Gumera TUM

(§ UMBRA

Philipp Fent
Technical University of Munich
fent@in.tum.de

Umbra

e TUM’'s first DBMS acquired by Salesforce
e Rewrite from scratch
e Cutting-edge database research

e Disk-based with in-memory performance

Gumera TUM

;-l HyPer

CSRankings: Computer Science Rankings

CSRankings is a metrics-based ranking of top computer science institutions around the world. Click on a

triangle (>) to expand areas or institutions. Click on a name to go to a faculty member's home page. Click on
a chart icon (the ily after a name or institution) to see the distribution of their publication areas as a
| bar chart v |. Click on a Google Scholar icon (f) to see publications, and click on the DBLP logo (») to go
to a DBLP entry. Applying to grad school? Read this first. Do you find CSrankings useful? Sponsor

CSrankings on GitHub.

Rank institutions in | the world

All Areas [off | on]
Al [off | on]

» Artificial intelligence

» Computer vision

» Machine learning

» Natural language processing

» The Web & information retrieval

Systems [off | on]

» Computer architecture

» Computer networks

» Computer security

» Databases

» Design automation

» Embedded & real-time systems

0Oooooo

oo0o®Ocoo

v | by publications from 2017 v |to[2023 v|

Institution
1 » TU Munich = ja

» HKUST & ila
» Tsinghua University @l il

» University of Waterloo gef il

2
3
4
5 » National University of Singapore ™ i
6 » Duke University =5

7 » Chinese University of Hong Kong i il
8 » Nanyang Technological University = jj;
9 » Univ. of California - San Diego == il

10 » Univ. of California - Berkeley s i

11 » Peking University @ il

i

Gumera TUM

Performance

TPC-H SF10

30 { . Postgres I DuckDB BN Umbra

25 A

N
o
1

Query Runtime [s]
|_I
w

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Gumera TUM

Performance

TPC-H SF10

1.0 =
I Postgres I DuckDB BN Umbra

0.8

0.6

0.2

0.0 -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Query Runtime [s]
o
D

Gumera TUM

What makes Umbra fast?

What makes Umbra fast?

e Pipelined execution

o Keeps values in registers

o Minimizes materialization

.
. o
. .
. .
. .
. .
- .
. ..
F -

~..z;count(*)

What makes Umbra fast?

e Pipelined execution

e Data-centric code generation

o Efficient code for complex expressions

%1
%2
%3
%V
%5
%6
%7

%8 =
%hash

zext 164 %int1;

zext 164 %int2;

rotr i64 %2, 32;

or i64 %1, %3;

crc32 i64 6763793487589347598,
crc32 164 4593845798347983834,
rotr 164 %6, 32;

xor 164 %5, %7;

Gumera TUM

i

Zero extend to 64 bit

Rotate right

Combine int1 and int2

%V ; First crc32
%V ; Second crc32
Shift second part
Combine hash parts

= mul 164 %8, 11400714819323198485; Mix parts

w
-
<
s,
By
>

What makes Umbra fast?

e Pipelined execution

HT(T) HT(S)
- i i A |B
e Data-centric code generation .. : \c/: PR S
e Full llel algorith Z A B jC /133 (i probe(16)— R
ully parallel algorithms a 1168 [v wstore” |Soiia e()\18 3 N /;6 Z
d
o Allows scaling yd 27110 | = Tc
store probe(27) 10
o Benefits from new hardware c |, 5 5 '
23 | u 7 |23
m'grsé["

EX i

.......
eo=

Dispatcher | morsel

What makes Umbra fast?

Pipelined execution
Data-centric code generation
Fully parallel algorithms

State-of-the-art query optimizer

€

i

umsrA TLTI

i

Gumera TUM

What makes Umbra fast?

e Pipelined execution
e Data-centric code generation
e Fully parallel algorithms

e State-of-the-art query optimizer

Research system with all custom advanced parts

We’re commercializing soon!

Query Optimization

PostgreSQL grammar

Parsed into relational algebra

(@)

(@)

Example: TPC-H Q17

https://umbra-db.com/interface/

= RESULT

X MAP

avg_yearly == sum(l_extendedprice) / 7

I GROUPBY

Aggregates:
sum(l_extendedprice) = sum(l_extendedprice)

o SELECT

p_partkey = |_partkey

and p_brand = 'Brand#23'
and p_container = '"MED BOX'
and |_quantity < ?column?

X CROSS-PRODUCT

,/ B~

X MAP

x CROSS-PRODUCT

?column? = 0.2 * avg(l_quantity)

)

= LINEITEM = PART I GROUPBY
ize: o Aggregates:
Table Size: 0 Table Size: 0 s e

¢ SELECT

|_partkey33 = p_partkey

Z2 LINEITEM

Table Size: 0

€

i

umsrA TLTI

https://umbra-db.com/interface/

Query Optimization

e PostgreSQL grammar
e Parsed into relational algebra

e Optimizer passes over algebra

1: Unoptimized Plan

2: Expression Simplification

JAL

AN

3: Unnesting

4: Predicate Pushdown

AN

.

5: Initial Join Tree

J

AN

6: Sideway Information Passing

JAL

7: Operator Reordering

AN

8: Early Probing

9: Common Subtree Elimination

-

JAL

10: Physical Operator Mapping

AN

€

i

umsrA TLTI

Gumera TUM

Query Optimization

1: Unoptimized Plan

Y4
JAL

® PostgreSQL grammar 2: Expression Simplification

AYd
AN

i) 3 U " > Rule-based
e Parsed into relational algebra | - -nnesting Canonicalization

4: Predicate Pushdown

N
AN

.

e Optimizer passes over algebra |

N
J

5: Initial Join Tree

Y4
AL

6: Sideway Information Passing

AY 4
AN

7: Operator Reordering

AYd
AN

Cost-based

Optimization < | 8: Early Probing

AY 4
AN

9: Common Subtree Elimination

-

AN

10: Physical Operator Mapping

Expression Simplification

e Fold constants

e Canonicalize expressions

o_orderdate >= date
and o_orderdate < date

o_orderdate between date

e Execute in evaluation engine

'1994-01-01"
'1994-01-01"

'1994-01-01"

+ interval

and date

i

Gumera TUM

‘1" year

'1994-12-31"

Query Unnesting & Decorrelation

Unnesting Arbitrary Queries

Unnesting Arbitrary Queries

Thomas Neumann and Alfons Kemper
Technische Universitit Miinchen
Munich, Germany
neumann@in.tum.de, kemper @in.tum.de

Abstract: SQL-99 allows for nested subqueries at nearly all places within a query
From a user’s point of view, nested queries can greatly simplify the formulation of
complex queries. However, nested queries that are correlated with the outer queries

frequently lead to dependent joins with nested loops evaluations and thus poor perfor-
mance.

erefore use a
correlate them. These unnesting

st these queries, i.c.
up query processing.

no existing system can de-correlate queri e general case. We present a generic
approach for unnesting arbitrary queries. As a result, the de-correlated queries allow
for much simpler and much more efficient query evaluation.

1 Introduction
Subqueries are frequently used in SQL queries to simplify query formulation. Consider
for our running examples the following schema:

o students: {[id, name, major, year, ... 1}

o exams: {[sid, course, curriculum, date, ...}

‘Then the following is a nested query to find for each student the best exams (according to
the German grading system where lower numbers are better)

01: select
from
where

Conceptually, for each student, exam pair (s, ¢) it determines, in the subquery, whether or
not this particular cxam ¢ has the best grade of all exams of this particular student .

From a performance point of view the query is not so nice, as the subquery has o be re-
evaluated for every student, exam pair. From a technical perspective the query contains a

383

Gumera TUM

DuckDB Documentation

Blog

Correlated Subqueries in SQL

Subqueries in SQL are a powerful abstraction that allow simple queries to be
used as composable building blocks. They allow you to break down complex
problems into smaller parts, and subsequently make it easier to write, under-
stand and maintain large and complex queries.

DuckDB uses a state-of-the-art subquery decorrelation optimizer that allows
subqueries to be executed very efficiently. As a result, users can freely use
subqueries to create expressive queries without having to worry about manu-
ally rewriting subqueries into joins. For more information, skip to the
Performance section.

Types of Subqueries

SQL subqueries exist in two main forms: subqueries as expressions and sub-
queries as tables. Subqueries that are used as expressions can be used in
the SELECT or WHERE clauses. Subqueries that are used as tables can be
used in the FROM clause. In this blog post we will focus on subqueries used
as expressions. A future blog post will discuss subqueries as tables.

Subqueries as expressions exist in three forms.

« Scalar subqueries
* EXISTS
o IN/ANY/ALL

All of the subqueries can be either correlated or uncorrelated. An uncorre-
lated subquery is a query that is independent from the outer query. A corre-
lated subquery is a subquery that contains expressions from the outer query.
Correlated subqueries can be seen as parameterized subqueries.

Blog

= RESULT

i

€

umsrA TLTI

Query Unnesting

avg_yearly == sum(l_extendedprice) / 7

I

I GROUPBY

e Unnesting Arbitrary Queries

sum(l_extendedprice) = sum(l_extendedprice)

o On?)

o SELECT

p_partkey = |_partkey

and p_brand = 'Brand#23'
and p_container = '"MED BOX'
and |_quantity < ?column?

X CROSS-PRODUCT

,/ B~

X MAP
x CROSS-PRODUCT

K \ ?column? = 0.2 * avg(l_quantity)

= LINEITEM = PART I GROUPBY
ize: o Aggregates:
Table Size: 0 Table Size: 0 s e

¢ SELECT

|_partkey33 = p_partkey

Z2 LINEITEM

Table Size: 0

Query Unnesting

Unnesting Arbitrary Queries

(@)

O(n?)

RESULT

X

avg_yearly == sum(l_extendedprice) / 7

MAP

r G

Aggregates:

sum(l_extendedprice) = sum(l_extendedprice)

ROUPBY

p_partkey =
and p_brand

o SELECT

and p_contail
and |_quantity < ?column?

|_partkey
= 'Brand#23'
ner = '"MED BOX'

X CROSS-PRODUCT

-

x CROSS-PRODUCT

)

M

X MAP

?column? = 0.2 * avg(l_quantity)

zZ LINEITEM = PART

Table Size: 0 Table Size: 0

I GROUPBY
Aggregates:
avg(l_quantity) == avg(l_quantity36)

¢ SELECT

|_partkey33 = p_partkey

Z2 LINEITEM

Table Size: 0

i

€

umsrA TLTI

= RESULT

X MAP

Query Unnesting

r GROUPBY

Aggregates:
sum(l_extendedprice) = sum(l_extendedprice)

e Unnesting Arbitrary Queries

o SELECT

p_partkey = |_partkey
and p_brand = 'Brand#23'

o O(n?)->O(n)
and p_container = 'MED BOX'

O Huge Improvement and |_quantity < ?column?

X NOTSELECTEDYET

p_partkey is |_partkey51

i

umsrA TLTI

’

X CROSS-PRODUCT

X MAP

?column? = 0.2 * avg(l_quantity)

I GROUPBY
22 LINEITEM 22 PART
Aggregates:
Table Size: 0 Table Size: 0 avg(l_quantity) = avg(l_quantity36)

Keys: |_partkey33

¢ SELECT

|_partkey33 = |_partkey33

ZZ LINEITEM

Table Size: 0

= RESULT

X MAP

Predicate Pushdown

r GROUPBY

Aggregates:
sum(l_extendedprice) = sum(l_extendedprice)

e Place predicates at scan

o SELECT

e Propagate & fold constants

and p_brand = 'Brand#23'
and p_container = 'MED BOX'
and |_quantity < ?column?

X NOTSELECTEDYET

p_partkey is |_partkey51

i

umsrA TLTI

[B

X MAP

X CROSS-PRODUCT

?column? = 0.2 * avg(l_quantity)

I GROUPBY
22 LINEITEM 22 PART
Aggregates:
Table Size: 0 Table Size: 0 avg(l_quantity) = avg(l_quantity36)

Keys: |_partkey33

¢ SELECT

|_partkey33 = |_partkey33

ZZ LINEITEM

Table Size: 0

Predicate Pushdown

X MAP

e Place predicates at scan e et

I GROUPBY

e Propagate & fold constants

Aggregates:
sum(l_extendedprice) = sum(l_extendedprice)

M NOTSELECTEDYET

|_quantity < 0.2 * avg(l_quantity)
and p_partkey = |_partkey51

\

i

umsrA TLTI

I GROUPBY

X NOTSELECTEDYET
Aggregates:

I tity) = | tity36)
p_partkey =_parikey avg(l_quantity) = avg(l_quantity36)

\ Keys: |_partkey33

2 PART
ZZ LINEITEM : ZZ LINEITEM
Table Size: 0
Table Size: 0 p_brand = 'Brand#23' Table Size: 0

p_container = 'MED BOX'

Predicate Pushdown

Place predicates at scan

Propagate & fold constants

i

Gumera TUM

= RESULT

X MAP

avg_yearly = sum(l_extendedprice) / 7

I GROUPBY

Aggregates:
sum(l_extendedprice) = sum(l_extendedprice)

M NOTSELECTEDYET

|_quantity < 0.2 * avg(l_quantity)
and p_partkey = |_partkey51

\

I GROUPBY

X NOTSELECTEDYET
Aggregates:

I tity) = | tity36)
p_partkey =_parikey avg(l_quantity) = avg(l_quantity36)

(\ Keys: |_partkey33
3 PART

Z= LINEITEM : == LINEITEM
Table Size: 0

Table Size: 0 p_brand = 'Brand#23' Table Size: 0

p_container = 'MED BOX'

where p_partkey = 42

Predicate Pushdown

Place predicates at scan

Propagate & fold constants

i

Gumera TUM

= RESULT

X MAP

avg_yearly := sum(l_extendedprice) / 7

I GROUPBY

Aggregates:
sum(l_extendedprice) = sum(l_extendedprice)

X NOTSELECTEDYET

|_quantity < 0.2 * avg(l_quantity)

-

I GROUPBY
X CROSS-PRODUCT Agaregates: _
avg(l_quantity) = avg(l_quantity36)
Keys: 42
2 PART
I LINEITEM ZZ LINEITEM
Table Size: 0
Table Size: 0 Table Size: 0
p_partkey = 42
|_partkey = 42 p_container = 'MED BOX' |_partkey = 42
p_brand = 'Brand#23'

Initial Join Tree

Push joins through aggregates

Expand transitive join conditions

and

and
and

c_nationkey
s_nationkey

c_nationkey
s_nationkey
c_nationkey

s_nationkey
n_nationkey

s_nationkey
n_nationkey
n_nationkey

i

€

umsrA TLTI

Initial Join Tree

Push joins through aggregates

Expand transitive join conditions

Drop unnecessary joins

select
from
where

select
from

sum(o_totalprice)
customer, orders
c_custkey = o_custkey

sum(o_totalprice)
orders

€

i

umsrA TLTI

Cost-Based Optimization

e Heuristics vs. statistics

€

i

umsrA TLTI

Cost-Based Optimization

e Heuristics vs. statistics
e Statistics in Umbra:
o Samples
o Distinct counts
o Numerical statistics (mean, variance) for aggregates

o Functional dependencies

= Estimate execution cost

i

€

umsrA TLTI

Gumera TUM

i

Sample Evaluation

e Maintain uniform reservoir sample
e Evaluate scan predicates o on sample

e Execute in evaluation engine select count(*)

from lineitem
where 1l_commitdate < l_receiptdate
o 1024 tuples ~ 0.1% error and 1l_shipdate < 1l_commitdate

e Surprisingly accurate

Sample Evaluation

for 1 in lineitem:
if not 1_shipdate < 1_commitdate:

continue -- 51% taken

if not 1_commitdate < 1_receiptdate:
continue -- taken

counter++

Variant @ : Separate branches

for 1 in lineitem:

if not 1_commitdate < 1 _receiptdate:

continue -- 37% taken
if not 1l_shipdate < l _commitdate:
continue taken

counter++
Variant (B) : Separate branches

Gumera TUM

for 1 in lineitem:
if not (l_shipdate < 1_commitdate
and 1_commitdate < 1_receiptdate):
continue taken

counter++
Variant © : Combined branch

Sample Evaluation

for 1 in lineitem:
if not 1_shipdate < 1_commitdate:

continue -- 51% taken

if not 1_commitdate < 1_receiptdate:
continue -- taken

counter++

Variant @ : Separate branches

for 1 in lineitem:

if not 1_commitdate < 1l_receiptdate:

continue -- 37% taken
if not 1_shipdate < 1_commitdate:
continue taken

counter++
Variant (B) : Separate branches

Gumera TUM

for 1 in lineitem:
if not (l_shipdate < 1_commitdate
and 1_commitdate < 1_receiptdate):
continue taken

counter++
Variant © : Combined branch

Variant branch-misses instructions loads exec. time
) 0.63/tpl 7.62/tpl 2.85/tpl 18.4ms
0.58 / tpl 7.91/tpl 3.00/tpl 17.7ms
© 0.13/tpl 11.67 /tpl 3.37/tpl 12.7ms

Gumera TUM

Sample Evaluation

Research Data Management Track Paper

SIGMOD *21, June 20-25, 2021, Virtual Event, China

Small Selectivities Matter: Lifting the Burden of Empty Samples

e Estimate (correlated) predicates with confidence st g

Technische Universitit Dresden University of Mannheim Technische Universitit Dresden
1 d .de uni hei wolfgang leh: -dresden.de
Norman May Florian Wolf Lars Fricke

AP S

e Any combination of predicates

ABSTRACT

Every year more and more advanced approaches to cardinality
estimation are published, using leamed models or other data and
= " workload specific synopses. In contrast, the majority of commercial
PY I ri Ck W h en 4 tu |e S qua || L i o T bty et
‘general and easiest estimator to implement, While most methods do
not seein ta improve much over saaplingbased estimetors in the
presence of non-selective queries, sampling struggles with highly
selective queries due to limitations of the sample size. Especially in
situations where no sample tuple qualifies, optimizers fall back to
] . basic heuristics that ignore attribute correlations and lead to large
. n r f r n n I n estimation errors. In this work, we present a novel approach, dealing
with these 0-Tuple Situations. It i ready to use in any DBMS capable
of sampling, showing a negligible impact on optimization time. Our
experiments on real world and synthetic data sets demonstrate up
to two orders of magnitude reduced estimation errors. Enumerating
single filter predicates according to our estimates reveals 13 to 18

times faster query responses for complex filters.

ACM Reference Form:
Axel Hertzschuch, Guido Moerkotte, Wolfgang Lehner, Norman May, Flo-
rian Wolf, and Lars Fricke. 2021. Small Selectivities Matter: Lifting the Bur-
den of Empty Samples. In Proceedings of the 2021 International Conference on
Management of Data (SIGMOD '21), June 18~27, 2021, Virtual Event, China.
ACM, New York, NY, USA, 13 pages. https//doi.org/10.1145/3448016.3452805

1 INTRODUCTION
Good cardinality estimates guide query optimizers towards decent
execution plans and lower the risk of disastrous plans [25, 28]. Al-
though many approaches were published on cardinality estimation,
g, using histograms (18], sampling [11), or machine learning [13],
itis still considered a grand challenge (28], Especially analytical
workloads remain challenging as they often comprise a multitude of
correlated filter predicates. The comprehensive analysis of 60k real-
world BI data repositories by Vogelsgesang et al. [45] underlines
the importance of filter operations and reveals: Most data is stored
in string format, which enables arbitrary complex expressions.

Permission to make digital or hard copics of all or part of this work for personal or
elassroom use i granted without fee provided that copies are not made or distributed

{2 o] W sample size: 1k tuples

s 8

% of queries leading to 0

2atoms 3atoms 4atoms 5atoms 6aloms 7 atoms

igure 1: Relative number of queries over tables with at least
1M tuples that lead to empty samples (0-TS) with regard to
the number of filter predicates (atoms) and the sample size.

Sampling is an ad that
arbitrary numbers and types of predicates. Therefore, it is com-
‘monly used in commercial systems [25, 26, 36, 40] and has been
combined with histograms [35] and machine learning [23,47]. How-
ever, itis not a panacea. Although sampling might be reasonably
fast for in-memory systems due to the efficient random access [17),
the number of sample tuples often is very limited. Traditionally,
we randomly draw a fixed number of tuples from a table and di-
vide the number of qualifying sample tuples by the total number
of sample tuples. Instead of drawing the sample at query time,
some approaches exploit materialized views [24] or use reservoir
sampling (7, 44]. Given a sufficient number of qualifying tuples,
these sample-based estimates are precise and give probabilistic er-
ror guarantees [32]. However, complex predicates frequently lead
to situations where no sample tuple qualifies. According to Kipf
et al. [22] we call these 0-Tuple Situations (0-TS). To assess the
frequency at which 0-TS occur, we analyze the Public Bi Bench-
mark (2], a real-world, user-generated workload. Considering base
tables with at least 1M tuples, Figure 1 illustrates the relative num-
ber of queries that result in 0-TS when using two standard sized
random samples. Interestingly, and contrary to the intuition of be-
ing a comer case, this analysis of a real-life workload reveals that
up to 727% of the queries with complex filters lead to empty sam-
ples. In these situations, query optimizers rely on basic heuristics,
e, using Attribute Value Independence (AVY), that lead to large
estimation errors and potentially poor execution plans [33, 37]. To

£

pose we sample from a tabl

» e

o the first page. Copyrights for components of this work owned by others than the

‘author(s) must be honored. Abstractn with credit s permitted. To copy otherwise, or
blsh,

and/or a fee. Request permissions fom permissions@acm.org.
SIGMOD ‘21, une 127, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s) Publcation righs iensed 10 ACM.
ACMISEN 975-1-4503-5343-1121/06...$15.00

hitps/doiorg/10.1145/3448016, 3452805

brands, models and colors of cars. Even if no sample tuple qualifies
for a given filter, there is little justification to assume independence
between all attributes as the model usually determines the brand.
Surprisingly, no previous work we are aware of considers cor-
relations in 0-TS. This paper therefore presents a novel approach
that - given a sample — derives more precise selectivity estimates

Gumera TUM

i

Sample Evaluation

e Calculate matches-bitsets

e Combine them to optimize ordering
o TPC-HQ12:

where 1_shipmode in ('MAIL', 'SHIP')
and 1_commitdate < l_receiptdate
and 1_shipdate < 1l_commitdate
and 1l_receiptdate between date '1994-01-01"
and date '1994-12-31"'

0100'0011°1010'6100°1110°1011°1011°1100°1010°1010°1011'0000°1011°'0011°1100'0000
& 0000'1111°'0000'1111°'0000°1111°0000°1111°0000°1111°0000°1111'0000°1111'0000° 1111
& 1111'0000°1111'0000°1111'0000°1111'0000°1111'0000°1111°'0000°1111°'0000°1111'0000
& 1010'0110°1110°'1110°1000°'0011°0111°0101'6110°1111°10061°1101°1110°0011'1000°' 0001

Early Execution

e Size of sample > table size

e Allows a third round of constant propagation

o Especially for small fact tables

select r_regionkey
from region

where r_name = 'Europe'’

select 3

€

i

umsrA TLTI

Join Ordering

e Hash Joins rule

o Indexes don'’t allow bushy plans -> less useful

i

€

umsrA TLTI

Join Ordering

e Hash Joins rule

o Indexes don'’t allow bushy plans -> less useful

Query

no /\ no
easy?/ > medium?

yes yes
Y A 4
solve optimally with DP with gracefully introduce
graph-based DP search space greediness to keep
linearization optimization time
reasonable

Gumera TUM

i

Join Ordering

e Hash Joins rule
o Indexes don'’t allow bushy plans -> less useful

e Distinct count estimates with Pat Sellinger’s equations
e HyperLoglLog intersections

e Mean & stddev approximations for 1_quantity < 0.2 * avg(l_quantity)

Early Probing

Semijoin reduction
Reuses existing hash tables

Can use bloom filters if beneficial

= RESULT

I GROUPBY

Aggregates:
countstar(¥) = countstar()

X HASHJOIN

o_orderkey = |_orderkey32

@

2 ORDERS

Table Size: 1.5M
Selectivity: 46.2%

o_orderdate <= date '1995-03-14'

I GROUPBY

Keys: |_orderkey, |_partkey

EARLYPROBE

|_orderkey

IGM

ZZ LINEITEM

Table Size: 6M

€

i

umsrA TLTI

Physical Optimization

Indexes

Worst-case optimal join

Adopting Worst-Case Optimal Joins in
Relational Datab

Y

Michael Freftag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, Thomas Neumann
fechnische Universitat Minchen

{freitagm, bandle, \ob\as,schmvdt, kemper, neumann}@in.tum.de

ABSTRAC’I' of otk Nesrils, i s wll ot thor v
case optimal Join algoriths are attraciv fom o baihologial caes i which any binary jon plan cxhibis
,»,m.m.), Vﬂ.m o v, 0 they ot symproticaly e ol mv'urmwuw 0. The main shortcoming
ine-ruskiine han biiary jof e serbal fynes of que iy s s he sencrton o ntermedie el e
e e o e o A e i e han (e actul ey sl
by e e ot selstio gl . Usortunata, Chisstuation i “aenenally ot n
g foin. Horer, janblo $seing » o emen eyt

cveehend in pratice prmarly sinee hey rely o suitable
ordored index structies on thelr input. Systems that sup-
port worst-case optimal joins often focus on specific prob-

el bash-besed worst.caa opeimal Jon algorihan that o

lies only on data structures that can be buit cffciently du

ing query exccution. Furtheruore, we implemeat a Lybrid
i trasspuronly con

il ke oo 0 porformanes whe thy 50 20k
B Referes
mmm s Siimilan Banle, Tbias Schid, Alfons Ken-
s Newnsais Adopting Woret Case Optimal Joiun
ol Datai Srstomer FVLDR, 1301 1511907
DOI: httpss/ /dos.org/10.1

S/si0TTon 40777

TRODUCTION

The vast mjority of traditional relational database s
agement s (RDBMS) el on iy Join 10 pro-
css queries that fnvolse more than one relation, since they
are wellstudied and sraightformacd 1o fmpleent, O
i 3o docade of optimisaton and fne. tusicg, they o
reat. bl and excellent performance on & wide range

i vkt s e Cost, Coms At
T

e w,w...m, W,.\ L ‘ ¥ s o m.mm

P ——

b mceivable
O ae poik e e Bk b oo T

or ven fall Lo podue any sl ¢ o
Comseunty thre bas been ong staig e n
mdi-any joins that avoid enumerating any pote o
g iormodiate roauls me m..mm prear

o of worst-case

il joins hawe avveral shortcomings which have medod
e lopiots ik s gemere purtoos rtans oy e
i, ey e wm\mo ok on ol permations
of irbucs hat can pasake in jom wich e
enormous storage and maintensnce overhead (1. S
et uposs DDA st suppot s il e
Whteas wors-case optinal systems like Empiy] el o
Fovont v o sl o et o
e cxpensive procomputaion 3. The LogieBlon sre
tem docs support mutabie data, but can be orders of mag.
e ;xum Uhian such read-optimized systems (35 Fi

oty o hey ok s peiee ik

i

€

umsrA TLTI

i

umsrA TLTI
Physical Optimization

Adopting Worst-Case Optimal Joins in
Relational Datab

Y

Michael Freftag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, Thomas Neumann
fechnische Universitat Minchen

{freitagm, bandle, \umas.scnmm, kemper, neumann}@in.tum.de

Indexes

Worst-case optimal join

Groupjoin

ABSTRACT
Worst-case aptimal join algorithms are attractive from &
theorial pin f iow s theyofrssympiasialy bt~
ter runtime than bin

Yo poticala,thy vkl cmimeening g tescdinte
sults by processing multple input elations in a single mult

of otk Mol ¢ s el
pothologieal coss n which any nary 19
bt petormanee O[30 The wf
of binary joins s the geneation of nermed
o i e G, e el
Unfortunaely i o i gy
eings where , ey

way join. Hoseer, o @ siable
v in pactin,primsily s th rly on lable
odered indox tructires on el input. Systems hat sup-
port worst-case optimal joins often focus on specific prob-
Yo domai, sach vt roc oy 0l amalyti o, Whera
i ol skems thes 1k s i
In this we pres rehensive mple

tion approach o wors-case o u.,.n Jons thn s pracl
cl within encral-prposs selationl databse manngrent
s supwring Lot hbrid rsaction) wod i

feal worklonds. The key companent of our approach i &
el bash-besed worst.caa opeimal Jon algorihan that o
lies only on data structures that can be buit cffciently du

v i peitie it e
VLD Reference For

Vichnel P, i B, Tobins Schrids, Allons Kenn-

pes, and Thonmas Newnasis. Adopting Woret Caso Optimal Joiun

ataee Systems. PVLDB, 13011 1891-1901
DOT: ttps dotore/ 1014778/ 40770 407737
TRODUCTION

The vast majosity of traditional relational databise man-
agement systems (RDBMS) relcs on binary Joins to pro-
s s that vl more than o lation, e they
are well-studied and steaightlorward 1o implement. Ow.
g b ocaes of optimption e n-tmey they ofr
reat flexibli an excellent performance on % wide range

i vkt s e Cost, Coms At
T
o i e, it i creticcommonnoryceracoy-c il .o
e W,,.\ o .m. s permiion m.mm.
ecuadto e VLB Endowpett

e VDR B 15, 1

1 o g/ 1. LTT/S407790 3407797

tributes are commonplace.
b TP e wonld e 0 oo o]
same order that could have boon delivered b
e Answering thia query L |

Hosey i plo el bttt

b
o WEE

greatly improve the robustness of relationd

A Practical Approach to Groupjoin and Nested Aggregates

ipp Fent
Technische Universit Minchen
fent@in.tum.de

ABSTRACT

Geoupjoias the comblned execution of jin re 8 sobsequent
sroup by, are comman i anaytics qerie nd occu n sbout 11
o the queriesn TPC-H and TPC-DS. While they were originally
invented t improve performanc, eficient paralll executon of
sroupioins canbelmited by contention, whichlnits thir usful
hess i mamy-core system, Having an efiient implementaton
o gronpioins s highy desirbl,us groupoins s ot only

component of the query optimizer to avoid nested-loops ev
ation of aggregates. Furthermore, the query optimizer needs be
able 10 reason over the result of agregation in order to sched-

Thomas Neumann
Technische Universitit Miinchen
neumann@in.tum.de

mproed Cadinalty

squ S~ Pl

" Resut

Contention-rse Pacallel

Figure 1: Missing components for practical groupjoins. Our

ule it corseely

ibopinal query oo

I this paper, we present techniques to cfficently cstimate, plar,
and exccute groupjoins and nested agaregates. We propose twa
novel tech

“The primary reason to use a groupjoin, s it performance. We
A e less A
the responsiveness of this query. However, groupjoins are also

tems. !Iﬂvmwr existing

tion of aggregates, and parallel groupjoin execution for scalable

timaljoin v soveral horicomings i
Ui adopion within e
g i |
of attributes that can partake in & join §
normesstorass and maimenance o
T ———
whereas worstcase uymuml e e B
Eevelinded re ccilized o |
e expenive < procomputation 3
temn docs support mutable data, but can be
nitude slower than such read-optimized sy3
nally, mli-way o axe comonly mich
nary Joins i there are no growine intermed
We

S0, and (2) performant indexes structures 1]
efficiently on-the-fly and do not have to be p

s kst o g
can speed up some TPC-H querics up to 3 factor of-

e o

Pl Fen and horas Neuman. A Pt Apps 0 Groupiin
e ted g LR K011 8 2
Aok 10147783476249 5476255

1 INTRODUCTION

pat roup-bys, groups
explicitly. Considerthe following nested query, with subly diffrent

smacr cus. 10, et
custoner <ust,
REECT SoNTCY A8 cat, SACe valun) se 8
M ssles s
RE cust. id - s.c.id

>
Here, nested the query calculates a COUNT (x) over the ner table,

y engines. A com-
‘mon query pattern, which we observe in many benchmarks [7, 45]

on the same key:
SELECT cust. id, CONT(4), SUM(s.value)
FRON custoner cust, sales s
WHERE cust. id = s.c_id
OUP BY cust.id

that q of the inner query is
|.

willp

for expty subqueries, which is known as the COUNT bug [14]. A
groupjoin directly supports such queries by evaluating the static
aggregate for the nested side of the join, taking the groups from

ea .
two hash forthe hash join and one o
the group-by. However,

join’ hash “This combined

exccution ofjoin and grouprby is called a groupion [42]

s v y Farth

from unnested ageregates
“The unnesting of inner aggregation subqueries s very prof-
itable, since it eliminates nested-loops evaluation and improves
However, this causes the

g e VL9 et L1 o 1 S 25007

aggregates to be part of & bigger query trce, mangled between
Joan redicates s ohr rebtionl aprator. Query optiniza

tion, specifcallyjoin ordering, depends on the qualit of cardinalty

Physical Optimization

e Indexes

° orst-case optimal join
° roupjoin

e Range join

e Join micro-optimizations

o Multiset semantics

o Allocation sizes

ABSTRACT

Gumera TUM

Adopting Worst-Case Optimal Joins in
Relational Datab

Y

Michael Freftag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, Thomas Neumann
echni

ische Universitat Manchen
{freitagm, bandle, \umas.scnmm, kemper, neumann}@in.tum.de

of worklats. Nevrhles, 1wl
pothologcal nse in which any binary m
Worst-case optimal join algorithms are attractive from a7
theretial poe o e, s they ofler W“mmm ber- Stboptimal vﬂ'm"wwumw The of
rusine than bary ons on ceran tpes imary i i the sectation o el
. i can bcone much larger Uhan the actual

e o ot i i ottt v £ven il to
Tisonly on dta sructures tht can b bui ficientl .
ing oy sxceuion. rthemor, we implemect a Lybrid Mulévay
query optiser that intelligently and trasparently com
ing
pla
exif
al ;
b | Maximilian Reif
d Technical University of Munich
v reif@in tum de
51 ABSTRACT
1 il
“T1 pillar of query processing s the eficient evaluation of equijons,
289 typically with inear-time algorithms (e bash joins), However, for
Sy ecases with locatin and teaper st how et e
ke e o, e n i Withon et s
e cally m..u\m..n.,almmm. on with compleity.
“This leads 0 unacceptabl query exccution imes. Diflcrent it
s Eations have been proposed n the past, ke parttionin or sorting
T the data While these allo for handling cetan classesof queries,
O they tend tobe restrictd in the kind of queries they can support
74 And, perhaps even more importantly. they do not play nice with
fied additional cquality predicates tha typically occur within a query
P and that have to be considercd, oo
e
IS8\ this work, we present a kd-ree-based,
sl sy consrnc T pprch o o bl
—

Hosey i plo el bttt
cntly, i

.‘L..m]‘m”,.m‘.m et (101950

fessin 2 many-core system. Havi

ipp Fent
Technische Universit Minchen

Unlortmataly, i Staation i geersly
i {seings wher jome bty fent@in.tum.de
tributes are commonplace. For insta
o s b TP e sl b o ook o] ABSTRACT
1nd Same order that could have been delivered b Groupjoins, the combined exccution of a jon and a subscquent
pllr Arawering i ey v e} group by e common n el e, and e inshout 40

of the queries in TPC-H and TEC-DS. While they were originally
inventedto mprove peormance, ficentpaall execution of
eroupjoins can be limited by contenti

o, which limits thei uselul-
g an effcient implementation

of groupjoins is highly desirable, s rovpjoins are ot only

e has h ue

ok otk ation of aggregates. Furthermore, 1

A Scalable and Generic Approach to Range Joins

mas Neumann
Technical University of Munich
neumann@in.tum.de

&

Figure 1: Flight routing with stop-over

datasets and provide highly tuned ||||pkm<ul‘hu|\) to rapidly an-

lngecases of ueres very eficie b negligible memory
e

hallenge are fons o large amounts of dafa ocdon equivalence

og o component ofthe qun apimide o vid nstedops e

 query optimizer needs be

able o reason over the result of mgzxe".man in order to sched-

A Practical Approach to Groupjoin and Nested Aggregates

Thomas Neumann
Technische Universitit Miinchen
neumann@in.tum.de

mproed Cadinalty

squ S~ Pl

" Resut

Contention-rse Pacallel

Figure 1: Missing components for practical groupjoins. Our

it computed clams o
Jor cost estimations and thus,

s to effcently estimate, plan,
agaregates. We propose two

“The primary reason to use a groupjoin, s it performance. We
A e less A

{pjoin execution or a scalable
& system has significantly bet-
{aluation of groupjoins, which
P toa factor of 2.

s a0 Gpion

one of query engines. A com-
in many benchmarks [7,45]
i with grouped aggregation

the responsiveness of this query. However, groupjoins are also
pat up-bys, P

smacr cut 10, nt, o
custoner <ust,
REECT SoNTCY A8 cat, SACe valun) se 8
M ssles s
RE cust. id = s.c_id

>
Here, nested the query calculates a COUNT (x) over the ner table,

hat qery wihout nestedoop culuntion ofthe nne query i

for (my\v ubqueris, which s known as the COUNT bug [14]. &
groupjoin directly supports such queries by evaluating the static

predicates. However,for many- temporal

o sensor data) queries arise that contain joins on

suitable as for range
querics in pici eystems, The foin algorittan s ully.paralle,
both during the build and the probe phase, and scales to large

‘problem instances and high core counts.
W demonstte e sy of tis pprsch by intgratiog

joins.
A straightforward example s a flight routing scarch: Given a

fights from Munich to Sycney.
we want to find connections with a stopover, s shown in Figure 1

into Unmbra and extensive ex-
periments wih both e rel worlddata et and with sythetc
benchmasks used for sensiivity analysis. In our experiments, it
tperf

that we have tested

'VLDB Reference Format:
sl Bl Thamas Neuman. A S i Cenric Aprsch
o Range Joins PVLDB, 15(11: 3018 - 303, 2

oi10.14778/3551795 3531849

PVLDB Artifact Availability:
“The souree code, data, andJor other atifacts have been made available st
Ittt db i tum e/ e angejon reproducibily.

1 INTRODUCTION

Over the last years, we observed two major trends in data pro-
cessing: The amount of data collected is vastly growing, and data
s

an excellent base ging

Licenn Vst g reavecommons cryiense by 401t view copy of

ettt o8 ot
g e VD st Vol 15N 1SN 2047

A maj that we are
with a transit duration between 45 minutes and three hours. A
query answering this question could look like this:

select »,

fron f\xghts 11, flights 12

MUC and f2.dest = 'SYD' and

fl.landing + 45 ninutes and
f1.\anding + '3 hours"
order by fL.price + f2.price Linit 10

In i e, the ol i vl condtons T tdeics
predicate fLdest b edicate f2takeoff between
fulanding + 45 minutes” and fLlanding + '3 hours'. Thus, the join
could be considered an equi-join with a range-residual or a range-
join with an additional eqivalence-predicate. Other examples for
ange joins are: The matching of vehicle sensor data to vehicle rides
(defined by a time frame) or the mapping of IP addsesses to subets
[57) M

of multiple range predicates, so-called ml
Joins. Examples are: Finding return tripsin a
tion 63:3) or combining bird sightings and weather reports [23]
based on location and time data. Additional equivalence predicates
asin the flight example,are also very common and should be in-
corporated into & range join algorithm.

s.value) aggregate for the nested side of the join, taking the groups from
the other si
Despite their benefits, groupjoins are not widely in use. W
.
for the hashjoin and one o
el updates of th d syneh
{regate values. This combined s y v Pt
lleda groupioin (42 - =
Since no direct lights are availabl, g decisd Bpreges,
direct figh: Hable, | e ND 40 ntermont “The unnesting of inner aggregation subqueries s very pre
| T psrprisbpedtiond bl since it hminaes et loops caluation and improves
B f H uses the

N1 158 25007

aggregates to be part of & bigger query trce, mangled between
Joan redicates s ohr rebtionl aprator. Query optiniza

tion, specifcallyjoin ordering, depends on the qualit of cardinalty

Gumera TUM
Recap

\ 1: Unoptimized Plan |

e Query compilation & optimization 2: Expression Simplification
o Optimizer passes 3: Unnesting

o Rule-based canonicalization 4: Predicate Pushdown

o Cost-based optimization (5: Initial Join Tree \

® Cutting-edge research 6: Sideway Information Passing
o Join ordering 7: Operator Reordering

o Cardinality estimation 8: Early Probing

o Integrated in a running system 9: Common Subtree Elimination

: 10: Physical Operator Mapping \

Gumera TUM

Conclusion

e Low latency analytical queries

e Also works excellent for transactional and graph workloads

We are commercializing TUM Open Source Project

Reach out: % L|ngODB

fent@in.tum.de

mailto:fent@in.tum.de

