQuerySrc: Li et al. Cloud-Native Databases, VLDB’22

 Compute (Clusters)

+ Shuffle tier (Colossus DFS)

+ Storage

 Dremel Query Engine

 Distributed memory shuffle tier for

query optimization

 Reduced the shuffle latency by 10x

 Enabled 10x larger shuffles

 Reduced the resource cost by > 20%

Example: BigQuery

31

Melnik et al. Dremel: A Decade of Interactive SQL Analysis at Web Scale

 Producer in each worker generates partitions

and sends them to the in-memory nodes for

shuffling

 Consumer combines the received partitions and

performs the operations locally

 Large intermediate results can be

spilled to local disks

BigQuery’s Shuffle Workflow

32

Melnik et al. Dremel: A Decade of Interactive SQL Analysis at Web Scale

Stateless shared-storage architectures

Separating compute and state

33

 In stateful architectures, state of in-flight transaction is stored in the compute node and is not hardened

into persistent storage until the transaction commits.

 When a compute node fails, the state of non-committed transaction is lost fail the transaction

 Resilience to compute node failure and elastic assignment of data to compute

are not possible in stateful architectures the need to move to stateless architectures.

Separating Compute and Storage / State

34

Caches

Metadata

Transaction Log

Data

Caches

Metadata

Transaction Log

Data

On-premise

architecture

Storage-separate

architecture

Caches

Metadata

Transaction Log

Data

State-separate

architecture

 Compute nodes should not hold any state information

 Enables partial restart of query execution in the event of compute node failures

and online changes of the cluster topology

 Examples: BigQuery using the shuffle tier and dynamic scheduler, POLARIS

Stateless compute architectures

35

Caches

Metadata

Transaction Log

Data

State-separate

architecture

 Caches need to be as close to the compute as possible

 Can be lazily reconstructed from persistent storage

 No need to be decoupled from compute

 All data, transactional logs and metadata need to be externalized

Example: POLARIS

36

 Separation of storage and compute

 Compute done by Polaris pools

 Shared centralized services

 Metadata and Transactions

 Stateless architecture within a pool

 Data stored durably in remote storage

 Metadata and transactional log is offloaded to

centralized services (built for high availability

and performance)

 Multiple pools can transactionally access the

same logical database.

img src: Aguilar-Saborit et al. (2020) POLARIS: The Distributed SQL Engine in Azure Synapse. VLDB

 Data cells – abstraction from the underlying

data format and storage system

 Converging data lakes and warehouses

 Hash-based distribution

 To enable easy and balanced distribution

 Hash-distribution h(r) is a system-defined

function that returns the hash bucket

(distribution) that r belongs to – mapping

cells to compute nodes.

 The Partitioning function p(r) is used for

range pruning when range or

equality predicates are defined over r.

Storage layer considerations

37

img src: Aguilar-Saborit et al. (2020) POLARIS:

The Distributed SQL Engine in Azure Synapse. VLDB

 All incoming queries are compiled in two phases:

 Stage 1 uses SQL server query optimizer to

generate all logical equivalent plans to execute a query

 Uses data for the collection of files/tables,

partitions, and distributions

 Stage 2 does distributed cost-based query

optimization to enumerate all physical distributed

implementations of these logical query plans.

 Picks one with the least estimate cost

(taking data movement cost into account).

Distributed query processing – part 1

38

 Task 𝑇𝑖 – physical execution of an operator 𝐸 on the 𝑖𝑡ℎ

hash-distribution of its inputs.

 Tasks are instantiated templates of (the code executing)

expression 𝐸 that run in parallel across 𝑁

hash-distributions of the inputs.

 A task has three components:

 Inputs: collection of cells for each input’s data partition

stored either in local or remote storage

 Task template: code to execute on the compute nodes,

representing the operator expression 𝐸.

 Output: collection of cells produced by the task. Used

either input for another task or the final result.

Distributed query processing – part 2

39

 Model the distribute query execution of queries via hierarchical state machines

 Execution of the query task DAG is top-down

in topological sort-order.

 State machines to have fine-grained control

at task-level and define a predictable model

for recovering from failures.

 States and transitions are logged at each

step – necessary for debugging and resuming

after failover.

 Low resource overhead for tracking

concurrent execution of many queries.

Task organization

40

 The separation of state and compute enable offering different service form-factors:

 Serverless, capacity reservations, multiple pools.

 Data cell abstraction for efficient processing of diverse collection of data formats and storage systems

 Combines scale-up and scale-out

 Scale-up: intra-partition parallelism, vectorized processing, columnar storage, careful control flow,

cache-hierarchy optimizations, deep enhancements to query optimization, etc.

 Fine-grained scale-out: distributed query processing inspired by big data query execution frameworks

 Elastic query processing via

 Separation of state and compute

 Flexible abstraction of datasets as cells

 Task inputs defined in terms of cells

 Fine-grained orchestration of tasks using state machines.

POLARIS Summary

41

Serverless

43

 Issue queries in the cloud without worrying about resource provisioning and pay by query granularity

 Two main approaches:

 Serverless Databases:

 Rely on the cloud SQL engine and storage to execute the queries with dynamic resource provisioning

 The DB service can pause when idle and resume when a query comes in

 Serverless functions + Cloud storage:

 Rely on Function-as-a-Service (FaaS) and cloud storage to run queries with on-demand resources

Serverless Computing for Queries

44

 Two challenges:

 Functions are stateless

 Stragglers increase the overall latency of the parallel query processing

 Approach:

 Use cloud storage to exchange state similar to state-separate query processing

 Use tuned models to detect stragglers and invoke functions with duplication computation

Serverless Functions + Cloud storage

45

 Query processing using lambda functions

 Invoke many tasks in each stage

 Each task writes the intermediate results

to a single object file

 Combiners can be used to reduce the

read cost of the large shuffle

 Trade-off between the number of invoked

tasks (performance) and cost

Serverless Functions + Cloud storage

46

Src: Starling: A scalable query engine on cloud functions. SIGMOD’20

Category Example

System

Approach Scaling Pricing model

Serverless

Database

Azure SQL

AWS Athena

BigQuery

Polaris

Stateful SQL

engine +

Auto-pausing

and resuming

More CPU,

memory or

stand-by

nodes

Pay for active

service with min-

max bound

Function as a

Service (FaaS)

Starling

Lambada

Lambda + Cloud

Storage

Invoke more

functions

Pay for used fns

and storage

Summary of Serverless Computing for Queries

47

The material covered in this class is mainly based on:

 Slides from “Big Data for Data Science” from Prof. Peter Boncz, CWI (link)

 Slides from “Tutorial on Cloud-native Databases” from Li, Dong and Zhang, VLDB’22 (link)

Papers:

 Dageville et al. The Snowflake Elastic Data Warehouse SIGMOD 2016

 Aguilar-Saborit et a.. POLARIS: The Distributed SQL Engine in Azure Synapse. VLDB 2020

 Pavlo et al. A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD 2009

 Vuppalapati et al. Building an Elastic Query Engine on Disaggregated Storage. NSDI 2020

 Gupta et al. Amazon Redshift and the Case for Simpler Data Warehouses. SIGMOD 2015

 Amazon Redshift Re-invented. SIGMOD 2022

Further reading:

 Tan et al. Choosing a Cloud DBMS: Architectures and Tradeoffs. VLDB 2019

 Melnik et al. Dremel: A Decade of Interactive SQL Analysis at Web-Scale. VLDB 2019

 Perron et al. Starling: A Scalable Query Engine on Cloud Functions. SIGMOD 2020

 Mueller et al. Lambada: Interactive Data Analytics on Cold Data using Serverless Cloud Infrastructure. SIGMOD 2020

 Winter et al. On-Demand State Separation for Cloud Data Warehousing. VLDB 2022

References

48

https://homepages.cwi.nl/~boncz/bigdatacourse/05-SQL on Big Data.pdf
https://dbgroup.cs.tsinghua.edu.cn/ligl/papers/tutorial-cloud-naitve-databases.pdf

