
65

Code Generation for Data Processing
Lecture 3: Intermediate Representations

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2023/24

66

Intermediate Representations: Motivation

▶ So far: program parsed into AST

+ Great for language-related checks
+ Easy to correlate with original source code (e.g., errors)

− Hard for analyses/optimizations due to high complexity
▶ variable names, control flow constructs, etc.
▶ Data and control flow implicit

− Highly language-specific

67

Intermediate Representations: Motivation

block

stmt_decl

int ident

x

+

num

5

num

3

stmt_decl

int ident

y

+

ident

x

num

1

stmt_expr

=

ident

x

num

12

stmt_decl

int ident

z

+

ident

x

num

1

stmt_ret

−

ident

z

ident

y

Question: how to optimize? Is x+1 redundant? ⇝ hard to tell

:(

68

Intermediate Representations: Motivation

x1 ← 5 + 3
y1 ← x1 + 1
x2 ← 12
z1 ← x2 + 1
tmp1 ← z1 − y1

return tmp1

Question: how to optimize? Is x+1 redundant? ⇝ No!

:)

69

Intermediate Representations

▶ Definitive program representation inside compiler
▶ During compilation, only the (current) IR is considered

▶ Goal: simplify analyses/transformations
▶ Technically, single-step compilation is possible for, e.g., C

... but optimizations are hard without proper IRs

▶ Compilers design IRs to support frequent operations
▶ IR design can vary strongly between compilers

▶ Typically based on graphs or linear instructions (or both)

70

Compiler Design: Effect of Languages – Imperative

▶ Step-by-step execution of program
modification of state

▶ Close to hardware execution model
▶ Direct influence of result

▶ Tracking of state is complex
▶ Dynamic typing: more complexity
▶ Limits optimization possibilities

void addvec(int* a, const int* b) {
for (unsigned i = 0; i < 4; i++)
a[i] += b[i]; // vectorizable?

}

func:
mov [rdi], rsi
mov [rdi+8], rdx
mov [rdi], 0 // redundant?
ret

71

Compiler Design: Effect of Languages – Declarative

▶ Describes execution target
▶ Compiler has to derive good

mapping to imperative hardware

▶ Allows for more optimizations
▶ Mapping to hardware non-trivial

▶ Might need more stages
▶ Preserve semantic info for opt!

▶ Programmer has less “control”

select s.name
from studenten s
where exists (select 1

from hoeren h
where h.matrno=s.matrno)

let rec fac = function
| 0 | 1 -> 1
| n -> n * fac (n - 1)

72

Graph IRs: Abstract Syntax Tree (AST)

▶ Code representation close to the source
▶ Representation of types, constants, etc. might differ
▶ Storage might be problematic for large inputs

block

stmt_decl

int ident

x

+

num

5

num

3

stmt_decl

int ident

y

+

ident

x

num

1

stmt_expr

=

ident

x

num

12

stmt_decl

int ident

z

+

ident

x

num

1

stmt_ret

−

ident

z

ident

y

73

Graph IRs: Control Flow Graph (CFG)

▶ Motivation: model control flow between different code sections
▶ Graph nodes represent basic blocks

▶ Basic block: sequence of branch-free code (modulo exceptions)
▶ Typically represented using a linear IR

stmt1
while (exp1)
stmt2

stmt3

block

stmt1 stmt_while

exp1 stmt2

stmt3

stmt1

exp1

stmt3

stmt2

74

Build CFG from AST – Function

▶ Idea: Keep track of current insert block while walking through AST

function

ret. type name arguments B

fn. prologue

B

fn. epilogue

75

Build CFG from AST – While Loop

stmt_while

condition B

c=condition
if(!c) ↙ else ↘

B

76

Build CFG from AST – If Condition

stmt_if

condition T E

c=condition
if(c) ↙ else ↘

T E

77

Build CFG from AST: Switch

Linear search
t ← exp
if t == 3: goto B3
if t == 4: goto B4
if t == 7: goto B7
if t == 9: goto B9
goto BD

Binary search
t ← exp
if t == 7: goto B7
elif t > 7:
if t == 9: goto B9

else:
if t == 3: goto B3
if t == 4: goto B4

goto BD

Jump table
t ← exp
if 0 ≤ t< 10:
goto table[t]

goto BD

table = {
BD, BD, BD, B3,
B4, BD, ... }

+ Trivial
− Slow, lot of code

+ Good: sparse values
− Even more code

+ Fastest
− Table can be large,

needs ind. jump

78

Build CFG from AST: Break, Continue, Goto

▶ break/continue: trivial
▶ Keep track of target block, insert branch

▶ goto: also trivial
▶ Split block at target label, if needed
▶ But: may lead to irreducible control flow graph

79

CFG: Formal Definition

▶ Flow graph: G = (N ,E , s) with a digraph (N ,E) and entry s ∈ N
▶ Each node is a basic block, s is the entry block
▶ (n1, n2) ∈ E iff n2 might be executed immediately after n1
▶ All n ∈ N shall be reachable from s (unreachable nodes can be discarded)
▶ Nodes without successors are end points

80

Graph IRs: Call Graph

▶ Graph showing (possible) call
relations between functions

▶ Useful for interprocedural
optimizations
▶ Function ordering
▶ Stack depth estimation
▶ . . .

main

parseArgs

strtol

printf

write

fibonacci

81

Graph IRs: Relational Algebra

▶ Higher-level representation of query plans
▶ Explicit data flow

▶ Allow for optimization and selection actual implementations
▶ Elimination of common sub-trees
▶ Joins: ordering, implementation, etc.

SELECT s.name, h.vorlnr
FROM studenten s, hoeren h
WHERE s.matrnr = h.matrnr

σs.matrnr=h.matrnr

×

studenten hoeren

⋊⋉HJ
s.matrnr=h.matrnr

studenten hoeren

82

Linear IRs: Stack Machines

▶ Operands stored on a stack
▶ Operations pop arguments from top

and push result
▶ Typically accompanied with variable storage

▶ Generating IR from AST: trivial
▶ Often used for bytecode, e.g. Java, Python

+ Compact code, easy to generate and implement
− Performance, hard to analyze

push 5
push 3
add
pop x
push x
push 1
add
pop y
push 12
pop x
push x
push 1
add
pop z

83

Linear IRs: Register Machines

▶ Operands stored in registers
▶ Operations read and write registers
▶ Typically: infinite number of registers
▶ Typically: three-address form

▶ dst = src1 op src2

▶ Generating IR from AST: trivial
▶ E.g., GIMPLE, eBPF, Assembly

x ← 5 + 3
y ← x + 1
x ← 12
z ← x + 1
tmp1 ← z − y
return tmp1

84

Example: High GIMPLE

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}

int fac (int n)
gimple_bind < // <-- still has lexical scopes
int D.1950;
int res;

gimple_assign <integer_cst, res, 1, NULL, NULL>
gimple_goto <<D.1947>>
gimple_label <<D.1948>>
gimple_assign <mult_expr, _1, n, n, NULL>
gimple_assign <mult_expr, res, res, _1, NULL>
gimple_assign <plus_expr, n, n, -1, NULL>
gimple_label <<D.1947>>
gimple_cond <ne_expr, n, 0, <D.1948>, <D.1946>>
gimple_label <<D.1946>>
gimple_assign <var_decl, D.1950, res, NULL, NULL>
gimple_return <D.1950>

>

$ gcc -fdump-tree-gimple-raw -c foo.c

85

Example: Low GIMPLE

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}

int fac (int n)
{
int res;
int D.1950;

gimple_assign <integer_cst, res, 1, NULL, NULL>
gimple_goto <<D.1947>>
gimple_label <<D.1948>>
gimple_assign <mult_expr, _1, n, n, NULL>
gimple_assign <mult_expr, res, res, _1, NULL>
gimple_assign <plus_expr, n, n, -1, NULL>
gimple_label <<D.1947>>
gimple_cond <ne_expr, n, 0, <D.1948>, <D.1946>>
gimple_label <<D.1946>>
gimple_assign <var_decl, D.1950, res, NULL, NULL>
gimple_goto <<D.1951>>
gimple_label <<D.1951>>
gimple_return <D.1950>

}

$ gcc -fdump-tree-lower-raw -c foo.c

86

Example: Low GIMPLE with CFG

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}

int fac (int n) {
int res;
int D.1950;
<bb 2> :
gimple_assign <integer_cst, res, 1, NULL, NULL>
goto <bb 4>; [INV]
<bb 3> :
gimple_assign <mult_expr, _1, n, n, NULL>
gimple_assign <mult_expr, res, res, _1, NULL>
gimple_assign <plus_expr, n, n, -1, NULL>
<bb 4> :
gimple_cond <ne_expr, n, 0, NULL, NULL>
goto <bb 3>; [INV]

else
goto <bb 5>; [INV]

<bb 5> :
gimple_assign <var_decl, D.1950, res, NULL, NULL>
<bb 6> :

gimple_label <<L3>>
gimple_return <D.1950>

}

$ gcc -fdump-tree-cfg-raw -c foo.c

87

Linear IRs: Register Machines

▶ Problem: no clear def–use information
▶ Is x + 1 the same?
▶ Hard to track actual values!

▶ How to optimize?

⇒ Disallow mutations of variables

x ← 5 + 3
y ← x + 1
x ← 12
z ← x + 1
tmp1 ← z − y
return tmp1

88

Single Static Assignment: Introduction

▶ Idea: disallow mutations of variables, value set in declaration
▶ Instead: create new variable for updated value

▶ SSA form: every computed value has a unique definition
▶ Equivalent formulation: each name describes result of one operation

x ← 5 + 3
y ← x + 1
x ← 12
z ← x + 1
tmp1 ← z − y
return tmp1

v1 ← 5 + 3
v2 ← v1 + 1
v3 ← 12
v4 ← v3 + 1
v5 ← v4 − v2

return v5

89

Single Static Assignment: Control Flow

▶ How to handle diverging values in control flow?
▶ Solution: Φ-nodes to merge values depending on predecessor

▶ Value depends on edge used to enter the block
▶ All Φ-nodes of a block execute concurrently (ordering irrelevant)

entry : x ← . . .
if (x > 2) goto cont

then : x ← x ∗ 2
cont : return x

entry : v1 ← . . .
if (v1 > 2) goto cont

then : v2 ← v1 ∗ 2
cont : v3 ← Φ(entry : v1, then : v2)

return v3

90

Example: GIMPLE in SSA form

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}

int fac (int n) { int res, D.1950, _1, _6;
<bb 2> :
gimple_assign <integer_cst, res_4, 1, NULL, NULL>
goto <bb 4>; [INV]
<bb 3> :
gimple_assign <mult_expr, _1, n_2, n_2, NULL>
gimple_assign <mult_expr, res_8, res_3, _1, NULL>
gimple_assign <plus_expr, n_9, n_2, -1, NULL>
<bb 4> :
gimple_phi <n_2, n_5(D)(2), n_9(3)>
gimple_phi <res_3, res_4(2), res_8(3)>
gimple_cond <ne_expr, n_2, 0, NULL, NULL>
goto <bb 3>; [INV]

else
goto <bb 5>; [INV]

<bb 5> :
gimple_assign <ssa_name, _6, res_3, NULL, NULL>
<bb 6> :

gimple_label <<L3>>
gimple_return <_6>

}

$ gcc -fdump-tree-ssa-raw -c foo.c

91

SSA Construction – Local Value Numbering

▶ Simple case: inside block – keep mapping of variable to value

Code

x ← 5 + 3
y ← x + 1
x ← 12
z ← x + 1
tmp1 ← z − y
return tmp1

SSA IR

v1 ← add 5, 3
v2 ← add v1, 1
v3 ← const 12
v4 ← add v3, 1
v5 ← sub v4, v2

ret v5

Variable Mapping

x → v3

y → v2

z → v4

tmp1 → v5

92

SSA Construction – Across Blocks

▶ SSA construction with control flow is non-trivial
▶ Key problem: find value for variable in predecessor

▶ Naive approach: Φ-nodes for all variables everywhere
▶ Create empty Φ-nodes for variables, populate variable mapping
▶ Fill blocks (as on last slide)
▶ Fill Φ-nodes with last value of variable in predecessor

▶ Why is this a bad idea? ⇒ don’t do this!
▶ Extremely inefficient, code size explosion, many dead Φ

93

SSA Construction – Across Blocks (“simple”4)

▶ Key problem: find value in predecessor
▶ Idea: seal block once all direct predecessors are known

▶ For acyclic constructs: trivial
▶ For loops: seal header once loop block is generated

▶ Current block not sealed: add Φ-node, fill on sealing
▶ Single predecessor: recursively query that
▶ Multiple preds.: add Φ-node, fill now

4M Braun et al. “Simple and efficient construction of static single assignment form”. In: CC. 2013, pp. 102–122. .

https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf

94

SSA Construction – Example

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}

func foo (v1)
entry: sealed; varmap: n→ v1, res→ v2

v2 ← 1
header: sealed; varmap: n→ ϕ1, res→ ϕ2

ϕ1 ← ϕ(entry: v1, body: v6)
ϕ2 ← ϕ(entry: v2, body: v5)
v3 ← equal ϕ1, 0
br v3, cont, body

body: sealed; varmap: n→v6, res→ v5

v4 ← mul ϕ1, ϕ1
v5 ← mul ϕ2, v4
v6 ← sub ϕ1, 1
br header

cont: sealed; varmap: res→ ϕ2

ret ϕ2

95

SSA Construction – Pruned/Minimal Form

▶ Resulting SSA is pruned – all ϕ are used
▶ But not minimal – ϕ nodes might have single, unique value

▶ When filling ϕ, check that multiple real values exist
▶ Otherwise: replace ϕ with the single value
▶ On replacement, update all ϕ using this value, they might be trivial now, too

▶ Sufficient? Not for irreducible CFG
▶ Needs more complex algorithms5 or different construction method6

AD IN2053 “Program Optimization” covers this more formally

5M Braun et al. “Simple and efficient construction of static single assignment form”. In: CC. 2013, pp. 102–122. .
6R Cytron et al. “Efficiently computing static single assignment form and the control dependence graph”. In: TOPLAS 13.4 (1991),

pp. 451–490. .

https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf
https://dl.acm.org/doi/pdf/10.1145/115372.115320

96

SSA: Implementation

▶ Value is often just a pointer to instruction
▶ ϕ nodes placed at beginning of block

▶ They execute “concurrently” and on the edges, after all

▶ Variable number of operands required for ϕ nodes
▶ Storage format for instructions and basic blocks

▶ Consecutive in memory: hard to modify/traverse
▶ Array of pointers: O(n) for a single insertion...
▶ Linked List: easy to insert, but pointer overhead

97

Is SSA a graph IR?

Only if instructions have no side effects,
consider load, store, call, . . .

These can be solved using explicit dependencies as SSA values, e.g. for memory

98

Intermediate Representations – Summary

▶ An IR is an internal representation of a program
▶ Main goal: simplify analyses and transformations

▶ IRs typically based on graphs or linear instructions
▶ Graph IRs: AST, Control Flow Graph, Relational Algebra
▶ Linear IRs: stack machines, register machines, SSA

▶ Single Static Assignment makes data flow explicit
▶ SSA is extremely popular, although non-trivial to construct

99

Intermediate Representations – Questions

▶ Who designs an IR? What are design criteria?
▶ Why is an AST not suited for program optimization?
▶ How to convert an AST to another IR?
▶ What are the benefits/drawbacks of stack/register machines?
▶ What benefits does SSA offer over a normal register machine?
▶ How do ϕ-instructions differ from normal instructions?

	Intermediate Representations

