
199

Code Generation for Data Processing
Lecture 7: Instruction Selection

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2023/24

200

Code Generation – Overview

▶ Instruction Selection
▶ Map IR to assembly
▶ Keep code shape and storage; change operations

▶ Instruction Scheduling
▶ Optimize order to hide latencies
▶ Keep operations, may increases demand for registers

▶ Register Allocation
▶ Map virtual to architectural registers and stack
▶ Adds operations (spilling), changes storage

200

Code Generation – Overview

▶ Instruction Selection
▶ Map IR to assembly
▶ Keep code shape and storage; change operations

▶ Instruction Scheduling
▶ Optimize order to hide latencies
▶ Keep operations, may increases demand for registers

▶ Register Allocation
▶ Map virtual to architectural registers and stack
▶ Adds operations (spilling), changes storage

200

Code Generation – Overview

▶ Instruction Selection
▶ Map IR to assembly
▶ Keep code shape and storage; change operations

▶ Instruction Scheduling
▶ Optimize order to hide latencies
▶ Keep operations, may increases demand for registers

▶ Register Allocation
▶ Map virtual to architectural registers and stack
▶ Adds operations (spilling), changes storage

200

Code Generation – Overview

▶ Instruction Selection
▶ Map IR to assembly
▶ Keep code shape and storage; change operations

▶ Instruction Scheduling
▶ Optimize order to hide latencies
▶ Keep operations, may increases demand for registers

▶ Register Allocation
▶ Map virtual to architectural registers and stack
▶ Adds operations (spilling), changes storage

201

Instruction Selection (ISel) – Overview

▶ Find machine instructions to implement abstract IR
▶ Typically separated from scheduling and register allocation

▶ Input: IR code with abstract instructions
▶ Output: lower-level IR code with target machine instructions

i64 %10 = add %8, %9
i8 %11 = trunc %10
i64 %12 = const 24
i64 %13 = add %7, %12
store %11, %13

i64 %10 = ADD %8, %9
STRB %10, [%7+24]

202

ISel – Typical Constraints

▶ Target offers multiple ways to implement operations
▶ imul x, 2, add x, x, shl x, 1, lea x, [x+x]

▶ Target operations have more complex semantics
▶ E.g., combine truncation and offset computation into store
▶ Can have multiple outputs, e.g. value+flags, quotient+remainder

▶ Target has multiple register sets, e.g. GP and FP/SIMD
▶ Important to consider even before register allocation

▶ Target requires specific instruction sequences
▶ E.g., for macro fusion
▶ Often represented as pseudo-instructions until assembly writing

202

ISel – Typical Constraints

▶ Target offers multiple ways to implement operations
▶ imul x, 2, add x, x, shl x, 1, lea x, [x+x]

▶ Target operations have more complex semantics
▶ E.g., combine truncation and offset computation into store
▶ Can have multiple outputs, e.g. value+flags, quotient+remainder

▶ Target has multiple register sets, e.g. GP and FP/SIMD
▶ Important to consider even before register allocation

▶ Target requires specific instruction sequences
▶ E.g., for macro fusion
▶ Often represented as pseudo-instructions until assembly writing

202

ISel – Typical Constraints

▶ Target offers multiple ways to implement operations
▶ imul x, 2, add x, x, shl x, 1, lea x, [x+x]

▶ Target operations have more complex semantics
▶ E.g., combine truncation and offset computation into store
▶ Can have multiple outputs, e.g. value+flags, quotient+remainder

▶ Target has multiple register sets, e.g. GP and FP/SIMD
▶ Important to consider even before register allocation

▶ Target requires specific instruction sequences
▶ E.g., for macro fusion
▶ Often represented as pseudo-instructions until assembly writing

202

ISel – Typical Constraints

▶ Target offers multiple ways to implement operations
▶ imul x, 2, add x, x, shl x, 1, lea x, [x+x]

▶ Target operations have more complex semantics
▶ E.g., combine truncation and offset computation into store
▶ Can have multiple outputs, e.g. value+flags, quotient+remainder

▶ Target has multiple register sets, e.g. GP and FP/SIMD
▶ Important to consider even before register allocation

▶ Target requires specific instruction sequences
▶ E.g., for macro fusion
▶ Often represented as pseudo-instructions until assembly writing

202

ISel – Typical Constraints

▶ Target offers multiple ways to implement operations
▶ imul x, 2, add x, x, shl x, 1, lea x, [x+x]

▶ Target operations have more complex semantics
▶ E.g., combine truncation and offset computation into store
▶ Can have multiple outputs, e.g. value+flags, quotient+remainder

▶ Target has multiple register sets, e.g. GP and FP/SIMD
▶ Important to consider even before register allocation

▶ Target requires specific instruction sequences
▶ E.g., for macro fusion
▶ Often represented as pseudo-instructions until assembly writing

203

Optimal ISel

▶ Find most performant instruction sequence with same semantics (?)
▶ I.e., there no program with better “performance” exists
▶ Performance = instructions associated with specific costs

▶ Problem: optimal code generation is undecidable

▶ Alternative: optimal tiling of IR with machine code instrs
▶ IR as dataflow graph, instr. tiles to optimally cover graph
▶ NP-complete24

24DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs”. In: CGO. 2008, pp. 45–54. .

http://llvm.org/pubs/2008-CGO-DagISel.pdf

203

Optimal ISel

▶ Find most performant instruction sequence with same semantics (?)
▶ I.e., there no program with better “performance” exists
▶ Performance = instructions associated with specific costs

▶ Problem: optimal code generation is undecidable

▶ Alternative: optimal tiling of IR with machine code instrs
▶ IR as dataflow graph, instr. tiles to optimally cover graph
▶ NP-complete24

24DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs”. In: CGO. 2008, pp. 45–54. .

http://llvm.org/pubs/2008-CGO-DagISel.pdf

203

Optimal ISel

▶ Find most performant instruction sequence with same semantics (?)
▶ I.e., there no program with better “performance” exists
▶ Performance = instructions associated with specific costs

▶ Problem: optimal code generation is undecidable

▶ Alternative: optimal tiling of IR with machine code instrs
▶ IR as dataflow graph, instr. tiles to optimally cover graph
▶ NP-complete24

24DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs”. In: CGO. 2008, pp. 45–54. .

http://llvm.org/pubs/2008-CGO-DagISel.pdf

204

Avoiding ISel Altogether

Use an interpreter

+ Fast “compilation time”, easy to implement
− Slow execution time

▶ Best if code is executed once

204

Avoiding ISel Altogether

Use an interpreter

+ Fast “compilation time”, easy to implement
− Slow execution time

▶ Best if code is executed once

205

Macro Expansion

▶ Expand each IR operation with corresponding machine instrs

%5a = movz 12345
%5 = add %1, %5a

%5 = add %1, 12345

%6 = and %2, 7%6 = and %2, 7

%7a = lsl %5, %6
%7b = cmp %6, 64
%7 = csel %7a, xzr, %7b, lo

%7 = shl %5, %6

206

Macro Expansion

▶ Oldest approach, historically also does register allocation
▶ Also possible by walking AST

+ Very fast, linear time, simple to implement, easy to port
− Inefficient and large output code

▶ Used by, e.g., LLVM FastISel, Go, GCC

206

Macro Expansion

▶ Oldest approach, historically also does register allocation
▶ Also possible by walking AST

+ Very fast, linear time, simple to implement, easy to port
− Inefficient and large output code

▶ Used by, e.g., LLVM FastISel, Go, GCC

206

Macro Expansion

▶ Oldest approach, historically also does register allocation
▶ Also possible by walking AST

+ Very fast, linear time, simple to implement, easy to port
− Inefficient and large output code

▶ Used by, e.g., LLVM FastISel, Go, GCC

207

Peephole Optimization

▶ Plain macro expansion leads to suboptimal results
▶ Idea: replace inefficient instruction sequences25

▶ Originally: physical window over assembly code
▶ Replace with more efficient instructions having same effects
▶ Possibly with allocated registers

▶ Extension: do expansion before register allocation26

▶ Expand IR into Register Transfer Lists (RTL) with temporary registers
▶ While combining, ensure that each RTL can be implemented as single instr.

25WM McKeeman. “Peephole optimization”. In: CACM 8.7 (1965), pp. 443–444. .
26JW Davidson and CW Fraser. “Code selection through object code optimization”. In: TOPLAS 6.4 (1984), pp. 505–526. .

https://dl.acm.org/doi/pdf/10.1145/364995.365000
https://dl.acm.org/doi/pdf/10.1145/1780.1783

208

Peephole Optimization

▶ Originally covered only adjacent instructions
▶ Can also use logical window of data dependencies

▶ Problem: instructions with multiple uses
▶ Needs more sophisticated matching schemes for data deps.

⇒ Tree-pattern matching

+ Fast, also allows for target-specific sequences
− Pattern set grows large, limited potential

▶ Widely used today at different points during compilation

208

Peephole Optimization

▶ Originally covered only adjacent instructions
▶ Can also use logical window of data dependencies

▶ Problem: instructions with multiple uses
▶ Needs more sophisticated matching schemes for data deps.

⇒ Tree-pattern matching

+ Fast, also allows for target-specific sequences
− Pattern set grows large, limited potential

▶ Widely used today at different points during compilation

208

Peephole Optimization

▶ Originally covered only adjacent instructions
▶ Can also use logical window of data dependencies

▶ Problem: instructions with multiple uses
▶ Needs more sophisticated matching schemes for data deps.

⇒ Tree-pattern matching

+ Fast, also allows for target-specific sequences
− Pattern set grows large, limited potential

▶ Widely used today at different points during compilation

209

ISel as Graph Covering – High-level Intuition

▶ Idea: represent program as data flow graph

▶ Tree: expression, comb. of single-use SSA instructions (local ISel)
▶ DAG: data flow in basic block, e.g. SSA block (local ISel)
▶ Graph: data flow of entire function, e.g. SSA function (global ISel)

▶ ISA “defines” pattern set of trees/DAGs/graphs for instrs.
▶ Cover data flow tree/DAG/graph with least-cost combination of patterns

▶ Patterns in data flow graph may overlap

209

ISel as Graph Covering – High-level Intuition

▶ Idea: represent program as data flow graph

▶ Tree: expression, comb. of single-use SSA instructions (local ISel)
▶ DAG: data flow in basic block, e.g. SSA block (local ISel)
▶ Graph: data flow of entire function, e.g. SSA function (global ISel)

▶ ISA “defines” pattern set of trees/DAGs/graphs for instrs.
▶ Cover data flow tree/DAG/graph with least-cost combination of patterns

▶ Patterns in data flow graph may overlap

209

ISel as Graph Covering – High-level Intuition

▶ Idea: represent program as data flow graph

▶ Tree: expression, comb. of single-use SSA instructions (local ISel)
▶ DAG: data flow in basic block, e.g. SSA block (local ISel)
▶ Graph: data flow of entire function, e.g. SSA function (global ISel)

▶ ISA “defines” pattern set of trees/DAGs/graphs for instrs.
▶ Cover data flow tree/DAG/graph with least-cost combination of patterns

▶ Patterns in data flow graph may overlap

210

Tree Covering: Converting SSA into Trees

▶ SSA form:
%4 = shl %1, 4
%5 = add %2, %4
%6 = add %3, %4
%7 = load %5
live-out: %6, %7

▶ Data flow graph:

%1

«

+

ld

4

%2%3

+

▶ Method 1:
Edge Splitting

%1

«

4

%3

+

%4

%4

+

ld

%2

▶ Method 2:
Node Duplication

%1

«

+

%3

4

%1

«

+

ld

4

%2

210

Tree Covering: Converting SSA into Trees

▶ SSA form:
%4 = shl %1, 4
%5 = add %2, %4
%6 = add %3, %4
%7 = load %5
live-out: %6, %7

▶ Data flow graph:

%1

«

+

ld

4

%2%3

+

▶ Method 1:
Edge Splitting

%1

«

4

%3

+

%4

%4

+

ld

%2

▶ Method 2:
Node Duplication

%1

«

+

%3

4

%1

«

+

ld

4

%2

210

Tree Covering: Converting SSA into Trees

▶ SSA form:
%4 = shl %1, 4
%5 = add %2, %4
%6 = add %3, %4
%7 = load %5
live-out: %6, %7

▶ Data flow graph:

%1

«

+

ld

4

%2%3

+

▶ Method 1:
Edge Splitting

%1

«

4

%3

+

%4

%4

+

ld

%2

▶ Method 2:
Node Duplication

%1

«

+

%3

4

%1

«

+

ld

4

%2

210

Tree Covering: Converting SSA into Trees

▶ SSA form:
%4 = shl %1, 4
%5 = add %2, %4
%6 = add %3, %4
%7 = load %5
live-out: %6, %7

▶ Data flow graph:

%1

«

+

ld

4

%2%3

+

▶ Method 1:
Edge Splitting

%1

«

4

%3

+

%4

%4

+

ld

%2

▶ Method 2:
Node Duplication

%1

«

+

%3

4

%1

«

+

ld

4

%2

211

Tree Covering: Patterns

Pattern Cost Instruction

P0 GPR1 → «(GPR2, K1) 1 lsl R1, R2, #K1
P1 GPR1 → +(GPR2, GPR3) 1 add R1, R2, R3
P2 GPR1 → +(GPR2, «(GPR3, K1) 2 add R1, R2, R3, lsl #K1
P3 GPR1 → +(«(GPR2, K1), GPR2) 2 add R1, R3, R2, lsl #K1
P4 GPR1 → ld(GPR2) 2 ldr R1, [R2]
P5 GPR1 → ld(+(GPR2, GPR3)) 2 ldr R1, [R2, R3]
P6 GPR1 → ld(+(GPR2, «(GPR3, K1)) 3 ldr R1, [R2, R3, lsl #K1]
P7 GPR1 → ld(+(«(GPR2, K1), GPR3) 3 ldr R1, [R3, R2, lsl #K1]
P8 GPR1 → *(GPR2, GPR3) 3 madd R1, R2, R3, xzr
P9 GPR1 → +(*(GPR2, GPR3), GPR4) 3 madd R1, R2, R3, R4
P10 GPR1 → K1 1 mov R1, K1
...

...
...

...

212

Tree Covering: Greedy/Maximal Munch

▶ Top-down always take largest pattern
▶ Repeat for sub-trees, until everything is covered

+ Easy to implement, fast

− Result might be non-optimum

212

Tree Covering: Greedy/Maximal Munch

▶ Top-down always take largest pattern
▶ Repeat for sub-trees, until everything is covered

+ Easy to implement, fast
− Result might be non-optimum

213

Tree Covering: Greedy/Maximal Munch – Example

+

*

a b

«

c 2

Matching Patterns:

▶ +: P1 – cost 1 – covered nodes: 1
▶ +: P2 – cost 2 – covered nodes: 3

– best

▶ +: P9 – cost 3 – covered nodes: 2
▶ *: P8 – cost 3 – covered nodes: 1

– best

Total cost: 5

madd %1, %a, %b, xzr
add %2, %1, %c, lsl #2

213

Tree Covering: Greedy/Maximal Munch – Example

+

*

a b

«

c 2

Matching Patterns:
▶ +: P1 – cost 1 – covered nodes: 1

▶ +: P2 – cost 2 – covered nodes: 3

– best

▶ +: P9 – cost 3 – covered nodes: 2
▶ *: P8 – cost 3 – covered nodes: 1

– best

Total cost: 5

madd %1, %a, %b, xzr
add %2, %1, %c, lsl #2

213

Tree Covering: Greedy/Maximal Munch – Example

+

*

a b

«

c 2

Matching Patterns:
▶ +: P1 – cost 1 – covered nodes: 1
▶ +: P2 – cost 2 – covered nodes: 3

– best
▶ +: P9 – cost 3 – covered nodes: 2
▶ *: P8 – cost 3 – covered nodes: 1

– best

Total cost: 5

madd %1, %a, %b, xzr
add %2, %1, %c, lsl #2

213

Tree Covering: Greedy/Maximal Munch – Example

+

*

a b

«

c 2

Matching Patterns:
▶ +: P1 – cost 1 – covered nodes: 1
▶ +: P2 – cost 2 – covered nodes: 3

– best

▶ +: P9 – cost 3 – covered nodes: 2

▶ *: P8 – cost 3 – covered nodes: 1

– best

Total cost: 5

madd %1, %a, %b, xzr
add %2, %1, %c, lsl #2

213

Tree Covering: Greedy/Maximal Munch – Example

+

*

a b

«

c 2

Matching Patterns:
▶ +: P1 – cost 1 – covered nodes: 1
▶ +: P2 – cost 2 – covered nodes: 3 – best
▶ +: P9 – cost 3 – covered nodes: 2

▶ *: P8 – cost 3 – covered nodes: 1

– best

Total cost: 5

madd %1, %a, %b, xzr
add %2, %1, %c, lsl #2

213

Tree Covering: Greedy/Maximal Munch – Example

+

*

a b

«

c 2

Matching Patterns:
▶ +: P1 – cost 1 – covered nodes: 1
▶ +: P2 – cost 2 – covered nodes: 3 – best
▶ +: P9 – cost 3 – covered nodes: 2
▶ *: P8 – cost 3 – covered nodes: 1

– best

Total cost: 5

madd %1, %a, %b, xzr
add %2, %1, %c, lsl #2

213

Tree Covering: Greedy/Maximal Munch – Example

+

*

a b

«

c 2

Matching Patterns:
▶ +: P1 – cost 1 – covered nodes: 1
▶ +: P2 – cost 2 – covered nodes: 3 – best
▶ +: P9 – cost 3 – covered nodes: 2
▶ *: P8 – cost 3 – covered nodes: 1 – best

Total cost: 5

madd %1, %a, %b, xzr
add %2, %1, %c, lsl #2

213

Tree Covering: Greedy/Maximal Munch – Example

+

*

a b

«

c 2

Matching Patterns:
▶ +: P1 – cost 1 – covered nodes: 1
▶ +: P2 – cost 2 – covered nodes: 3 – best
▶ +: P9 – cost 3 – covered nodes: 2
▶ *: P8 – cost 3 – covered nodes: 1 – best

Total cost: 5

madd %1, %a, %b, xzr
add %2, %1, %c, lsl #2

213

Tree Covering: Greedy/Maximal Munch – Example

+

*

a b

«

c 2

Matching Patterns:
▶ +: P1 – cost 1 – covered nodes: 1
▶ +: P2 – cost 2 – covered nodes: 3 – best
▶ +: P9 – cost 3 – covered nodes: 2
▶ *: P8 – cost 3 – covered nodes: 1 – best

Total cost: 5

madd %1, %a, %b, xzr
add %2, %1, %c, lsl #2

214

Tree Covering: with LR-Parsing?

▶ Can we use (LR-)parsing for instruction selection?

Yes!27

▶ Pattern set = grammar; IR (in prefix notation) = input

Advantages

▶ Possible in linear time
▶ Can be formally verified
▶ Implementation can be

generated automatically

Disadvantages

▶ Constraints must map to non-terminals
▶ Constant ranges, reg types, . . .

▶ CISC: handle all operand combinations
▶ Large grammar (impractical)
▶ Refactoring into non-terminals

▶ Ambiguity hard to handle optimally

27RS Glanville and SL Graham. “A new method for compiler code generation”. In: POPL. 1978, pp. 231–254. .

https://dl.acm.org/doi/pdf/10.1145/512760.512785

214

Tree Covering: with LR-Parsing

▶ Can we use (LR-)parsing for instruction selection? Yes!27

▶ Pattern set = grammar; IR (in prefix notation) = input

Advantages

▶ Possible in linear time
▶ Can be formally verified
▶ Implementation can be

generated automatically

Disadvantages

▶ Constraints must map to non-terminals
▶ Constant ranges, reg types, . . .

▶ CISC: handle all operand combinations
▶ Large grammar (impractical)
▶ Refactoring into non-terminals

▶ Ambiguity hard to handle optimally

27RS Glanville and SL Graham. “A new method for compiler code generation”. In: POPL. 1978, pp. 231–254. .

https://dl.acm.org/doi/pdf/10.1145/512760.512785

214

Tree Covering: with LR-Parsing

▶ Can we use (LR-)parsing for instruction selection? Yes!27

▶ Pattern set = grammar; IR (in prefix notation) = input

Advantages

▶ Possible in linear time
▶ Can be formally verified
▶ Implementation can be

generated automatically

Disadvantages

▶ Constraints must map to non-terminals
▶ Constant ranges, reg types, . . .

▶ CISC: handle all operand combinations
▶ Large grammar (impractical)
▶ Refactoring into non-terminals

▶ Ambiguity hard to handle optimally

27RS Glanville and SL Graham. “A new method for compiler code generation”. In: POPL. 1978, pp. 231–254. .

https://dl.acm.org/doi/pdf/10.1145/512760.512785

214

Tree Covering: with LR-Parsing

▶ Can we use (LR-)parsing for instruction selection? Yes!27

▶ Pattern set = grammar; IR (in prefix notation) = input

Advantages

▶ Possible in linear time
▶ Can be formally verified
▶ Implementation can be

generated automatically

Disadvantages

▶ Constraints must map to non-terminals
▶ Constant ranges, reg types, . . .

▶ CISC: handle all operand combinations
▶ Large grammar (impractical)
▶ Refactoring into non-terminals

▶ Ambiguity hard to handle optimally

27RS Glanville and SL Graham. “A new method for compiler code generation”. In: POPL. 1978, pp. 231–254. .

https://dl.acm.org/doi/pdf/10.1145/512760.512785

215

Tree Covering: Dynamic Programming28

▶ Step 1: compute cost matrix, bottom-up for all nodes
▶ Matrix: tree node × non-terminal

(different patterns might yield different non-terminals)
▶ Cost is sum of pattern and sum of children costs
▶ Always store cheapest rule and cost

▶ Step 2: walk tree top-down using rules in matrix
▶ Start with goal non-terminal, follow rules in matrix

▶ Time linear w.r.t. tree size

28AV Aho, M Ganapathi, and SWK Tjiang. “Code generation using tree matching and dynamic programming”. In: TOPLAS 11.4
(1989), pp. 491–516. .

https://dl.acm.org/doi/pdf/10.1145/69558.75700

216

Tree Covering: Dynamic Programming – Example

+

*

a b

«

c 2

Node: 2
Pattern:
Pat. Cost:
Cost Sum:

Node + * « 2

GP Cost ∞ ∞ ∞ ∞
Pattern

216

Tree Covering: Dynamic Programming – Example

+

*

a b

«

c 2

Node: 2
Pattern: P10: GP → K1

Pat. Cost: 1
Cost Sum: 1

Node + * « 2

GP Cost ∞ ∞ ∞ 1
Pattern P10

216

Tree Covering: Dynamic Programming – Example

+

*

a b

«

c 2

Node: «
Pattern:
Pat. Cost:
Cost Sum:

Node + * « 2

GP Cost ∞ ∞ ∞ 1
Pattern P10

216

Tree Covering: Dynamic Programming – Example

+

*

a b

«

c 2

Node: «
Pattern: P?: GP → «(GP , GP)
Pat. Cost: 1
Cost Sum: 2

Node + * « 2

GP Cost ∞ ∞ 2 1
Pattern P? P10

216

Tree Covering: Dynamic Programming – Example

+

*

a b

«

c 2

Node: «
Pattern: P1: GP → «(GP , K1)
Pat. Cost: 1
Cost Sum: 1

Node + * « 2

GP Cost ∞ ∞ 1 1
Pattern P1 P10

216

Tree Covering: Dynamic Programming – Example

+

*

a b

«

c 2

Node: *
Pattern:
Pat. Cost:
Cost Sum:

Node + * « 2

GP Cost ∞ ∞ 1 1
Pattern P1 P10

216

Tree Covering: Dynamic Programming – Example

+

*

a b

«

c 2

Node: *
Pattern: P8: GP → *(GP , GP)
Pat. Cost: 3
Cost Sum: 3

Node + * « 2

GP Cost ∞ 3 1 1
Pattern P8 P1 P10

216

Tree Covering: Dynamic Programming – Example

+

*

a b

«

c 2

Node: +
Pattern:
Pat. Cost:
Cost Sum:

Node + * « 2

GP Cost ∞ 3 1 1
Pattern P8 P1 P10

216

Tree Covering: Dynamic Programming – Example

+

*

a b

«

c 2

Node: +
Pattern: P1: GP → +(GP , GP)
Pat. Cost: 1
Cost Sum: 5

Node + * « 2

GP Cost 5 3 1 1
Pattern P1 P8 P1 P10

216

Tree Covering: Dynamic Programming – Example

+

*

a b

«

c 2

Node: +
Pattern: P2: GP → +(GP , «(GP , K1)
Pat. Cost: 2
Cost Sum: 5

Node + * « 2

GP Cost 5 3 1 1
Pattern P1 P8 P1 P10

216

Tree Covering: Dynamic Programming – Example

+

*

a b

«

c 2

Node: +
Pattern: P9: GP → +(*(GP , GP), GP)
Pat. Cost: 3
Cost Sum: 4

Node + * « 2

GP Cost 4 3 1 1
Pattern P9 P8 P1 P10

217

Tree Covering: Dynamic Programming – Off-line Analysis

▶ Cost analysis can actually be precomputed29

▶ Idea: annotate each node with a state based on child states
▶ Lookup node label from precomputed table (one per non-terminal)

▶ Significantly improves compilation time
▶ But: Tables can be large, need to cover all possible (sub-)trees

▶ Variation: dynamically compute and cache state tables30

29A Balachandran, DM Dhamdhere, and S Biswas. “Efficient retargetable code generation using bottom-up tree pattern matching”.
In: Computer Languages 15.3 (1990), pp. 127–140.

30MA Ertl, K Casey, and D Gregg. “Fast and flexible instruction selection with on-demand tree-parsing automata”. In: PLDI 41.6
(2006), pp. 52–60.

218

Tree Covering

+ Efficient: linear time to find local optimum
+ Better code than pure macro expansion
+ Applicable to many ISAs

− Common sub-expressions cannot be represented
▶ Need either edge split (prevents using complex instructions)

or node duplication (redundant computation ⇒ inefficient code)

− Cannot make use of multi-output instructions (e.g., divmod)

218

Tree Covering

+ Efficient: linear time to find local optimum
+ Better code than pure macro expansion
+ Applicable to many ISAs

− Common sub-expressions cannot be represented
▶ Need either edge split (prevents using complex instructions)

or node duplication (redundant computation ⇒ inefficient code)

− Cannot make use of multi-output instructions (e.g., divmod)

218

Tree Covering

+ Efficient: linear time to find local optimum
+ Better code than pure macro expansion
+ Applicable to many ISAs

− Common sub-expressions cannot be represented
▶ Need either edge split (prevents using complex instructions)

or node duplication (redundant computation ⇒ inefficient code)

− Cannot make use of multi-output instructions (e.g., divmod)

219

DAG Covering

▶ Idea: lift restriction of trees, operate on data flow DAG
▶ Reminder: an SSA basic block already forms a DAG

▶ Trivial approach: split into trees

:(

▶ Least-cost covering is NP-complete31

31DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs”. In: CGO. 2008, pp. 45–54. .

http://llvm.org/pubs/2008-CGO-DagISel.pdf

219

DAG Covering

▶ Idea: lift restriction of trees, operate on data flow DAG
▶ Reminder: an SSA basic block already forms a DAG

▶ Trivial approach: split into trees

:(

▶ Least-cost covering is NP-complete31

31DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs”. In: CGO. 2008, pp. 45–54. .

http://llvm.org/pubs/2008-CGO-DagISel.pdf

220

DAG Covering: Adapting Dynamic Programming I32

▶ Step 1: compute cost matrix, bottom-up for all nodes
▶ As before; make sure to visit each node once

▶ Step 2: iterate over DAG top-down
▶ Respect that multiple roots exist: start from all roots
▶ Mark visited node/non-terminal combinations: avoid redundant emit

+ Linear time
− Generally not optimal, only for specific grammars

32MA Ertl. “Optimal code selection in DAGs”. In: POPL. 1999, pp. 242–249. .

https://dl.acm.org/doi/pdf/10.1145/292540.292562

220

DAG Covering: Adapting Dynamic Programming I32

▶ Step 1: compute cost matrix, bottom-up for all nodes
▶ As before; make sure to visit each node once

▶ Step 2: iterate over DAG top-down
▶ Respect that multiple roots exist: start from all roots
▶ Mark visited node/non-terminal combinations: avoid redundant emit

+ Linear time
− Generally not optimal, only for specific grammars

32MA Ertl. “Optimal code selection in DAGs”. In: POPL. 1999, pp. 242–249. .

https://dl.acm.org/doi/pdf/10.1145/292540.292562

221

DAG Covering: Adapting Dynamic Programming I – Example

+1

a *

b c

+2

d

Node: *
Pattern:
Pat. Cost:
Cost Sum:

Node +2 +1 *

GP Cost ∞ ∞ ∞
Pattern

221

DAG Covering: Adapting Dynamic Programming I – Example

+1

a *

b c

+2

d

Node: *
Pattern: P8: GP → *(GP , GP)
Pat. Cost: 3
Cost Sum: 3

Node +2 +1 *

GP Cost ∞ ∞ 3
Pattern P8

221

DAG Covering: Adapting Dynamic Programming I – Example

+1

a *

b c

+2

d

Node: +1

Pattern:
Pat. Cost:
Cost Sum:

Node +2 +1 *

GP Cost ∞ ∞ 3
Pattern P8

221

DAG Covering: Adapting Dynamic Programming I – Example

+1

a *

b c

+2

d

Node: +1

Pattern: P1: GP → +(GP , GP)
Pat. Cost: 1
Cost Sum: 4

Node +2 +1 *

GP Cost ∞ 4 3
Pattern P1 P8

221

DAG Covering: Adapting Dynamic Programming I – Example

+1

a *

b c

+2

d

Node: +1

Pattern: P9: GP → +(*(GP , GP), GP)
Pat. Cost: 3
Cost Sum: 3

Node +2 +1 *

GP Cost ∞ 3 3
Pattern P9 P8

221

DAG Covering: Adapting Dynamic Programming I – Example

+1

a *

b c

+2

d

Node: +2

Pattern:
Pat. Cost:
Cost Sum:

Node +2 +1 *

GP Cost ∞ 3 3
Pattern P9 P8

221

DAG Covering: Adapting Dynamic Programming I – Example

+1

a *

b c

+2

d

Node: +2

Pattern: P1: GP → +(GP , GP)
Pat. Cost: 1
Cost Sum: 4

Node +2 +1 *

GP Cost 4 3 3
Pattern P1 P9 P8

221

DAG Covering: Adapting Dynamic Programming I – Example

+1

a *

b c

+2

d

Node: +2

Pattern: P9: GP → +(*(GP , GP), GP)
Pat. Cost: 3
Cost Sum: 3

Node +2 +1 *

GP Cost 3 3 3
Pattern P9 P9 P8

221

DAG Covering: Adapting Dynamic Programming I – Example

+1

a *

b c

+2

d

Total cost: 6

madd %1, %b, %c, %a
madd %2, %b, %c, %d

Node +2 +1 *

GP Cost 3 3 3
Pattern P9 P9 P8

221

DAG Covering: Adapting Dynamic Programming I – Example

+1

a *

b c

+2

d

Total cost: 6

madd %1, %b, %c, %a
madd %2, %b, %c, %d

Optimal cost: 5 ⇝ non-optimal result

Node +2 +1 *

GP Cost 3 3 3
Pattern P9 P9 P8

222

DAG Covering: Adapting Dynamic Programming II33

▶ Step 1: compute cost matrix, bottom-up (as before)
▶ Step 2: iterate over DAG top-down (as before)
▶ Step 3: identify overlaps and check whether split is beneficial

▶ Mark nodes which should not be duplicated as fixed
▶ Step 4: as step 1, but skip patterns that include fixed nodes
▶ Step 5: as step 2

+ Probably fast? “Near-optimal”?
− Generally not optimal, superlinear time

33DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs”. In: CGO. 2008, pp. 45–54. .

http://llvm.org/pubs/2008-CGO-DagISel.pdf

222

DAG Covering: Adapting Dynamic Programming II33

▶ Step 1: compute cost matrix, bottom-up (as before)
▶ Step 2: iterate over DAG top-down (as before)
▶ Step 3: identify overlaps and check whether split is beneficial

▶ Mark nodes which should not be duplicated as fixed
▶ Step 4: as step 1, but skip patterns that include fixed nodes
▶ Step 5: as step 2

+ Probably fast? “Near-optimal”?
− Generally not optimal, superlinear time

33DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs”. In: CGO. 2008, pp. 45–54. .

http://llvm.org/pubs/2008-CGO-DagISel.pdf

223

DAG Covering: ILP34

▶ Idea: model ISel as integer linear programming (ILP) problem
▶ P is set of patterns with cost and edges, V are DAG nodes
▶ Variables: Mp,v is 1 iff a pattern p is rooted at v

minimize
∑

p,v p.cost ·Mp,v

subject to ∀r ∈ roots.
∑

p Mp,r ≥ 1
∀p, v , e ∈ p.edges(v). Mp,v −

∑
p′ Mp′,e ≤ 0

Mp,v ∈ {0, 1}
Minimize cost for all matched patterns s.t. every root has a match and every input of a match has a match.

+ Optimal result
− Practicability beyond small programs questionable (at best)

34DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs”. In: CGO. 2008, pp. 45–54. .

http://llvm.org/pubs/2008-CGO-DagISel.pdf

223

DAG Covering: ILP34

▶ Idea: model ISel as integer linear programming (ILP) problem
▶ P is set of patterns with cost and edges, V are DAG nodes
▶ Variables: Mp,v is 1 iff a pattern p is rooted at v

minimize
∑

p,v p.cost ·Mp,v

subject to ∀r ∈ roots.
∑

p Mp,r ≥ 1
∀p, v , e ∈ p.edges(v). Mp,v −

∑
p′ Mp′,e ≤ 0

Mp,v ∈ {0, 1}
Minimize cost for all matched patterns s.t. every root has a match and every input of a match has a match.

+ Optimal result
− Practicability beyond small programs questionable (at best)

34DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs”. In: CGO. 2008, pp. 45–54. .

http://llvm.org/pubs/2008-CGO-DagISel.pdf

224

DAG Covering: Greedy/Maximal Munch

▶ Top-down, start at roots, always take largest pattern
▶ Repeat for remaining roots until whole graph is covered

+ Easy to implement, reasonably fast
− Result often non-optimal

▶ Used by: LLVM SelectionDAG

224

DAG Covering: Greedy/Maximal Munch

▶ Top-down, start at roots, always take largest pattern
▶ Repeat for remaining roots until whole graph is covered

+ Easy to implement, reasonably fast
− Result often non-optimal

▶ Used by: LLVM SelectionDAG

224

DAG Covering: Greedy/Maximal Munch

▶ Top-down, start at roots, always take largest pattern
▶ Repeat for remaining roots until whole graph is covered

+ Easy to implement, reasonably fast
− Result often non-optimal

▶ Used by: LLVM SelectionDAG

225

Graph Covering

▶ Idea: lift limitation of DAGs, cover entire function graphs
▶ Better handling of predication and VLIW bundling

▶ E.g., hoisting instructions from a conditional block
▶ Allows to handle instructions that expand to multiple blocks

▶ switch, select, etc.

▶ May need new IR to model control flow in addition to data flow

▶ In practice: only used by adapting methods showed for DAGs
▶ Used by: Java HotSpot Server, LLVM GlobalISel (all tree-covering)

225

Graph Covering

▶ Idea: lift limitation of DAGs, cover entire function graphs
▶ Better handling of predication and VLIW bundling

▶ E.g., hoisting instructions from a conditional block
▶ Allows to handle instructions that expand to multiple blocks

▶ switch, select, etc.

▶ May need new IR to model control flow in addition to data flow

▶ In practice: only used by adapting methods showed for DAGs
▶ Used by: Java HotSpot Server, LLVM GlobalISel (all tree-covering)

225

Graph Covering

▶ Idea: lift limitation of DAGs, cover entire function graphs
▶ Better handling of predication and VLIW bundling

▶ E.g., hoisting instructions from a conditional block
▶ Allows to handle instructions that expand to multiple blocks

▶ switch, select, etc.

▶ May need new IR to model control flow in addition to data flow

▶ In practice: only used by adapting methods showed for DAGs
▶ Used by: Java HotSpot Server, LLVM GlobalISel (all tree-covering)

226

Flawed Assumptions

▶ Cost model is fundamentally flawed
⇒ “Optimal” ISel doesn’t really mean anything

▶ Out-of-order execution: costs are not linear
▶ Instructions executed in parallel, might execute for free
▶ Possible contention of functional units

▶ Register allocator will modify instructions
▶ “Bad” instructions boundaries increase register requirements

▶ More stack spilling ⇝ much slower code!

226

Flawed Assumptions

▶ Cost model is fundamentally flawed
⇒ “Optimal” ISel doesn’t really mean anything

▶ Out-of-order execution: costs are not linear
▶ Instructions executed in parallel, might execute for free
▶ Possible contention of functional units

▶ Register allocator will modify instructions
▶ “Bad” instructions boundaries increase register requirements

▶ More stack spilling ⇝ much slower code!

226

Flawed Assumptions

▶ Cost model is fundamentally flawed
⇒ “Optimal” ISel doesn’t really mean anything

▶ Out-of-order execution: costs are not linear
▶ Instructions executed in parallel, might execute for free
▶ Possible contention of functional units

▶ Register allocator will modify instructions
▶ “Bad” instructions boundaries increase register requirements

▶ More stack spilling ⇝ much slower code!

227

LLVM Back-end: Overview

▶ LLVM-IR → Machine IR: instruction selection + scheduling
▶ MIR is SSA-representation of target instructions
▶ Selectors: SelectionDAG, FastISel, GlobalISel
▶ Also selects register bank (GP/FP/...) – required for instruction
▶ Annotates registers: calling convention, encoding restrictions, etc.

▶ MIR: minor (peephole) optimizations
▶ MIR: register allocation
▶ MIR: prolog/epilog insertion (stack frame, callee-saved regs, etc.)
▶ MIR → MC: translation to machine code

227

LLVM Back-end: Overview

▶ LLVM-IR → Machine IR: instruction selection + scheduling
▶ MIR is SSA-representation of target instructions
▶ Selectors: SelectionDAG, FastISel, GlobalISel
▶ Also selects register bank (GP/FP/...) – required for instruction
▶ Annotates registers: calling convention, encoding restrictions, etc.

▶ MIR: minor (peephole) optimizations
▶ MIR: register allocation
▶ MIR: prolog/epilog insertion (stack frame, callee-saved regs, etc.)
▶ MIR → MC: translation to machine code

227

LLVM Back-end: Overview

▶ LLVM-IR → Machine IR: instruction selection + scheduling
▶ MIR is SSA-representation of target instructions
▶ Selectors: SelectionDAG, FastISel, GlobalISel
▶ Also selects register bank (GP/FP/...) – required for instruction
▶ Annotates registers: calling convention, encoding restrictions, etc.

▶ MIR: minor (peephole) optimizations
▶ MIR: register allocation
▶ MIR: prolog/epilog insertion (stack frame, callee-saved regs, etc.)

▶ MIR → MC: translation to machine code

227

LLVM Back-end: Overview

▶ LLVM-IR → Machine IR: instruction selection + scheduling
▶ MIR is SSA-representation of target instructions
▶ Selectors: SelectionDAG, FastISel, GlobalISel
▶ Also selects register bank (GP/FP/...) – required for instruction
▶ Annotates registers: calling convention, encoding restrictions, etc.

▶ MIR: minor (peephole) optimizations
▶ MIR: register allocation
▶ MIR: prolog/epilog insertion (stack frame, callee-saved regs, etc.)
▶ MIR → MC: translation to machine code

228

LLVM MIR Example

define i64 @fn(i64 %a,i64 %b,i64 %c) {
%shl = shl i64 %c, 2
%mul = mul i64 %a, %b
%add = add i64 %mul, %shl
ret i64 %add

}

YAML with name, registers, frame info
body: |
bb.0 (%ir-block.0):
liveins: $x0, $x1, $x2

%2:gpr64 = COPY $x2
%1:gpr64 = COPY $x1
%0:gpr64 = COPY $x0
%3:gpr64 = MADDXrrr %0, %1, $xzr
%4:gpr64 = ADDXrs killed %3, %2, 2
$x0 = COPY %4
RET_ReallyLR implicit $x0

llc -march=aarch64 -stop-after=finalize-isel

229

LLVM: Instruction Selectors

FastISel
▶ Uses macro expansion
▶ Low compile-time
▶ Code quality poor

▶ Only common cases
▶ Otherwise: fallback

to SelectionDAG

▶ Default for -O0

SelectionDAG
▶ Converts each block

into separate DAGs
▶ Greedy tree matching
▶ Slow, but good code

▶ Handles all cases
▶ No cross-block opt.

(done in DAG building)

▶ Default

GlobalISel
▶ Conv. to generic-MIR

then legalize to MIR
▶ Reuses SD patterns
▶ Faster than SelDAG

▶ Few architectures
▶ Handles many cases,

SelDAG-fallback

229

LLVM: Instruction Selectors

FastISel
▶ Uses macro expansion
▶ Low compile-time
▶ Code quality poor

▶ Only common cases
▶ Otherwise: fallback

to SelectionDAG

▶ Default for -O0

SelectionDAG
▶ Converts each block

into separate DAGs
▶ Greedy tree matching
▶ Slow, but good code

▶ Handles all cases
▶ No cross-block opt.

(done in DAG building)

▶ Default

GlobalISel
▶ Conv. to generic-MIR

then legalize to MIR
▶ Reuses SD patterns
▶ Faster than SelDAG

▶ Few architectures
▶ Handles many cases,

SelDAG-fallback

229

LLVM: Instruction Selectors

FastISel
▶ Uses macro expansion
▶ Low compile-time
▶ Code quality poor

▶ Only common cases
▶ Otherwise: fallback

to SelectionDAG

▶ Default for -O0

SelectionDAG
▶ Converts each block

into separate DAGs
▶ Greedy tree matching
▶ Slow, but good code

▶ Handles all cases
▶ No cross-block opt.

(done in DAG building)

▶ Default

GlobalISel
▶ Conv. to generic-MIR

then legalize to MIR
▶ Reuses SD patterns
▶ Faster than SelDAG

▶ Few architectures
▶ Handles many cases,

SelDAG-fallback

229

LLVM: Instruction Selectors

FastISel
▶ Uses macro expansion
▶ Low compile-time
▶ Code quality poor

▶ Only common cases
▶ Otherwise: fallback

to SelectionDAG

▶ Default for -O0

SelectionDAG
▶ Converts each block

into separate DAGs
▶ Greedy tree matching
▶ Slow, but good code

▶ Handles all cases
▶ No cross-block opt.

(done in DAG building)

▶ Default

GlobalISel
▶ Conv. to generic-MIR

then legalize to MIR
▶ Reuses SD patterns
▶ Faster than SelDAG

▶ Few architectures
▶ Handles many cases,

SelDAG-fallback

230

LLVM SelectionDAG: IR to ISelDAG

isel input for fn:

EntryToken

t0

ch

Register %0

t1

i64

Register %1

t3

i64

Register %2

t5

i64

Constant<2>

t7

i64

Register $x0

t11

i64

0 1

CopyFromReg

t2

i64 ch

0 1

CopyFromReg

t4

i64 ch

0 1

CopyFromReg

t6

i64 ch

0 1

mul

t9

i64

0 1

shl

t8

i64

0 1

add

t10

i64

0 1 2

CopyToReg

t12

ch glue

0 1 2

AArch64ISD::RET_FLAG

t13

ch

GraphRoot

▶ Construct DAG for basic block
▶ EntryToken as ordering chain

▶ Legalize data types
▶ Integers: promote or expand into multiple
▶ Vectors: widen or split (or scalarize)

▶ Legalize operations
▶ E.g., conditional move, etc.

▶ Optimize DAG, e.g. some pattern
matching,
removing unneeded sign/zero extensions

llc -march=aarch64 -view-isel-dags
Note: needs LLVM debug build

230

LLVM SelectionDAG: IR to ISelDAG

isel input for fn:

EntryToken

t0

ch

Register %0

t1

i64

Register %1

t3

i64

Register %2

t5

i64

Constant<2>

t7

i64

Register $x0

t11

i64

0 1

CopyFromReg

t2

i64 ch

0 1

CopyFromReg

t4

i64 ch

0 1

CopyFromReg

t6

i64 ch

0 1

mul

t9

i64

0 1

shl

t8

i64

0 1

add

t10

i64

0 1 2

CopyToReg

t12

ch glue

0 1 2

AArch64ISD::RET_FLAG

t13

ch

GraphRoot

▶ Construct DAG for basic block
▶ EntryToken as ordering chain

▶ Legalize data types
▶ Integers: promote or expand into multiple
▶ Vectors: widen or split (or scalarize)

▶ Legalize operations
▶ E.g., conditional move, etc.

▶ Optimize DAG, e.g. some pattern
matching,
removing unneeded sign/zero extensions

llc -march=aarch64 -view-isel-dags
Note: needs LLVM debug build

230

LLVM SelectionDAG: IR to ISelDAG

isel input for fn:

EntryToken

t0

ch

Register %0

t1

i64

Register %1

t3

i64

Register %2

t5

i64

Constant<2>

t7

i64

Register $x0

t11

i64

0 1

CopyFromReg

t2

i64 ch

0 1

CopyFromReg

t4

i64 ch

0 1

CopyFromReg

t6

i64 ch

0 1

mul

t9

i64

0 1

shl

t8

i64

0 1

add

t10

i64

0 1 2

CopyToReg

t12

ch glue

0 1 2

AArch64ISD::RET_FLAG

t13

ch

GraphRoot

▶ Construct DAG for basic block
▶ EntryToken as ordering chain

▶ Legalize data types
▶ Integers: promote or expand into multiple
▶ Vectors: widen or split (or scalarize)

▶ Legalize operations
▶ E.g., conditional move, etc.

▶ Optimize DAG, e.g. some pattern
matching,
removing unneeded sign/zero extensions

llc -march=aarch64 -view-isel-dags
Note: needs LLVM debug build

230

LLVM SelectionDAG: IR to ISelDAG

isel input for fn:

EntryToken

t0

ch

Register %0

t1

i64

Register %1

t3

i64

Register %2

t5

i64

Constant<2>

t7

i64

Register $x0

t11

i64

0 1

CopyFromReg

t2

i64 ch

0 1

CopyFromReg

t4

i64 ch

0 1

CopyFromReg

t6

i64 ch

0 1

mul

t9

i64

0 1

shl

t8

i64

0 1

add

t10

i64

0 1 2

CopyToReg

t12

ch glue

0 1 2

AArch64ISD::RET_FLAG

t13

ch

GraphRoot

▶ Construct DAG for basic block
▶ EntryToken as ordering chain

▶ Legalize data types
▶ Integers: promote or expand into multiple
▶ Vectors: widen or split (or scalarize)

▶ Legalize operations
▶ E.g., conditional move, etc.

▶ Optimize DAG, e.g. some pattern
matching,
removing unneeded sign/zero extensions

llc -march=aarch64 -view-isel-dags
Note: needs LLVM debug build

231

LLVM SelectionDAG: ISelDAG to DAG

scheduler input for fn:

EntryToken

t0

ch

Register %0

t1

i64

Register %1

t3

i64

Register %2

t5

i64

Register $x0

t11

i64

0 1

CopyFromReg

t2

i64 ch

0 1

CopyFromReg

t4

i64 ch

0 1

CopyFromReg

t6

i64 ch

0 1 2

MADDXrrr

t9

i64

Register $xzr

t15

i64

0 1 2

ADDXrs

t10

i64

TargetConstant<2>

t14

i32

0 1 2

CopyToReg

t12

ch glue

0 1 2

RET_ReallyLR

t13

ch

GraphRoot

▶ Mainly pattern matching
▶ Simple patterns specified in TableGen

▶ Matching/selection compiled into
bytecode

▶ SelectionDAGISel::SelectCodeCommon()

▶ Complex selections done in C++

▶ Scheduling: linearization of graph

llc -march=aarch64 -view-sched-dags
Note: needs LLVM debug build

232

Instruction Selection – Summary

▶ Instruction Selection: transform generic into arch-specific instructions
▶ Often focus on optimizing tiling costs
▶ Target instructions often more complex, e.g., multi-result

▶ Macro Expansion: simple, fast, but inefficient code
▶ Peephole optimization on sequences/trees to optimize
▶ Tree Covering: allows for better tiling of instructions
▶ DAG Covering: support for multi-res instrs., but NP-complete
▶ Graph Covering: mightiest, but also most complex, rarely used

233

Instruction Selection – Questions

▶ What is the (nowadays typical) input and output IR for ISel?
▶ Why is good instruction selection important for performance?
▶ Why is peephole optimization beneficial for nearly all ISel approaches?
▶ How can peephole opt. be done more effectively than on neighboring instrs.?
▶ What are options to transform an SSA-IR into data flow trees?
▶ Why is a greedy strategy not optimal for tree pattern matching?
▶ When is DAG covering beneficial over tree covering?
▶ Which ISel strategies does LLVM implement? Why?

	Instruction Selection
	Overview
	Macro Expansion
	Tree Covering
	DAG Covering
	Graph Covering
	LLVM Instruction Selection

