Code Generation for Data Processing Lecture 10: Unwinding and Debuginfo

Alexis Engelke

Chair of Data Science and Engineering (125) School of Computation, Information, and Technology Technical University of Munich

Winter 2023/24

Motivation: Meta-Information on Program

► Machine code suffices for execution

 \rightarrow not true

- Needs program headers and entry point
- Linking with shared libraries needs dynamic symbols and interpreter
- Stack unwinding needs information about the stack
 - Size of each stack frame, destructors to be called, etc.
 - ▶ Vital for C++ exceptions, even for non-C++ code
- Stack traces require stack information to find return addresses
 - Use cases: coredumps, debuggers, profilers
- Debugging experience enhanced by variables, files, lines, statements, etc.

Adding Meta-Information with GCC

-g -fexceptions -fasynchronous-unwind-tables

- -g supports different formats and levels (and GNU extensions)
- Exceptions must work without debuginfo
- Unwinding through code without exception-support must work

Stack Unwinding

- Needed for exceptions (_Unwind_RaiseException) or forced unwinding
- Search phase: walk through the stack, check whether to stop at each frame
 - ▶ May depend on exception type, ask *personality function*
 - Personality function needs extra language-specific data
 - Stop once an exception handler is found
- Cleanup phase: walk again, do cleanup and stop at handler
 - Personality function indicates whether handler needs to be called
 - ► Can be for exception handler or for calling destructors
 - ▶ If yes: personality function sets up registers/sp/pc for landing pad
 - Non-matching handler or destructor-only: landing pad calls _Unwind_Resume

Stack Unwinding: Requirements

- Given: current register values in unwind function
- ► Need: iterate through stack frames
 - ▶ Get address of function of the stack frame
 - Get pc and sp for this function
 - Find personality function and language-specific data
 - ► Maybe get some registers from the stack frame
 - Update some registers with exception data
- Increased difficulty: stepping through signal handler

Stack Unwinding: setjmp/longjmp

- ► Simple idea all functions that run code during unwinding do:
 - Register their handler at function entry
 - Deregister their handler at function exit
- Personality function sets jmpbuf to landing pad
- Unwinder does longjmp
- + Needs no extra information
- High overhead in non-exceptional case

Stack Unwinding: Frame Pointer

- Frame pointers allow for fast unwinding
- ▶ fp points to stored caller's fp
- Return address stored adjacent to frame pointer
- + Fast and simple, also without exception
- Not all programs have frame pointers
 - Overhead of creating full stack frame
 - Causes loss of one register (esp. x86)
- ► Still needs to find meta-information
- ► Need to distinguish prologue with wrong info

```
x86_64:
 push rbp
 mov rbp, rsp
 // ...
 mov rsp, rbp
 pop rbp
 ret
aarch64:
  stp x29, x30, [sp, -32]!
 mov x29, sp
 // ...
 ldp x29, x30, [sp], 32
 ret
```

Stack Unwinding: Without Frame Pointer

- ► Given: pc and sp (bottom of stack frame/call frame)
 - ▶ In parent frames: $retaddr 1 \sim pc$ and $CFA \sim sp$
- ▶ Need to map pc to stack frame size
 - ightharpoonup sp+framesize = CFA (canonical frame address sp at call)
 - ▶ Stack frame size varies throughout function, e.g. prologue
- Case 1: some register used as frame pointer CFA constant offset to fp
 - E.g., for variable stack frame size
- ► Case 2: no frame pointer: CFA is constant offset to sp
- → Unwinding must restore register values
 - ▶ Other reg. can act as frame pointer, register saved in other register, . . .
 - ▶ Need to know where return address is stored

Call Frame Information

- ► Table mapping each instr. to info about registers and CFA
- CFA: register with signed offset (or arbitrary expression)
- Register:
 - Undefined unrecoverable (default for caller-saved reg)
 - ► Same unmodified (default for callee-saved reg)
 - ► Offset(N) stored at address CFA+N
 - Register(reg) stored in other register
 - or arbitrary expressions

Call Frame Information – Example 1

		CFA	rip	rbx	rbp	
	foo:					
0x0:	push rbx	rsp+0x08	[CFA-0x08]	same	same	
0x1:	mov ebx, edi	rsp+0x10	[CFA-0x08]	[CFA-0x10]	same	
0x3:	call bar	rsp+0x10	[CFA-0x08]	[CFA-0x10]	same	
0x8:	mov eax, ebx	rsp+0x10	[CFA-0x08]	[CFA-0x10]	same	
0xa:	pop rbx	rsp+0x10	[CFA-0x08]	[CFA-0x10]	same	
0xb:	ret	rsp+0x08	[CFA-0x08]	same	same	

Call Frame Information – Example 2

		CFA	rip	rbx	rbp	
	foo:					
0x0:	push rbp	rsp+0x08	[CFA-0x08]	same	same	
0x1:	mov rbp, rsp	rsp+0x10	[CFA-0x08]	same	[CFA-0x10]	
0x4:	shl rdi, 4	rbp+0x10	[CFA-0x08]	same	[CFA-0x10]	
0x8:	sub rsp, rdi	rbp+0x10	[CFA-0x08]	same	[CFA-0x10]	
0xb:	mov rdi, rsp	rbp+0x10	[CFA-0x08]	same	[CFA-0x10]	
Oxe:	call bar	rbp+0x10	[CFA-0x08]	same	[CFA-0x10]	
0x13:	leave	rbp+0x10	[CFA-0x08]	same	[CFA-0x10]	
0x14:	ret	rsp+0x08	[CFA-0x08]	same	same	

Call Frame Information – Example 3

		CFA	rip	rbx	rbp	
	foo:					
0x0:	sub rsp, 8	rsp+0x08	[CFA-0x08]	same	same	
0x4:	test edi, edi	rsp+0x10	[CFA-0x08]	same	same	
0x6:	js 0x12	rsp+0x10	[CFA-0x08]	same	same	
0x8:	call positive	rsp+0x10	[CFA-0x08]	same	same	
0xd:	add rsp, 8	rsp+0x10	[CFA-0x08]	same	same	
0x11:	ret	rsp+0x08	[CFA-0x08]	same	same	
0x12:	call negative	rsp+0x10	[CFA-0x08]	same	same	
0x17:	add rsp, 8	rsp+0x10	[CFA-0x08]	same	same	
0x1a:	ret	rsp+0x08	[CFA-0x08]	same	same	

Call Frame Information: Encoding

- Expanded table can be huge
- Contents change rather seldomly
 - ▶ Mainly in prologue/epilogue, but mostly constant in-between
- Idea: encode table as bytecode
- Bytecode has instructions to create a now row
 - Advance machine code location
- Bytecode has instructions to define CFA value
- Bytecode has instructions to define register location
- Bytecode has instructions to remember and restore state

Call Frame Information: Bytecode – Example 1

		CFA	rip	rbx	DW_CFA_def_cfa: RSP
	foo:				DW_CFA_offset: RIP
0:	push rbx	rsp+8	[CFA-8]		<pre>DW_CFA_advance_loc:</pre>
1:	mov ebx, edi	rsp+16	[CFA-8]	[CFA-16]	DW_CFA_def_cfa_offs
3:	call bar	rsp+16	[CFA-8]	[CFA-16]	DW_CFA_offset: RBX
8:	mov eax, ebx	rsp+16	[CFA-8]	[CFA-16]	<pre>DW_CFA_advance_loc:</pre>
a:	pop rbx	rsp+16	[CFA-8]	[CFA-16]	DW_CFA_def_cfa_offs
b:	ret	rsp+8	[CFA-8]	[CFA-16]	

Call Frame Information: Bytecode – Example 2

		CFA	rip	rbp	DW_CFA_de
	foo:				DW_CFA_of
0:	push rbp	rsp+8	[CFA-8]		DW_CFA_ad
1:	mov rbp, rsp	rsp+16	[CFA-8]	[CFA-16]	DW_CFA_de
4:	shl rdi, 4	rbp+16	[CFA-8]	[CFA-16]	DW_CFA_of
8:	sub rsp, rdi	rbp+16	[CFA-8]	[CFA-16]	DW_CFA_ad
b:	mov rdi, rsp	rbp+16	[CFA-8]	[CFA-16]	DW_CFA_de
e:	call bar	rbp+16	[CFA-8]	[CFA-16]	DW_CFA_ad
13:	leave	rbp+16	[CFA-8]	[CFA-16]	DW_CFA_de
4:	ret	rsp+8	[CFA-8]	[CFA-16]	

Call Frame Information: Bytecode – Example 3

		CFA	rip	DW_CFA_def_cfa: RSP +8
	foo:			DW_CFA_offset: RIP -8
0:	sub rsp, 8	rsp+8	[CFA-8]	DW_CFA_advance_loc: 4
4:	test edi, edi	rsp+16	[CFA-8]	<pre>DW_CFA_def_cfa_offset: -</pre>
6:	js 0x12	rsp+16	[CFA-8]	DW_CFA_advance_loc: 13
8:	call positive	rsp+16	[CFA-8]	<pre>DW_CFA_remember_state:</pre>
d:	add rsp, 8	rsp+16	[CFA-8]	<pre>DW_CFA_def_cfa_offset: -</pre>
11:	ret	rsp+8	[CFA-8]	<pre>DW_CFA_advance_loc: 1</pre>
12:	call negative	rsp+16	[CFA-8]	<pre>DW_CFA_restore_state:</pre>
17:	add rsp, 8	rsp+16	[CFA-8]	DW_CFA_advance_loc: 9
1a:	ret	rsp+8	[CFA-8]	<pre>DW_CFA_def_cfa_offset: -</pre>

Remember stack: {}

Call Frame Information: Bytecode

- ► DWARF⁴⁸ specifies bytecode for call frame information
- Self-contained section .eh_frame (or .debug_frame)
- Series of entries; two possible types distinguished using header
- ► Frame Description Entry (FDE): description of a function
 - ► Code range, instructions, pointer to CIE, language-specific data
- ► Common Information Entry (CIE): shared information among multiple FDEs
 - ▶ Initial instrs. (prepended to all FDE instrs.), personality function, alignment factors (constants factored out of instrs.), . . .
- readelf --debug-dump=frames <file>
 llvm-dwarfdump --debug-frame <file>

Call Frame Information: .eh_frame_hdr

- Problem: linear search over possibly many FDEs is slow
- ▶ Idea: create binary search table over FDEs at link-time
- Ordered list of all function addresses and their FDE
- Unwinder does binary search to find matching FDE
- Separate program header entry: PT_GNU_EH_FRAME
- Unwinder needs loader support to find these
 - _dl_find_object or dl_iterate_phdr
- ► FDEs and indices are cached to avoid redundant lookups

Call Frame Information: Assembler Directives

- Compilers produces textual CFI
- Assembler encodes CFI into binary format
 - ▶ Allows for integration of annotated inline assembly
 - ► Inline-asm also needs CFI directives
- Register numbers specified by psABI
- Wrap function with .cfi_startproc/.cfi_endproc
- Many directives map straight to DWARF instructions
 - .cfi_def_cfa_offset 16; .cfi_offset %rbp, -16; .cfi_def_cfa_register %rbp

Call Frame Information: Assembler Directives – Example

```
.globl foo
                                               .type foo, @function
                                       foo:
                                               .cfi_startproc
                                               push rbp
                                               .cfi_def_cfa_offset 16
int bar(int*);
                                               .cfi_offset 6, -16
int foo(unsigned long x) {
                                               mov rbp, rsp
  int arr[x * 4];
                                               .cfi_def_cfa_register 6
 return bar(arr);
                                               shl rdi, 4
                                               sub rsp, rdi
                                               mov rdi, rsp
gcc -0 -S foo.c
                                               call bar
                                               leave
                                               .cfi_def_cfa 7, 8
                                               ret.
                                               .cfi_endproc
                                               .size foo, .-foo
```

Unwinding: Other Platforms

- Unwinding depends strongly on OS and architecture
- Linux uses DWARF
- Apple has modified version
- Windows has SEH with kernel-support for unwinding
- ► IBM AIX has their own format
- ► AArch32 has another custom format
- Additionally: minor differences for return address, stack handling, . . .

Needs to work reliably for exception handling

Debugging: Wanted Features

► Get back trace

<→ CFI

- ► Map address to source file/line
- ► Show global and local variables
 - Local variables need scope information, e.g. shadowing
 - Data type information, e.g. int, string, struct, enum
- Set break point at line/function
 - ▶ Might require multiple actual breakpoints: inlining, template expansion
- Step through program by line/statement

Line Table

- Map instruction to: file/line/column; start of stmt; start of basic block; is prologue/epilogue; ISA mode
- ► Table can be huge; idea: encode as bytecode
- Extracted information are bytecode registers
- Conceptually similar to CFI encoding
- ▶ llvm-dwarfdump -v --debug-line or readelf -wlL

Debugging: Wanted Features

Get back trace

<→ CFI

► Map address to source file/line

- ► Show global and local variables
 - Local variables need scope information, e.g. shadowing
 - Data type information, e.g. int, string, struct, enum
- Set break point at line/function

- ▶ Might require multiple actual breakpoints: inlining, template expansion
- Step through program by line/statement

DWARF: Hierarchical Program Description

- Extensible, flexible, Turing-complete⁴⁹ format to describe program
- ► Forest of Debugging Information Entries (DIEs)
 - ► Tag: indicates what the DIE describes
 - ► Set of attributes: describe DIE (often constant, range, or arbitrary expression)
 - Optionally children
- Rough classification:
 - ▶ DIEs for types: base types, typedef, struct, array, enum, union, . . .
 - ▶ DIEs for data objects: variable, parameter, constant
 - ▶ DIEs for program scope: compilation unit, function, block, . . .

DWARF: Data Types

```
DW_TAG_structure_type [0x2e]
 DW_AT_byte_size (0x08)
 DW_AT_sibling (0x4a)
                                        DW_TAG_pointer_type [0xb1]
 DW_TAG_member [0x37]
                                          DW_AT_byte_size (8)
   DW_AT_name ("x")
                                          DW_AT_type (0xb6 "char *")
   DW_AT_type (0x4a "int")
   DW_AT_data_member_location (0x00)
                                        DW_TAG_pointer_type [0xb6]
 DW_TAG_member [0x40]
                                          DW_AT_bvte_size (8)
   DW AT name ("v")
                                          DW_AT_type (0xbb "char")
   DW_AT_type (0x4a "int")
   DW AT data member location (0x04)
                                        DW_TAG_base_type [0xbb]
                                          DW_AT_byte_size (0x01)
DW_TAG_base_type [0x4a]
                                          DW_AT_encoding (DW_ATE_signed_char)
 DW_AT_byte_size (0x04)
                                          DW_AT_name ("char")
 DW_AT_encoding (DW_ATE_signed)
 DW AT name ("int")
```

DWARF: Variables

```
DW TAG variable [0xa3]
                       ("x")
 DW AT name
 DW_AT_decl_file ("/path/to/main.c")
 DW_AT_decl_line
                   (2)
 DW_AT_decl_column (0x2e)
                       (0x4a "int")
 DW_AT_type
 DW_AT_location
                       (0x3b:
     [0x08, 0x0c): DW_OP_breg3 RBX+0, DW_OP_lit1, DW_OP_shl, DW_OP_stack_value
     [OxOc, OxOd): DW_OP_entry_value(DW_OP_reg5 RDI), DW_OP_lit1, \
                  DW_OP_shl, DW_OP_stack_value)
DW_TAG_formal_parameter [0x7f]
 DW_AT_name ("argc")
 // ...
```

DWARF: Expressions

- ▶ Very general way to describe location of value: bytecode
- ▶ Stack machine, evaluates to location or value of variable
 - Simple case: register or stack slot
 - But: complex expression to recover original value after optimization e.g., able to recover i from stored i-1
 - Unbounded complexity!
- Can contain control flow
- Can dereference memory, registers, etc.
- ▶ Used for: CFI locations, variable locations, array sizes, . . .

DWARF: Program Structure

- ► Follows structure of code
- ► Top-level: compilation unit
- Entries for namespaces, subroutines (functions)
 - Functions can contain inlined subroutines
- Lexical blocks to group variables
- Call sites and parameters
- ► Each node annotated with pc-range and source location

Debugging: Wanted Features

Get back trace

← CFI

► Map address to source file/line

► Show global and local variables

→ DIE tree

- Local variables need scope information, e.g. shadowing
- ▶ Data type information, e.g. int, string, struct, enum
- Set break point at line/function

- ▶ Might require multiple actual breakpoints: inlining, template expansion
- Step through program by line/statement

Other Debuginfo Formats

- ▶ DWARF is big despite compression
- ► Cannot run in time-constrained environments
 - Unsuited for in-kernel backtrace generation
- ► Historically: STABS string based encoding
 - Complexity increased significantly over time
- ► Microsoft: PDB for PE
- Linux kernel: CTF for simple type information
- ► Linux kernel: BTF for BPF programs

Unwinding and Debuginfo – Summary

- ► Some languages/setups must be able to unwind the stack
- ► Needs meta-information on call frames
- DWARF encodes call frame information is bytecode program
- Runtime must efficiently find relevant information
- Stack unwinding typically done in two phases
- Functions have associated personality function to steer unwinding
- DWARF encodes debug info in tree structure of DIEs
- ► DWARF info can become arbitrarily complex

Unwinding and Debuginfo – Questions

- ▶ What are alternatives to stack unwinding?
- What are the benefits of stack unwinding through metadata?
- What are the two phases of unwinding? Why is this separated?
- ▶ How to construct a CFI table for a given assembly code?
- ► How to construct DWARF ops for a CFI table?
- ▶ How to find the correct CFI table line for a given address?
- What is the general structure of DWARF debug info?