
Towards Database / Operating System Co-Design

Jana Giceva, Adrian Schüpbach, Gustavo Alonso, Timothy Roscoe
Systems Group, ETH Zurich

ABSTRACT
Trends in multicore processors pose serious structural challenges
to system software such as databases and operating systems. In
this paper we revisit the decades-old problem of the interaction be-
tween a database and an operating system in the new context of
the changes imposed on both by multicore architectures. Using
existing prototypes of a multicore database and multicore operat-
ing system, we explore how they can efficiently interact so that the
database can make optimal placement and deployment decisions
without knowledge of the machine architecture. On diverse hard-
ware, our results show superior memory and interconnect utiliza-
tion, and dramatic performance improvements in the presence of
competing system tasks.

1. INTRODUCTION
In this paper, we report on early efforts to rethink the relation-

ship between databases and operating systems in the light of mod-
ern hardware trends. Multicore architectures represent a significant
departure from traditional mainstream hardware platforms. The in-
trinsic parallelism of multicores is at odds with the synchroniza-
tion approach to concurrency of modern system software, including
databases and operating systems [7, 17].

Furthermore, increasing heterogeneity both within and between
multicore platforms poses additional problems: optimal use of re-
sources requires detailed knowledge of the underlying hardware
(memory affinities, cache hierarchies, interconnect distances, CPU/-
core/socket layouts, etc.), aggravated by the increasing diversity of
machines in the marketplace.

As a result, significant efforts are being devoted to redesigning
system software for multicore architectures. We believe that the
redesign of operating systems and databases is an excellent oppor-
tunity to revisit the decades-old problem [10] of database-operating
system co-design.

Before tackling many of the areas where databases and operating
systems have collided in the past (scheduling, thread management,
I/O control, paging, memory allocation, etc.), we see the question
of where and what maintains accurate information on the underly-
ing hardware architecture as a key step towards a tighter co-design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

of databases and operating systems. This is based on the following
observations: (1) Both databases and operating systems should be
re-architected to exploit the intrinsic parallelism of multicore hard-
ware. Such a system needs to be aware of the many architectural
characteristics. (2) Along with the number of cores, heterogene-
ity both among cores and machines will increase. A database then
needs to maintain accurate configuration and deployment informa-
tion for every possible architecture where it could run. (3) With
multicore machines being used for more purposes than single ap-
plication servers, load interaction with other applications or even
OS-tasks makes it difficult for the DB to implement elastic deploy-
ments. Such flexibility implies that the DB will require an accurate
picture of the run time state of the whole machine.

In this paper we start to explore how a database and an operating
system can interact to make the best possible use of the available
resources and, as a first step, focus on memory and CPU resources.
Our vehicle for this work is a new integrated system called Cod.

Cod delegates the task of maintaining accurate models of the un-
derlying hardware and the current machine status to the OS. Above
this, rather than spawning threads and data partitions according to
static configuration or heuristics, Cod’s DB instead uses a novel in-
terface between the DB and the OS to state up front what it needs
(degree of multiprogramming, size of memory, affinities between
memory and processing units). In response, the OS produces an
optimal mapping of the request to the underlying hardware.

The OS/DB interface in Cod supports a wide range of interac-
tions, and will expand as we explore the design space. Currently it
can be used to inquire about available resources, recommended par-
titioning strategies, mappings for a given set of jobs and associated
memory access requirements, and the current status of the system.
Based on this, the database can optimize queries and restructure it-
self so as to be able to meet concrete service level agreements of
throughput or response time.

Initial experiments are encouraging, and show that Cod can effi-
ciently use a diversity of machine configurations and under a vari-
ety of different workloads (both itself and other applications shar-
ing the machine).

2. MOTIVATION AND RELATED WORK
Database management systems (DBMS) and operating systems

have a long history of conflicts. Nearly 35 years ago, Jim Gray
pointed out the significant gains that could be obtained by design-
ing the database and the operating system [10] together. Unfortu-
nately, the same difficulties pointed out by Gray at the time remain
the reason why databases today run on top of general purpose op-
erating systems.

Despite this, databases are an interesting case for application-OS
codesign since they are highly concerned with resource manage-

ment issues. Considerable research has gone into allowing databases
to predict their own performance based on workload, as the basis
for cost-based query optimization.

To our knowledge, there is little work today, from either side, on
improving the interactions between databases and operating sys-
tems. Part of the reason may be that databases, as large enterprise
application par excellence, usually run on a dedicated machine.
Such a static resource allocation has allowed database designers to
work around most of the barriers to system knowledge presented by
commodity operating systems by simply bypassing the OS. Thus,
modern databases do most of their own memory allocation and
thread scheduling, work directly on raw disk partitions, and imple-
ment complex strategies to optimize and avoid I/O synchronization
problems (e.g., in logging). Less widely acknowledged but also a
telling sign of the gap between the DB and the OS is the fact that
databases have gone as far as implementing their own type and data
formats (such as Oracle’s number representation) due to the ineffi-
ciencies of general purpose solutions. Today we would argue that
there is essentially no meaningful interaction between the database
and the operating system.

However, the stalemate arrived at over the last decades between
the OS and the DB is now quickly changing. Not only multicore,
but also developments like virtualization, network attached stor-
age, large main memories and higher memory bandwidth, radi-
cal changes in the memory hierarchy (multicore caches, SSD de-
vices, and -in the near future- persistent random access memory),
and the need for more power- and space-efficient use of comput-
ing resources make it impossible to ignore the need for a richer
DB/OS interface. We may have reached the limits of complexity
that database engines (already somewhat bloated and facing their
own scaling problems) can absorb while trying to second-guess and
bypass the operating system.

At the root of many of these problems is, unsurprisingly, the al-
location of resources to particular tasks. As the number of cores
increases and the memory/cache hierarchies and affinities become
more diverse; choosing good placement and allocation of resources
is both more challenging and more important for performance.

Conventional database engines are designed for thread concur-
rency but not parallelism (see below), and typically exploit little
information about the underlying hardware. Representing and us-
ing such information efficiently is complicated by the diversity of
modern hardware: machines exhibit many different ways to group
CPUs, cores, and caches, and connect them via a wide range topolo-
gies. Furthermore, in an age of virtualization and server consolida-
tion, databases may not be able to assume that they have a complete
physical machine to themselves. As we show in Section 5.2, even
small OS-related tasks can impact the performance of a scalable
database if the DBMS is unaware of them.

All these issues point to the urgent need to revisit the interface
between the database and operating system, and explore the advan-
tages of making it richer than it is today.

2.1 Databases on Multicore
Both the developments mentioned above and several new ap-

plication areas have triggered a set of changes in the design of
database systems [21]. Here we focus on those related to multi-
core architectures.

While it may be possible to modify a traditional database engine
to scale if it is restricted to trivial (read-only, non-indexed, single-
table) workloads [8], handling updates and more complex queries
is considerably harder, even with a fully in-memory system, and
many traditional designs do not perform well on many cores. Mul-
tiple different reasons have been identified [13, 15, 14, 17], but

solving them requires in all cases drastic changes to the engine.
The challenge goes beyond simple scalability: modern hard-

ware is complex and diverse, and databases increasingly need to
be aware of cache architectures and system interconnects to be able
to optimize query processing (e.g.[6]). A placement of data and
query operators on the processors in a machine which works well
on a particular hardware configuration and workload may perform
poorly on another.

Column stores [6, 20] and shared scans [19, 11, 23], are widely
viewed as two crucial techniques for addressing the multicore chal-
lenge in database design. We use both techniques in Cod.

2.2 Opening up the OS
Abstraction of resources has long been regarded as a core oper-

ating system function, and this has tended to go hand-in-hand with
the OS determining resource allocation policy. Within an OS, of
course, separation of mechanism and policy has a long and distin-
guished history going back at least to the Hydra system [16].

There has also been a parallel thread of OS research and design
which has sought to get better performance by exposing more in-
formation to applications in a controlled way. For example, Appel
and Li [1] proposed a better interface to virtual memory which still
located much of the paging policy in the kernel, but nevertheless al-
lowed applications (specifically, garbage-collected runtimes) to do
a much better job of managing their own memory.

Architecturally, one way to do this is to remove abstractions from
the kernel, and instead implement as much OS functionality (and
consequently, policy) as possible in user-space libraries linked into
the application – an approach used in Exokernel [9] and Neme-
sis [12]. This opens up the space for application-specific policies,
but by itself does not solve the problem of how each application
can map its requirements onto the available resources.

Perhaps the closest OS facility to the one we employ in Cod is In-
foKernel [2], which advocated exposing considerable information
about OS state to applications in a controlled way.

We conjecture that one reason these approaches so far have had
limited impact is that they have been developed independently of
any particular application’s requirements. Their weakness has gen-
erally been the need for applications to specify their own resource
requirements, something notoriously hard to do.

We build on these ideas but, in contrast, we approach the problem
from a co-design perspective: given a database and an OS designed
to fully exploit multicore hardware, what is the best interface, and
the best distribution of state information, between them.

3. BACKGROUND
We agree with many who argue that the move to multicore ar-

chitectures requires rethinking the design of both operating sys-
tems [5] and database systems [22].

However, Cod itself is not built from scratch. We leverage two
recent prototypes which have individually explored the design space
for multicore databases and for operating systems. As well as al-
ready targeting future hardware, as a research artifact each is also
more amenable to the kinds of changes we would like to make
in considering the database-plus-OS as a whole. Experience has
shown that more mature systems like Oracle, PostgreSQL, Win-
dows, or Linux would alone exhibit higher performance on current
hardware, but would be much harder to modify architecturally or
to use to identify interaction problems between the DB and the OS
– our goal in this paper.

We provide a brief background on these two building blocks for
our work here: a column-store implementation of the Crescando
in-memory query processor, and the Barrelfish multikernel.

3.1 The CSCS engine
The database we consider is a prototype of an in-memory, col-

umn oriented, shared scan engine. The shared scan strategy is in-
spired by that of Crescando [23], while the column-store memory
layout is similar to that used in MonetDB [6]. The main mem-
ory approach mirrors the strategy used in SAP’s T-Rex accelerator.
This prototype is a good match for multicore machines as it elimi-
nates any need for synchronization and its performance can be con-
trolled with great accuracy solely from the amount of data allocated
to each core.

Q R

scan scan scan scan scan

Figure 1: CSCS execution model

CSCS, the database prototype we use in Cod, is designed to scale
well with core count and relies on a large main memory. The
data set is horizontally partitioned, and for each partition a scan-
ning thread is dedicated to process the requests on a separate core.
Each scanning thread implements a columnstore version of Cres-
cando’s ClockScan algorithm [23], and is purely CPU-bound on
current hardware. It is a shared-nothing parallel databases on a sin-
gle machine.

As shown in Figure 1, requests (both queries and updates) are
buffered in the system’s input queue and then propagated to the
scanning threads in batches. The scanning threads perform a a
three-way join over columns, tuples and request predicates. This
join is efficiently implemented by dynamically indexing the re-
quests based on their predicates, and performance is further en-
hanced by processing queries in order of decreasing selectivity.

We keep intermediate state in position lists, which denote the
matching tuples of the currently scanned data partition. To ensure
that the size of the position list does not grow beyond the size of
the L1 cache, the CSCS datastore splits the partitions into datastore
chunks and processes them by scanning one at a time – a tech-
nique inspired by vectorization [6, 20]. When the scan is done,
the results from all scanning threads are aggregated into the output
queue. Consequently, the response time for a batch of queries is
determined by the scan thread with the longest scan time.

Furthermore the CSCS engine has well-defined and predictable
performance characteristics: it is primarily CPU bound (not mem-
ory bound), mandates hard CPU affinity, and each thread operates
solely on one particular chunk of the data in main memory. Finally,
the prototype structure of CSCS simplifies the process of extending
it and modifying it to leverage communication with the underlying
operating system regarding the system architecture.

3.2 The Barrelfish OS
We implement our shared-scan column store over the Barrelfish

open-sourceresearch operating system [4, 3]. Barrelfish is a “multi-
kernel”, internally structured as a distributed system of cores com-
municating via messages. The OS component of each core consists
of a kernel-mode “CPU driver”, which shares no state nor com-
municates with any other core, together with a varying set of user-
mode processes which implement most of the OS functionality.

Architecturally, a multikernel is a good match for the CSCS data
store: both are, at heart, shared-nothing architectures which seek
to decouple activities on separate cores from each other as much
as possible. As well as scaling well on hardware with many cores,
this separation is useful methodologically: it reduces unpredictable
cross-core interference effects and allows us to quantify the benefit
of design changes more precisely.

However, two further aspects of Barrelfish also serve to make it
attractive from the perspective of experimenting with OS / database
co-design.

Firstly, allocation of physical resources to applications in Bar-
relfish is more explicit than in mainstream OS designs – a feature
it shares with older, uniprocessor research OSes like Exokernel [9]
and Nemesis [12].

From a design perspective, therefore, a multikernel like Bar-
relfish makes it easier to consider the database and OS as a single
design task. Explicit placement of threads on cores, explicit allo-
cation of cores to tasks (via upcalls), and user-level memory man-
agement (including self-paging) mean that Cod can manage such
physical resources precisely and efficiently.

From a methodological perspective, it is also much easier to
quantify effects and identify the causes of performance anomalies
than in a system with stronger abstraction barriers between OS and
applications.

Secondly, Barrelfish incorporates a service called the System
Knowledge Base (SKB) [18]. The SKB is populated with a range
of information about the hardware and OS, and can be queried by
both the OS itself and applications. It also supports a rich data
model based on logic programming and Prolog, constraint satisfac-
tion, and optimization. While this might be considered overkill for
a production OS, it affords us great flexibility in communicating in-
formation between the OS and database, and so serves as a valuable
prototyping facility.

In particular, in this paper we exploit information in the SKB
concerning the memory hierarchy (cache sharing, NUMA nodes,
etc.), and the current application mix in the system (which pro-
cesses are running, and which cores they are currently running on)
to enable closer cooperation between the database and OS. We also
exploit the SKB’s facilities for constrained optimization.

4. SYSTEM DESCRIPTION
Cod is an implementation of a co-designed DB and OS. Figure 2

shows the architecture which is based on the Barrelfish OS [4] and
the CSCS engine. We are going to explain the architecture in more
detail in this section.

4.1 Where to locate knowledge
We distinguish two types of knowledge: machine architecture

knowledge and application requirements and properties knowledge.
In Cod we decided to push the former type of knowledge com-
pletely to the OS level. On one hand, the SKB on Barrelfish al-
ready has a lot of machine architecture knowledge available. This
information consists of loaded configuration files, runtime data and
online querying of installed hardware. The combination of this
information is exposed in a standardized data layout independent
of the concrete underlying hardware details providing an easy-to-
use abstract information to its applications. On the other hand, the
database should not need to know details about the hardware in or-
der to take decisions, but rather rely on some abstract information
acquired upon request.

4.2 Information to be exchanged
The knowledge about the worker thread and dataset properties

SKB

Hardware Run Time

OS

DB

Interface

DatastoreBootstrap
process

Partition

Partition

Partition

Partition
Partition

- Core pinning
- Memory allocation

Figure 2: Cod architecture

is within the CSCS engine. An important thread property is that it
is compute bound (rather than memory or I/O bound), which can-
not be known in advance by an OS. Dataset properties include the
dataset size and whether the data is partitioned or is yet to be parti-
tioned in a suitable way. If data is pre-partitioned, the CSCS engine
knows the number of partitions as well as the size of each partition.
Furthermore the CSCS engine also knows which scanning threads
operate on which partition.

As discussed earlier, the knowledge about the available number
of cores and existing NUMA regions is at the OS level, i.e. in the
SKB. Core information also includes cache sizes and whether they
are shared.

It is therefore important to exchange information between the
DB and the OS. The DB needs to tell the OS that it wants to run
compute intensive threads as well as the total number and size of
each partition it wants to use. The SKB service of the OS then
uses these dataset and thread properties to produce a list of possi-
ble optimal mappings to the available resources and delegates the
suggestions up to the DB. Based on the more abstract information
it gets back from the OS, the DB can optimally place the scanning
threads and assign the appropriate memory affinities.

4.3 Interfaces
We have extended the existing interface of the SKB by introduc-

ing several functions that ease the communication and information
flow between the database and the OS. In this section we present
the main three functions, their interfaces and briefly discuss the
motivation for having each one.

(1) get_cache_size() takes as a parameter the cache level.
The SKB, then, looks up the details for it within its knowledge base
and returns the requested size. Knowing the size of the L1 cache for
example helps in determining the appropriate size of the scanning
database chunks so that we ensure that the position lists fit in it.

(2) suggest_number_of_partitions() takes as param-
eters the total size of the dataset and whether the workload is com-
pute or memory bound. These values can be used by the SKB con-
straint solver, along with its knowledge of the system architecture
and the runtime state of the OS, to determine the optimal number
of partitions, to which the database should be split, so that we max-
imize parallelism.

(3) suggest_resource_allocation() provides the SKB
with application-specific information and requirements such as the
number of partitions, the size of each partition, whether the work-
load is compute or memory bound, and a flag for cache sharing

preference. In some cases cache sharing is undesirable, especially
when threads have conflicting interests and pollute their common
cache. Furthermore, since the scanning thread algorithm of the
CSCS is compute-bound, the SKB should not consider cores which
are heavily used by other applications. For instance, the SKB knows
that all of the OS’s house-keeping tasks are scheduled to run on core
0 and will therefore know that this core is not a suitable candidate
for other cpu-intensive applications. The SKB constraint solver
takes into account the values of the function input parameters, the
runtime state of the OS and its own knowledge of the underlying
hardware architecture to produce a list of possible mappings that
meet the DB needs. It eventually returns a list of available cores,
and the corresponding NUMA domains where the dataset partitions
should be placed.

In the following section we briefly describe how there are used
by the database.

4.4 The column store
Having already described the interfaces and the information that

needs to be exchanged between the CSCS engine and the SKB ser-
vice of Barrelfish, we now present how it all fits together.

We built Cod by porting the CSCS engine to Barrelfish and ex-
tending it with a bootstrap process which initially configures the
system.

Cod begins its execution by getting information about the size
of the datastore it needs to deploy and learns if it is already pre-
partitioned or not. In this description we consider that the datastore
was not pre-partitioned beforehand so that we explain the entire
communication flow between the CSCS engine and the SKB.

First the bootstrap process initializes the communication channel
with the SKB. It then queries the SKB to learn about the optimal
number of partitions given the size of the datastore (suggest_number_of_partitions())
that will maximize the parallelism on the chosen machine, and then
based on the response of the SKB it splits the datastore in that many
horizontal partitions.

Once we have the partitions, the bootstrap process needs to spawn
the scanning threads, pin them on a CPU core and assign a mem-
ory region for each partition. In order to determine an efficient re-
source allocation, the bootstrap process queries the SKB using the
suggest_resource_allocation() function. The SKB re-
sponds with a suggestion for resource allocation and a deployment
layout. The bootstrap process uses this information to spawn the
scanning threads to the specified cores, and to set the appropriate
memory affinities.

5. EXPERIMENTS
In this section, we present two experimental results illustrating

how Cod can exploit the co-design of a database and an operating
system to obtain better performance resource utilization and per-
formance without prior knowledge of the given hardware platform
and software environment.

We obtained the dataset and workload used by Unterbrunner et.
al [23], and used it for the experiments presented in this section. It
is generated from the traces of the Amadeus on-line booking sys-
tem.

In this paper we focus on a single hardware platform. Namely,
for both experiments we used the AMD Shanghai machine. It is a
4x4 (4 socket, 4 cores per socket) machine with 4 2.5GHz AMD
Opteron 8380 processors having 6MB shared L3 cache. The ma-
chine has 16GB RAM, with NUMA nodes of size 4GB.

5.1 Smart memory allocation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
B

/s
ec

o
n
d

Core id

DRAM bandwidth utilization per core

NUMA ignorant
NUMA aware

Figure 3: DRAM bandwidth utilization

This first experiment shows the impact of informed memory al-
location on database performance. We compare the performance
of Cod performing naïve (OS default) memory allocation for parti-
tions with an approach that queries the SKB for optimal placement.
In the naïve approach, Cod allocates memory in a sequential man-
ner without considering the NUMA layout or the location of the
cores on which its threads are running. In the informed case, Cod
queries the SKB service for information on both where to place
the scan threads, and where to allocate main memory for the data
partitions. We measure the DRAM bandwidth utilization using the
hardware performance counters available on the cores.

For this experiment we used all 16 cores of the AMD Shang-
hai machine. The datastore had a total size of 7GB, resulting in
16 partitions of 438MB each. The workload batch size (#Queries,
#Updates) was set to (2048, 256).

The DRAM bandwidth utilization in these experiments is shown
in Figure 3. It illustrates the utilization measured per core.

On one side we can see that the naïve approach (NUMA igno-
rant) of allocating memory results in a very uneven distribution of
load across the the NUMA nodes. In fact, considerable bandwidth
pressure is imposed on the first two NUMA nodes, where most of
the datastore memory ends up being stored. On the other side, in
the informed approach (NUMA aware) we can see that the utiliza-
tion is uniformly distributed among the four memory controllers.

These results are, of course, to be expected: without specify-
ing memory affinities, the datastore initialization processes popu-
late the data structures in main memory in a sequential manner and
thus most of the datastore data is allocated in the first two NUMA
nodes. In contrast, when using NUMA-aware memory allocation,
the correct dataset partitions are allocated locally on each NUMA
node hosting a scanning process.

The results confirm that smart memory allocation results in a
better and more uniform utilization of memory and interconnect
resources. Furthermore, it also provides the flexibility for easy
deployment on a range of other different machines and architec-
tures. Such NUMA-aware allocation is rare in modern databases,
but we note that even with facilities like Linux’s libnuma facil-
ity, the database requires considerable intelligence (and therefore
complexity) to take advantage of such knowledge. In contrast, Cod
not only achieves smart allocation with minimal code complexity
(the inference engine in the SKB performs most of the heavy lifting
in this case), the design of Cod (shared-nothing, continuous scans)
makes the effect of NUMA-aware allocation more significant.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
h
ro

u
g
h
p
u
t

(q
u
er

ie
s/

se
co

n
d
)

Batch size (queries/updates)

Performance on AMD Shanghai (DB size 1.8GB)

16 cores - isolated
16 cores - noisy
15 cores - noisy

Figure 4: DB alone vs. sharing CPU with another application

5.2 Deployment in a noisy system
With this experiment we illustrate the effect that arises when

another system task runs on the same machine as the database,
thereby creating a conflict for resources.

On a 16-core machine (AMD Shanghai), a naïve deployment
would partition the database into sixteen contexts (to maximize par-
allelism) and spawn a scan thread on each core, without consulting
with the OS as to whether there are other tasks in the system already
scheduled on some of the CPUs.

In this experiment we show that the naïve deployment can sig-
nificantly reduce performance, especially in the presence of another
competing system task. Furthermore, we show the benefits of an al-
ternative approach where Cod queries the SKB in order to obtain
an allocation of cores and memory which avoids such conflicts. In
our particular example, the SKB will suggest a configuration us-
ing fifteen partitions, based on the number of available cores, and
specify the exact cores and memory regions to be used.

For the purpose of this experiment we used a datastore of size
1.8GB and we varied the workload batch size of (#Queries, #Up-
dates) as {(1024, 128), (2048, 256), (4096, 512)}

The results confirm the importance of smart resource allocation
on the performance of Cod when running in a noisy system. In
Figure 4 we see the throughput of the column-store running on six-
teen cores both when isolated and when sharing the machine with
another task. It shows the performance of the system as the load
(workload batch size), imposed on the system, increases. We can
see that running the CSCS engine on all 16 cores in a noisy sys-
tem can significantly impact performance, degrading it by almost
30 percent. The figure also shows the performance of the column-
store in the same noisy system when deployed on fifteen cores – a
load-aware layout suggested by the SKB.

The difference in throughput when running the CSCS engine
on fifteen (noisy) and sixteen (isolated) is almost negligible with
smaller workload batch sizes, as the system is still underloaded,
and can only be seen when processing around 4000 requests in a
batch.

The significant drop in performance when running the CSCS en-
gine in a noisy system on all sixteen cores comes as a consequence
of the internal design of the CSCS engine. As described earlier, the
overall performance of the system depends on the scanning time
of the slowest scanning thread that processes the batch of requests.
As expected, if we have another CPU-intensive task operating on
one of the cores, it competes for the CPU with one of our scanning
threads and thus slows down the execution of the whole CSCS en-

gine. Therefore, using a deployment that avoids such conflicting
allocations, results in a system that significantly outperforms the
originally intuitive and naïve approach.

6. CONCLUSION
Multicore systems pose serious challenges to both operating sys-

tems and databases, and many believe that a complete redesign is
necessary to exploit the intrinsic parallelism. We argue that this is
an opportunity to revisit the problem of DB/OS co-design aiming
for better utilization of the available resources. With this paper we
start exploring how the first and crucial aspect of this co-design can
be accomplished with Cod.

Cod combines a DB and an OS, both designed to work well on
top of multiple cores, into an entity that is more tightly integrated.
Through a simple but powerful interface we demonstrate how a
database can make optimal use of the system resources (mainly
CPU and memory) on different multicore architectures by exploit-
ing the architecture knowledge available at the OS-level (even in
the presence of other resource-competing tasks in the system), and
combining it with the database’s internal knowledge of its own per-
formance characteristics and workload.

We feel Cod is a good foundation for future work exploring how
to evolve the OS/DB interface. We are extending the SKB inter-
face to support other interactions relevant to both the database and
the operating system such as: scheduling, synchronization, and net-
work and I/O access. On the DB-side, we are exploring how much
the extended interface can be exploited to enhance database “elas-
ticity”. A further intriguing question is whether the operating sys-
tem can be usefully involved in query optimization decisions.

Finally, databases are a good choice for application/OS co-design:
they are critical components of systems infrastructure, and have so-
phisticated internal models of both the system for which they are
configured and the demands of their current workload. However,
other applications share some of these characteristics, such as some
advanced programming language runtimes. This is a broader area
we are beginning to explore.

7. REFERENCES
[1] A. Appel and K. Li. Virtual memory primitives for user programs.

ASPLOS-IV, pages 96–107, 1991.
[2] A. Arpaci-Dusseau, R. Arpaci-Dusseau, N. Burnett, T. Denehy,

T. Engle, H. Gunawi, J. Nugent, and F. Popovici. Transforming
policies into mechanisms with infokernel. SOSP ’03, pages 90–105,
2003.

[3] Barrelfish Project. The Barrelfish research operating system.
http://www.barrelfish.org/, October 2011.

[4] A. Baumann, P. Barham, P. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The multikernel: a new
OS architecture for scalable multicore systems. SOSP ’09, pages
29–44, 2009.

[5] A. Baumann, S. Peter, A. Schüpbach, A. Singhania, T. Roscoe,
P. Barham, and R. Isaacs. Your computer is already a distributed
system. Why isn’t your OS? In Proceedings of the 12th Workshop on
Hot Topics in Operating Systems, May 2009.

[6] P. Boncz, M. Kersten, and S. Manegold. Breaking the memory wall
in MonetDB. Commun. ACM, 51:77–85, December 2008.

[7] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and
Z. Zhang. Corey: An operating system for many cores. In
Proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation, pages 43–57, 2008.

[8] S. Boyd-Wickizer, A. Clements, Y. Mao, A. Pesterev, M. Kaashoek,
R. Morris, and N. Zeldovich. An analysis of linux scalability to many
cores. OSDI’10, pages 1–8, 2010.

[9] D. Engler, M. Kaashoek, and J. O’Toole. Exokernel: an operating
system architecture for application-level resource management.

SOSP ’95, pages 251–266, 1995.
[10] J. Gray. Notes on Data Base Operating Systems. In Operating

Systems: An Advanced Course, pages 393–481. 1977.
[11] W. Han, W. Kwak, J. Lee, G. Lohman, and V. Markl. Parallelizing

query optimization. Proc. VLDB Endow., 1:188–200, August 2008.
[12] S. Hand. Self-paging in the nemesis operating system. OSDI ’99,

pages 73–86, 1999.
[13] F. Huber and J. C. Freytag. Query processing on multi-core

architectures. In Grundlagen von Datenbanken, pages 27–31, 2009.
[14] R. Johnson, M. Athanassoulis, R. Stoica, and A. Ailamaki. A new

look at the roles of spinning and blocking. In DaMoN, pages 21–26,
2009.

[15] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi.
Shore-MT: a scalable storage manager for the multicore era. In
EDBT, pages 24–35, 2009.

[16] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf.
Policy/mechanism separation in hydra. SOSP ’75, pages 132–140,
1975.

[17] T. Salomie, I. Subasu, J. Giceva, and G. Alonso. Database Engines
on Multicores, Why Parallelize When You Can Distribute?
EuroSys’11, 2011.

[18] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham,
T. Harris, and R. Isaacs. Embracing diversity in the Barrelfish
manycore operating system. In Proceedings of MMCS’08, 2008.

[19] T. Sellis. Multiple-query optimization. ACM Trans. Database Syst.,
13:23–52, 1988.

[20] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil,
A. Rasin, N. Tran, and S. Zdonik. C-store: a column-oriented
DBMS. VLDB ’05, pages 553–564, 2005.

[21] M. Stonebraker and U. Çetintemel. "one size fits all": An idea whose
time has come and gone (abstract). In ICDE, pages 2–11, 2005.

[22] M. Stonebraker, S. Madden, D. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland. The end of an architectural era: (it’s time for a
complete rewrite). VLDB ’07, pages 1150–1160, 2007.

[23] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and
D. Kossmann. Predictable performance for unpredictable workloads.
pages 706–717, 2009.

