Code Generation for Data Processing

Lecture 8: Register Allocation

Alexis Engelke

Chair of Data Science and Engineering (125)
School of Computation, Information, and Technology
Technical University of Munich

Winter 2023/24

234

Register Allocation

» Map unlimited/virtual registers to limited/architectural registers

» Assign a register to every value
» Outputs get a (new) register, input operands often require registers
» When running out of registers, move values to stack

» Stack spilling — save value register from to stack memory

» ¢-nodes: ensure all inputs are assigned to same location

» Goal: produce correct code, minimize extra load/stores
» Regalloc affects performance in orders of magnitude

235

Register Allocation: Overview Example

gauss (%0) { gauss (%0 : X0) {
%2 = SUBXri %0, 1 %2 = SUBXri %0, 1 : X1
%3 = MADDXrrr %0, %2, O %3 = MADDXrrr %0, %2, 0 :

%4 = MOVXconst 2 %4 = MOVXconst 2 : X1
%5 = SDIVrr %3, %4 %5 = SDIVrr %3, %4 : XO
ret %5 ret %5

} }

» May also insert copy and stack spilling instructions

X0

236

Simplest thing that could possibly work

+

Idea: allocate a one stack slot for every SSA variable/argument

Load all instruction operands into registers right before
Perform instruction
Write result back to stack slot for that SSA variable

Simple, always works, debugging easy

Extremely inefficient in time and space

237

Regalloc Example 1

gauss (%0) gauss (%0 : X0)
%spills = alloca 40

%2 = SUBXri %0, 1 STRXi %0, %spills, 0
%3 = MADDXrrr %0, %2, O %10 = LDRXi %spills, O : X0
%4 = MOVXconst 2 %2 = SUBXri %0%10, 1 : XO
%5 = SDIVrr %3, %4 STRXi %2, %spills, 8

. %11 = LDRXi %spills, O : X0
ret %5

%12 = LDRXi %spills, 8 : X1
%3 = MADDXrrr %11, %12, 0 : XO
STRXi %3, %spills, 16

%4 = MOVXconst 2 : XO

STRXi %4,i %spills, 24

%13 = LDRXi %spills, 16 : X0
%14 = LDRXi %spills, 24 : X1
%5 = SDIVrr %13, %14 : XO
STRXi %5, %spills, 32

%15 = LDRXi %spills, 32 : X0
ret %15

Handling PHI Nodes

» ¢-node needs to become register or stack slot
» Simplest thing that could possibly work: PHI becomes stack slot

» Remember: ¢-nodes are executed on the edge
» |dea: predecessors write their value to that location at the end

» First pass: define/allocate storage for ¢-node, but ignore inputs
» Second pass: insert move operations at end of predecessors

239

Regalloc Example 2

identity (%0)
br %2
2:
%3 =phi [0, %11, [%4, %21
%4 = ADDXri %3, 1
%5 CMPXrr_BLS %4, %0
br %5, %2, %6

ret %3

Pass 12

|
» Original value lost in %6!

identity (%0 : X0)
%spills = alloca 24
STRXi %0, %spills, O
%cO0 = MOVXconst O : XO
STRXi %c, %spills, 8
br %2

2:%3 =phi [0, %1 1, [%4, %21
%10 = LDRXi %spills, 8 : XO
%4 = ADDXri %10, 1 : X0
STRXi %4, %spills, 16
%14 = LDRXi %spills, 16 : XO
STRXi %14, %spills, 8
%11 = LDRXi %spills, 16 : XO
%12 = LDRXi %spills, O : X1
%5 = CMPXrr_BLS %11, %12
br %5, %2, %6

6:%13 = LDRXi %spills, 8 : XO
ret %13

240

Critical Edges

» Critical edge: edge from block with mult. succs. to block with mult. preds.

» Problem: cannot place move on such edges

» When placing in predecessor, they would also execute for other successor
= unnecessary and — worse — incorrect

» Break critical edges: insert an empty block

241

Regalloc Example 2 — Attempt 2

identity (%0)
br %2

2:
%3

phi [0, %1 1, [%4, %6 1]

%4 = ADDXri %3, 1
%5 = CMPXrr_BLS %4, %0
br %5, %6, W7
6:
br %2
7:
ret %3
Pass 12

identity (%0 : X0)
%spills = alloca 24
STRXi %0, %spills, O
%cO = MOVXconst O :
STRXi %c, %spills, 8
br %2

2:%3 =phi [0, %11,
%10 = LDRXi %spills,
%4 = ADDXri %10, 1
STRXi %4, %spills, 1
%11 = LDRXi Y%spills,
%12 = LDRXi %spills,
%5 = CMPXrr_BLS %11,
br %5, %6, %7

6:%14 = LDRXi a/,Spills,
STRXi %14, %spills,
br %2

7:%13 = LDRXi %spills,
ret %13

X0

[%4, %6 1]
8 : X0
: X0
6
16 : X0
0 : X1
%12
16 : X0
8
8 : X0

242

Handling Critical Edges

Breaking Edges Copy Used Values

» Insert new block for moves » Move values still used to new reg.
+ Simple, no analyses needed + Performance might be better
— Bad performance in loops — Needs more registers
r1 <0 r1 <0
RN '
r2<<r1+1
r2<+<r1+1 rl < r2 T 1
l \—/ Tl < 12
r34rl+x L

r3+ rT+x

243

Regalloc Example 3

0dd (%0)
br %2

2:
%3 =phi [%0, %1 1, [%8, %7 1]
%4 =phi [1, %11, [%5, %71
% =phi [0, %1 1, [%4, %71
%6 = CBNZX(%3)
br %6, %7, %9

[

%8 = SUBXri %3, 1
br %2

ret %4

|
» Value of ¢ node lost!

odd (%0 : X0)
%spills = alloca 40
STRXi %0, %spills, O
%13 = LDRXi %spills, O :

%cO = MOVXconst 1
%cl = MOVXconst O :
br %2

2:%3 = phi [%0, %11,

% =phi [1, %11,
%5 =phi [0, %1 1,
%10 = LDRXi %spills, 8 :
%6 = CBNZX(%10)
br %6, %7, %9

7:%11 = LDRXi %spills, 8 :
%8 = SUBXri %12, 1 : XO0;

%14 = LDRXi Y%spills, 40 :

%15 = LDRXi %spills, 24 :
%16 = LDRXi %spills, 16 :
br %2

9:%12 = LDRXi %spills, 24 :

ret %12

X0; STRXi %13, Y%spills, 8

: X0; STRXi %cO, %spills, 16
X0; STRXi %cl, %spills, 16

[%8, %7 1 // spills+8
[%5
[%4, %7 1 // spills+24

, W7 1 // spills+16

X0

X0

STRXi %8, %spills, 32

: X0; STRXi %14, %spills, 8
X0; STRXi %15, %spills, 16
X0; STRXi %16, %spills, 24

X0

244

PHI Cycles

» Problem: ¢-nodes can depend on each other
» Can be chains (ordering matters) or cycles (need to be broken)

» Note: only ¢-nodes defined in same block are relevant/problematic

% @‘@

= = o2, 61 = $¢a,-..)
il - iéii’:::i b2 = B(d5....) b2 = H(d3....)
¢3 = ng(v’) ¢z = ¢(da,...) 3 = ¢(¢1,...)
’ os = 6(o1,--.) bs = O(én,-..)

245

Handling PHI Cycles

1. Compute number of other ¢ nodes reading other ¢ on same edge
2. For each ¢ with 0 readers: handle node/chain

» No readers ~ start of chain

» Handling node may unblock next element in chain
3. For all remaining ¢-nodes: must be cycles, reader count always 1

» Choose arbitrary node, load to temporary register, unblock value
» Handle just-created chain
» Write temporary register to target

Resolving ¢ cycles requires an extra register (or stack slot)

246

Regalloc Example 3 — Attempt 2

Edge %1 — %2 Edge %7 — %2

Critical ¢:
> 4 Htreaders: 10 —
broken

» 5 Freaders: 10

Action: break %4

odd (%0 : X0)
%spills = alloca 40
STRXi %0, %spills, O

%13 = LDRXi %spills, O :

X0; STRXi %13, Y%spills, 8

%c0 = MOVXconst 1 : XO; STRXi %cO, %spills, 16
%cl = MOVXconst O : XO; STRXi %cl, %spills, 16

br %2
2:%3
%4
%5

%10 = LDRXi %spills, 8 :

%6 = CBNZX(%10)
br %6, %7, %9

7:%11 = LDRXi %spills, 8 :
%8 = SUBXri %12, 1 : XO0;
%14 = LDRXi %spills, 40 :
%15 = LDRXi %spills, 24 :
%16 = LDRXi Y%spills, 16 :

STRXi %15, %spills, 16
br %2

9:%12 = LDRXi %spills, 24 :

ret %12

phi [%0, %11, [%8, %7 1 // spills+8
phi [1, %11, [%5, %7 1 // spills+16
phi [0, %11, [%4, %7 1 // spills+24

X0

X0

STRXi %8, %spills, 32

X0; STRXi %14, %spills, 8
X1

X0; STRXi %16, %spills, 24

X0

247

Better Register Allocation

» Goal: keep as many values in registers as possible
> Less stack spilling = better performance

» Problem: register count (severely) limited

~~ Are there enough registers? (otherwise: spilling)
~ Which register to choose?

~» Which register to kill and put on the stack?

» Needs information when value is actually needed

248

Interlude: Register Allocation Research — Executive Summary

» Tons of papers exist

» Papers often skip over important details
» E.g., when spilling — using the value needs another register
» E.g., temporary register for shuffling values

» Additional (ISA) constraints in practice: (incomplete list)
> 2-address instructions with destructive source
> Fixed registers for specific instructions
» Computing the stack address may need yet another register
» Different register classes, often just handled independently

» Implementations even of simple algorithms tend to be large and complex

249

Liveness Analysis — Definitions

» Live: value still used afterwards
> After last (possible) use in program flow, the value becomes dead

» Live ranges: set of ranges in program where value is live
» Not necessarily contiguous, e.g. in case of branches

» Live interval: over-approximation of live ranges without holes
» Depends on block order, reverse post-order often a good choice

» Live-in/Live-out: values live at begin/end of basic block
» For ¢ nodes: ¢ is live-in, operands are live-out in predecessors

(Note: different literature uses different definitions)

250

Liveness Analysis — Example

a live-in: ()

live-in: a, c

live-out: c, d1 di

d = ¢(d1, d2)

return ¢ + d

live-out: a, b, c

live-in: a, b, ¢
live-out: c, d2

live-in: c, d

live-out:

251

Liveness Analysis — Example — Live Ranges vs. Live Intervals

a

return c + d

‘ d = ¢(dl, d2) ‘

» Live intervals are substantially worse, but easier to compute

a = ...
b= ...
cC = ...

if (...)

di =a+1
goto ...

d2 =a+b
goto ...

d = ¢(d1, d2)

return c + d

252

Liveness Analysis — Algorithm3°

» lterate over blocks in post-order

» live + Us.liveln \ s.phis,s € b.successors
live < live U {¢.input(b)|¢ € b.successors.phis}
b.liveOut <+ live
Vv € live : ranges|v].add(b.start, b.end)
For each non-¢ instruction inst in reverse order
» live < (live U inst.ops) \ {inst}
» ranges|inst].setStart(inst)
> Vop € inst.ops : ranges|op|.add(b.start, inst)

» b.liveln < live U b.phis

| 4
4
4
4

» Repeat until convergence®®

35Reducible graphs: expanding liveln of loop headers to the entire loop suffices

36 Adapted from C Wimmer and M Franz. “Linear scan register allocation on SSA form”. In: CGO. 2010, pp. 170-179.

253

Liveness Analysis — Example

d = ...
by = ...

cC = ...

a» = ¢(a1, a3)
b2 = (b(bl’ b3)
if (by < ¢)

Y
a3 = a + b
bs by + 1

L]

return ap

254

Register Allocation Decisions (Outline)

» Question: are there enough registers for all values?

» Register pressure = number of values live at some point
> Register pressure > #registers = move some values to stack (spilling)

» Question: when spilling, which values and where to store/reload?
» Spilling is expensive, so avoid spilling frequently used values

» Question: for unspilled values, which register to assign?
> Also: respect register constraints, etc.

255

Register Allocation Strategies

Scan-based

> lterate over the program
» Decide locally what to do
» Greedily assign registers

+ Fast, good for straight code
— Code quality often bad
» Used for -00 and JIT comp.

Graph-based

» Compute interference graph

» Nodes are values
» Edge = live ranges overlap

» Holistic approach

+ Often generate good code
— Expensive, superlinear runtime

» Used for optimized code

256

Linear Scan Register Allocation®’

» Idea: treat whole function as single block

» Block order affects quality (but not correctness)
» Only consider live intervals without holes

» lterate over instructions from top to bottom
» For operands of instruction in their last use: mark register as free

» Assign instruction result to new free register

» If no free register available: move some value to the stack
» Heuristic: value whose liveness ends furthest in future

37M Poletto and V Sarkar. “Linear scan register allocation”. In: TOPLAS 21.5 (1999), pp. 895-913.

257

Linear Scan Register Allocation

+ low compile-time, simple

— very suboptimal code, live intervals grossly over-approximated

» What's missing?
» Registers to load spilled values
» Shuffling of values between blocks
> Register constraints (e.g., for instructions or function calls)

» Other disadvantage: once a value is spilled, it is spilled everywhere
» Some other approaches based on lifetime splitting3®

» Function calls: clobber lots of registers

380 Traub, G Holloway, and MD Smith. “Quality and speed in linear-scan register allocation”. In: SIGPLAN 33.5 (1998),

pp. 142-151. @.

258

https://dl.acm.org/doi/pdf/10.1145/277652.277714

Scan-based Register Allocation*!

lterate over basic blocks®®

» Start with register assignment from predecessor
» Multiple predecessors: choose assignment from any one
» ¢-nodes can either reside in registers or on the stack
> lterate over instructions top-down
» Ensure all instruction operands are in registers
» When out of registers: move any value to stack
» For operands in their last use: mark register as free
» Assign instruction result to new free register

» Shuffle values back into registers where successor expects them*°

3'9Typica||y: reverse post-order, so most predecessors are seen before successors, except for loops.
40\ithout critical edges, only relevant for blocks with one successor — others are visited afterwards by RPO definition.

41 Mostly following Go: https://github.com/golang/go/blob/5f7abe/src/cmd/compile/internal/ssa/regalloc.go 259

https://github.com/golang/go/blob/5f7abe/src/cmd/compile/internal/ssa/regalloc.go

Scan-based Register Allocation — Spilling

What to spill?
» Spill value with furthest use in future*?

> Frees register for longest time

» Requires information on next use to be stored during analysis

» But: avoid spilling values computed inside loops (esp. loop-carried
dependencies), reloads are fine*3

» Downside: super-linear runtime

Where to store?
» Stack, period.
» Spilling to FP/vector registers. . . occasionally proposed, not used in practice

42C Wimmer and H Méssenbdck. “Optimized interval splitting in a linear scan register allocator’. In: VEE. 2005, pp. 132-141.
43|ntel Optimization Reference Manual (Aug. 2023), Assembly/Compiler Coding Rules 38 and 45 260

Scan-based Register Allocation — Spilling

Where to insert store?
» Option 1: spill exactly where required
» Downside: multiple spills of same value, many reloads
» Option 2: spill once, immediately after computation

» Later “spills” to the stack are less costly
» May lead to spills on code paths that don't need it

» Option 3: compute best place using dominator tree
» Spill store must dominate all subsequent loads

261

Scan-based Register Allocation — Register Assignment

» Merge blocks: choose predecessor with most values in registers

» High likelihood of reducing the number of stores
» Re-loads are pushed into predecessors

» Propagate register constraints bottom-up as hints first

» E.g.: call parameters, instruction constraints, assignment for merge block
» Reduces number of moves

262

Graph Coloring Approaches

+ Considerably better results than greedy algorithms

— High run-time, even with heuristics

» Graph coloring in general is N'P-complete
» Often used in compilers (e.g., GCC, WebKit)

- IN2053 “Program Optimization” covers this more formally

263

Stack Frame Allocation

» Optionally setup frame pointer

» Required for variably-sized stack frame
Otherwise: cannot access spilled variables or stack parameters

Optionally re-align stack pointer

>

» Save callee-saved registers, maybe also link register
» Optionally add code for stack canary
>

Compute stack frame size and adjust stack pointer

» Mainly size of allocas, but needs to respect alignment
» Ensure sufficient space for parameters passed on the stack
» Ensure stack pointer is sufficiently aligned

» Stack pointer adjustment may be omitted for leaf functions
» Some ABIs guarantee a red zone

264

Block Ordering

» Order blocks to make use of fall-through in machine code
» Avoid sequences of b.cond; b
» Sometimes cannot be avoided: conditional branches often have shorter range

» Block ordering has implications for branch prediction
» Forward branches default to not-taken, backward taken
» Unlikely blocks placed “out of the way" of the main execution path
» Indirect branches are predicted as fall-through

265

Register Allocation — Summary

» Map unlimited virtual registers to restricted register set
» Responsible for:

> Assigning registers to values
» Deciding which registers to spill to stack
» Deciding when to spill /unspill values

¢-nodes require extra care, esp. for chains and cycles
Liveness information is key information for register allocation
Scan-based approaches are fast, but lead to suboptimal code

Graph coloring yields better results, but is much slower

vvyyVvyyvYyy

Register allocation/spilling heavily relies on heuristics in practice

266

Register Allocation — Questions

vVvyvVvyVvyVvyYVYyYvVvyy

Why is register allocation a difficult problem?

How are ¢-nodes handled during register allocation?

What are the two main problems when destructing ¢-nodes?
Why are critical edges problematic and how to deal with them?
What are practical constraints for register allocation?

How to detect whether a value is still needed at some point?
How to compute the live ranges of values in an SSA-based IR?

What is the idea of linear scan and what are its practical problems?

267

	Register Allocation
	Avoiding Register Allocation
	Handling PHI Nodes
	Better Register Allocation
	Generating Assembly
	Summary

