Code Generation for Data Processing

Lecture 12: Binary Translation

Alexis Engelke

Chair of Data Science and Engineering (125)
School of Computation, Information, and Technology
Technical University of Munich

Winter 2023/24

375



Motivation

» Run program on other architecture
» Use-case: application compatibility

» Other architecture with incompatible instruction encoding
» Applications using unavailable ISA extensions®’

» Use-case: architecture research
» Development of new ISA extensions without existing hardware

57 Exception-based implementation possible, but slow.

376



ISA Emulation

» Simplest approach: interpreting machine code
» Simulate individual instructions, don't generate new code

» Frequently used approach before JIT-compilation became popular

-+ Simple, works almost anywhere, high correctness

— Very inefficient

377



Binary Translation

» Idea: translate guest machine code to host machine code

» Replace interpretation overhead with translation overhead

» Difficult: very rigid semantics, but few code constraints imposed
» Self-modifying code, overlapping instructions, indirect jumps
» Exceptions with well-defined states, status flags

Guest: x86-64 Host: AArch64
mov rax, rcx add x0, x1, 4
add rax, 4
—_—
mov [rdx+rsi+16], rax add x16, x6, 16

str x0, [x2, x16]

Warning for same-ISA translation: passing all instructions through as-is is a bad idea! Behavior might differ.

378



Static vs. Dynamic Binary Translation

| 2

| 2

+

Translate guest executable into
host executable

Do translation before execution

Low runtime overhead
Binaries tend to be huge
Cannot handle all cases

» E.g., JIT-compiled code

| 2

>

+

Translate code on-the-fly
during program execution

Host code just lives in memory

Allows for high correctness
Can use JIT optimizations

Translation overhead at run-time

379



Static Binary Translation

» Goal: create new binary for host with same functionality

» Program may access its own code/data in various ways
» Guest binary must be retained as-is in-place
» Indirect jumps problematic
> Need prediction of all possible targets
> Keeping lots of dynamically possible entries prohibits optimizations

» JIT-compiled/self-modifying code impossible to handle

» Purely static translation impossible for the general case

380



Dynamic Binary Translation

Translator Process

no (i
i read code

Guest
Code

store code

-
Need vES
translation? :::::::f:::::::
Decode & Lift

Optionally:

Modify IR

Code Cache

L —

~

> lteratively translate code
chunks on-demand

» Typically basic blocks

» Store new code in-memory
for execution and later re-use

» Code executed in same
address space as original

» Guest code/data must be
accessible

381



Dynamic Binary Translation: Code Fragment

RISC-V Code Semantical representation

uintptr_t trans_400560(uint64_t* regs) {
regs[10] = regs[10] << 2;
return regs[1];

}

400560: sl1li a0, a0, 2
400564: jalr x0, ra, 0 // ret

Translation Engine // or with tail call:

_Noreturn void trans_400560(uint64_t* regs) {
regs[10] = regs[10] << 2;
translate(regs[1]) (regs);

// unreachable

void emulate(uintptr_t pc) {
uint64_t* regs = init();
while (true)

pc = translate(pc) (regs); )
}

382



Guest State

» Guest CPU state must be completely emulated

> Registers: general-purpose, floating-point, vector, ...
» Flags, control registers, system registers, segments, TLS base

» Memory — user-space emulation: use host address space

-+ no overhead through additional indirection
— no isolation between emulator and guest

» Memory — system emulation: need software/hardware paging support

> Software implementation: considerable performance overhead
» Hardware implementation: guest and host need same page size

383



Guest Interface

» User-space emulation: OS interface needs to be emulated
» Mainly system calls, but also vDSO, memory maps, ...
» Host libraries are hard to use: ABI differences (e.g. struct padding)
» Syscall emulation tedious: different flag numbers, arguments, orders
structs have different fields, alignments, padding bytes

» System-level emulation: CPU interface for operating systems
» Many system/control registers
» Different execution modes, memory configurations, etc.
» Emulation of hardware components

384



Dynamic Binary Translation: Optimizations

» Fully correct emulation of CPU (and OS) is slow

» Every memory access is a potential page fault
» Signals can be delivered at any instruction boundary
» many other traps. ..

» But: these “special’ features are used extremely rarely

» |dea: optimize for common case

» Aggressively trade correctness for performance

385



Translation Granularity

» Larger translation granules allow for more optimization
» E.g., omit status flag computation; fold immediate construction

» Instruction: great for debugging
» Basic block: allows for some important opt.

> Easy to detect (up to next branch), easy to translate (no control flow)
» Superblock: up to next unconditional jump

» Reduces transfers between blocks in fallthrough case
» Translated code not necessarily executed

» Function: follow all conditional control flow

» Allows most optimizations, e.g. for loop induction variables
» Complex codegen, ind. jumps problematic, lot of code never executed

386



Chaining

» Observation: many basic blocks have constant successors
» Often conditional branches with fallthrough and constant offset

» (Hash)map lookup and indirect jump after everyblock expensive

» |dea: after successor is translated, patch end to jump directly to that code
> First execution is expensive, later executions are fast

// Initially generated code // After patching
/... /] ...

mov rdi, 0x40068c jmp trans_40068c
lea rsi, [rip+if] // (garbage remains)

jmp translate_and_dispatch
1:.byte ... // store patch information

387



Chaining: Limitations

» First execution still slow, patching adds overhead

» Can speculatively translate continuations
» Translation of possibly unneeded code adds overhead

» Does not work for indirect jumps

» Not necessarily predictable, esp. when considering a single basic block
» Occur fairly often: function returns

» Removing translated functions from code cache becomes harder

» Arbitrary other code may directly branch to translated chunk
» Often solved by limiting chaining to same page or memory region

388



Return Address Prediction

» Observation: function calls very often return ordinarily

» Return is an indirect jump, but highly predictable
» But: even for “normal” code, this is not always the case:
setjmp/longjmp, exceptions

» Hardware has return address stack keeping track of call stack
» call pushes next address to stack, ret predicted to pop

» Usually implemented as 16/32 entry ring buffer

» |dea: similarly optimize for common case of ordinary return

389



Return Address Prediction in DBT

» Option 1: keep separate shadow stack of guest/host target pairs
» Can be implemented as ring buffer, too
» Pop from stack needs verification of actual guest return address
— Doesn’t use host hardware return address prediction

» Option 2: use host stack as shadow stack
> Allows using host call/ret instructions
» \Verification before/after return still required
— Can degenerate, need to bound shadow stack
(guest might repeatedly call, discard return address, but never return)

390



Status Flags

» Observation: many status flags are rarely used
» But: eager computation can be expensive
» E.g., x86 parity (PF) or auxiliary carry (AF)

» |dea: compute flags only when needed
» On flag computation, store operands needed for flag computation
» Flag usage in same block allows for optimizations
» E.g., use idiomatic branches (jle, ...)
» Flag usage in different block: compute flags from operands
» More expensive, but happens seldomly

391



Correct Binary Translation

» Goal 1: precise emulation — application works properly

» Goal 2: stealthness/isolation — application can't compromise DBT

» Problem: CPU and OS have huge and very-well-specified interfaces
» . ..and even if unspecified, software often depends on it

» Increased difficulty: different guest/host architectures
» E.g., different page size or memory semantics

» Increased difficulty for user-space: different guest/host OS
» Depending on syscall interface, nearly impossible (see WSL1)

392



POSIX Signals

» POSIX specifies signals, which can interrupt program at any point
» Kernel pushes signal frame to stack with user context and calls signal handler

» Signal handler can read/modify user context and continue execution

» Synchronous signals: e.g., SIGSEGV, SIGBUS, SIGFPE, SIGILL

» For example, due to page fault or FP exception
» Delivered in response to “error” in current thread

» Asynchronous signals: e.g., SIGINT, SIGTERM, SIGCHILD
» Delivered externally, e.g. using kill
» Can be delivered to any thread at any time
» (usually a bad idea to use them)

393



Correct DBT: Signals

» DBT must register signal handler and propagate signals

» Synchronous signals
» Delivered at “constrainable” points in program
» Must recover fully consistent guest architectural state
» JIT-compiled code must be sufficiently annotated for this

» Asynchronous signals

» Can really be delivered at any time

» Must not be immediately delivered to guest
~> Usually delivered when convenient

» But: real-time signals have special semantics

394



Correct DBT: Memory Accesses

» Option: emulating paging in software (slow, but works)

» Every memory accesses becomes a hash table lookup
» Shared memory still problematic: host OS might have larger pages

» Using host paging is much faster, but problematic for correctness

» Host OS might have larger pages
» Every memory access can cause a page fault (see signal handling)

» Guest can access/modify arbitrary addresses in its address space...
including the DBT and its code cache

» Tracking read/write/execute permissions, e.g. check X before translation

395



Correct DBT: Memory Ordering

» CPUs (aggressively) reorder memory operations

> x86: total store ordering — stores can be reordered after loads
» Most others: weak ordering — everything can be reordered

» Relevant for multi-core systems: other thread can observe ordering

» Atomic operations and fences limit reordering (e.g., acq/rel/seqcst)

» Emulating weak memory on TSO: easy
» Emulating TSO on weak memory: hard

» Can try to make all operations atomic
» Atomic operations often need alignment guarantees (not on x86)
» Only viable solution so far: insert fences everywhere

396



Correct DBT: Self-modifying Code

» Writable code regions (or with MAP_SHARED) can change at any time

» Idea: before translation, remap as read-only
» On page fault (SIGSEGV), remove relevant parts from code cache
» Requires code cache segmentation and mapping of code to original page

» When executing possibly modifiable code: every store can change code!

» Doesn't easily work for shared memory, need to track this, too
» Might be impossible when shared with other process

397



Correct DBT: Floating-point

>

Floating-point arithmetic is standardized in IEE-754
...except for some details and non-standard operations

x86 maxsd: if one operand is NaN, result is second operand
RISC-V fmax.d: if one operand is NaN, result is non-NaN operand

AArch64 fmax: if one operand is NaN, result is NaN operand
» Unless configured differently in fpcr

Correctness typically requires software emulation (e.g., QEMU does this)

398



Correct DBT: OS and CPU Specifics

» Emulating all syscalls correctly is hard

» Version-specifics, structure layouts, feature support
» Huge interface

» /proc/self/* — how to emulate?

» Catch all file system accesses? Follow all possible symlinks?
» What if procfs is mounted somewhere else?

» cpuid — how to emulate?

» Cache sizes, processor model, ...
» Application can do timing experiment to detect DBT

399



Binary Translation — Summary

vVvyvyvVvyvyyvyy

ISA emulation often used for cross-ISA program execution

Binary Translation allows for more performance than interpretation
Static Binary Translation handles whole program ahead-of-time
Dynamic Binary Translation translates code on-demand

ISA often highly restricts optimization possibilities

Optimizations typically very low-level

Correct emulation of CPU/OS challenging due to large interface

400



Binary Translation — Questions

vVvvyvyVvYyyvyy

What are use cases of binary translation?

What is the difference between static and dynamic binary translation?
Why is static BT strictly less powerful than dynamic BT?

What are typical translation granularities for DBT?

How to optimize control flow handling in DBT?

Why is correct binary translation hard to optimize?

What problem can occur when not emulating paging for user-space
emulation?

401



	Binary Translation
	Overview
	Binary Translation
	Guest State
	Fast DBT
	Correct DBT


