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ABSTRACT
The query engines of most modern database systems are either
based on vectorization or data-centric code generation. These two
state-of-the-art query processing paradigms are fundamentally dif-
ferent in terms of system structure and query execution code. Both
paradigms were used to build fast systems. However, until today it
is not clear which paradigm yields faster query execution, as many
implementation-specific choices obstruct a direct comparison of ar-
chitectures. In this paper, we experimentally compare the two mod-
els by implementing both within the same test system. This allows
us to use for both models the same query processing algorithms, the
same data structures, and the same parallelization framework to ul-
timately create an apples-to-apples comparison. We find that both
are efficient, but have different strengths and weaknesses. Vector-
ization is better at hiding cache miss latency, whereas data-centric
compilation requires fewer CPU instructions, which benefits cache-
resident workloads. Besides raw, single-threaded performance, we
also investigate SIMD as well as multi-core parallelization and dif-
ferent hardware architectures. Finally, we analyze qualitative dif-
ferences as a guide for system architects.
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1. INTRODUCTION
In most query engines, each relational operator is implemented

using Volcano-style iteration [14]. While this model worked well
in the past when disk was the primary bottleneck, it is inefficient
on modern CPUs for in-memory database management systems
(DBMSs). Most modern query engines therefore either use vec-
torization (pioneered by VectorWise [7, 52]) or data-centric code
generation (pioneered by HyPer [28]). Systems that use vector-
ization include DB2 BLU [40], columnar SQL Server [21], and
Quickstep [33], whereas systems based on data-centric code gener-
ation include Apache Spark [2] and Peloton [26].
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Like the Volcano-style iteration model, vectorization uses pull-
based iteration where each operator has a next method that produces
result tuples. However, each next call fetches a block of tuples
instead of just one tuple, which amortizes the iterator call over-
head. The actual query processing work is performed by primitives
that execute a simple operation on one or more type-specialized
columns (e.g., compute hashes for a vector of integers). Together,
amortization and type specialization eliminate most of the overhead
of traditional engines.

In data-centric code generation, each relational operator imple-
ments a push-based interface (produce and consume). However, in-
stead of directly processing tuples, the produce/consume calls gen-
erate code for a given query. They can also be seen as operator
methods that get called during a depth-first traversal of the query
plan tree, where produce is called on first visit, and consume on
last visit, after all children have been processed. The resulting code
is specialized for the data types of the query and fuses all operators
in a pipeline of non-blocking relational operators into a single (po-
tentially nested) loop. This generated code can then be compiled to
efficient machine code (e.g., using the LLVM).

Although both models eliminate the overhead of traditional en-
gines and are highly efficient, they are conceptually different from
each other: Vectorization is based on the pull model (root-to-leaf
traversal), vector-at-a-time processing, and interpretation. Data-
centric code generation uses the push model (leaf-to-root traver-
sal), tuple-at-a-time processing, and up-front compilation. As we
discuss in Section 9, other designs that mix or combine ideas from
data-centric compilation and vectorization have been proposed. In
this paper, we focus on these two specific designs, as they have been
highly influential and are in use in multiple widespread systems.

The differences of the two models are fundamental and deter-
mine the organization of the DBMS’s execution engine source code
and its performance characteristics. Because changing the model
requires rewriting large parts of the source code, DBMS design-
ers must decide early on which model to use. Looking at recent
DBMS developments like Quickstep [33] and Peloton [26], we find
that both choices are popular and plausible: Quickstep is based on
vectorization, Peloton uses data-centric code generation.

Given the importance of this choice, it is surprising that there
has not yet been a systematic study comparing the two state-of-the-
art query processing models. In this paper, we provide an in-depth
experimental comparison of the two models to understand when a
database architect should prefer one model over the other.

To compare vectorization and compilation, one could compare
the runtime performance of emblematic DBMSs, such as HyPer
and VectorWise. The problem is, however, that such full-featured
DBMSs differ in many design dimensions beyond the query execu-
tion model. For instance, HyPer does not employ sub-byte com-



pression in its columnar storage [19], whereas VectorWise uses
more compact compression methods [53]. Related to this choice,
HyPer features predicate-pushdown in scans but VectorWise does
not. Another important dimension in which both systems differ
is parallelism. VectorWise queries spawn threads scheduled by
the OS, and controls parallelism using explicit exchange opera-
tors where the parallelism degree is fixed at query optimization
time [3]. HyPer, on the other hand, runs one thread on each core
and explicitly schedules query tasks on it on a morsel-driven basis
using a NUMA-aware, lock-free queue to distribute work. HyPer
and VectorWise also use different query processing algorithms and
structures, data type representations, and query optimizers. Such
different design choices affect performance and scalability, but are
independent of the query execution model.

To isolate the fundamental properties of the execution model
from incidental differences, we implemented a compilation-based
relational engine and a vectorization-based engine in a single test
system (available at [16]). The experiments where we employed
data-centric code-generation into C++1 we call “Typer” and the
vectorized engine we call ”Tectorwise” (TW). Both implementa-
tions use the same algorithms and data structures. This allows an
apples-to-apples comparison of both approaches because the only
difference between Tectorwise and Typer is the query execution
method: vectorized versus data-centric compiled execution.

Our experimental results show that both approaches lead to very
efficient execution engines, and the performance differences are
generally not very large. Compilation-based engines have an ad-
vantage in calculation-heavy queries, whereas vectorized engines
are better at hiding cache miss latency, e.g., during hash joins.

After introducing the two models in more detail in Section 2
and describing our methodology in Section 3, we perform a micro-
architectural analysis of in-memory OLAP workloads in Section 4.
We then examine in Section 5 the benefit of data-parallel opera-
tions (SIMD), and Section 6 discusses intra-query parallelization
on multi-core CPUs. In Section 7, we investigate different hard-
ware platforms (Intel, AMD, Xeon Phi) to find out which model
works better on which hardware. After these quantitative OLAP
performance comparisons, we discuss other factors in Section 8,
including OLTP workloads and compile time. A discussion of hy-
brid processing models follows in Section 9. We conclude by sum-
marizing our results as a guide for system designers in Section 10.

2. VECTORIZED VS. COMPILED QUERIES
The main principle of vectorized execution is batched execu-

tion [30] on a columnar data representation: every “work” prim-
itive function that manipulates data does not work on a single data
item, but on a vector (an array) of such data items that represents
multiple tuples. The idea behind vectorized execution is to amor-
tize the DBMS’s interpretation decisions by performing as much
as possible inside the data manipulation methods. For example,
this work can be to hash 1000s of values, compare 1000s of string
pairs, update a 1000 aggregates, or fetch a 1000 values from 1000s
of addresses.

Data-centric compilation generates low-level code for a SQL
query that fuses all adjacent non-blocking operators of a query
pipeline into a single, tight loop. In order to understand the proper-
ties of vectorized and compiled code, it is important to understand
the structure of each variant’s code. Therefore, in this section we
present example operator implementations, motivate why they are
implemented in this fashion, and discuss some of their properties.

1HyPer compiles to LLVM IR rather than C++, but this choice only affects compila-
tion time (which we ignore in this paper anyway), not execution time.

vec<int> sel_eq_row(vec<string> col, vec<int> tir)
vec<int> res;
for(int i=0; i<col.size(); i++) // for colors and tires
if(col[i] == "green" && tir[i] == 4) // compare both

res.append(i) // add to final result
return res

(a) Integrated: Both predicates checked at once

vec<int> sel_eq_string(vec<string> col, string o)
vec<int> res;
for(int i=0; i<col.size(); i++) // for colors
if(col[i] == o) // compare color

res.append(i) // remember position
return res

vec<int> sel_eq_int(vec<int> tir, int o, vec<int> s)
vec<int> res;
for(i : s) // for remembered position

if(tir[i] == o) // compare tires
res.append(i) // add to final result

return res

(b) Vectorized: Each predicate checked in one primitive

Figure 1: Multi-Predicate Example – The straightforward way
to evaluate multiple predicates on one data item is to check all at
once (1a). Vectorized code must split the evaluation into one part
for each predicate (1b).

2.1 Vectorizing Algorithms
Typer executes queries by running generated code. This means

that a developer can create operator implementations in any way
they see fit. Consider the example in Figure 1a: a function that
selects every row whose color is green and has four tires. There is a
loop over all rows and in each iteration, all predicates are evaluated.

Tectorwise implements the same algorithms as Typer, staying as
close to it as possible and reasonable (for performance). This is,
however, only possible to a certain degree, as every function imple-
mented in vectorized style has two constraints: It can (i) only work
on one data type2 and it (ii) must process multiple tuples. In gener-
ated code these decisions can both be put into the expression of one
if statement. This, however, violates (i) which forces Tectorwise
to use two functions as shown in Figure 1b. A (not depicted) in-
terpretation logic would start by running the first function to se-
lect all elements by color, then the second function to select by
number of tires. By processing multiple elements at a time, these
functions also satisfy (ii). The dilemma is faced by all operators
in Tectorwise and all functions are broken down into primitives
that satisfy (i) and (ii). This example uses a column-wise storage
format, but row-wise formats are feasible as well. To maximize
throughput, database developers tend to highly optimize such func-
tions. For example, with the help of predicated evaluation (*res=i;
res+=cond) or SIMD vectorized instruction logic (see Section 5.1).

With these constraints in mind, let us examine the details of op-
erator implementations of Tectorwise. We implemented selections
as shown above. Expressions are split by arithmetic operators into
primitives in a similar fashion. Note that for these simple operators
the Tectorwise implementation must already change the structure
of the algorithms and deviate from the Typer data access patterns.
The resulting materialization of intermediates makes fast caches
very important for vectorized engines.

2.2 Vectorized Hash Join and Group By
Pseudo code for parts of our hash join implementations are shown

in Figure 2. The idea for both, the implementation in Typer and

2Technically, it would be possible to create primitives that work on multiple types.
However, this is not practical, as the number of combinations grows exponentially.



query(...)
// build hash table
for(i = 0; i < S.size(); i++)
ht.insert(<S.att1[i], S.att2[i]>, S.att3[i])

// probe hash table
for(i = 0; i < R.size(); i++)

int k1 = R.att1[i]
string* k2 = R.att2[i]
int hash = hash(k1, k2)
for(Entry* e = ht.find(hash); e; e = e->next)

if(e->key1 == k1 && e->key2 == *k2)
... // code of parent operator

(a) Code generated for hash join

class HashJoin
Primitives probeHash_, compareKeys_, buildGather_;
...

int HashJoin::next()
... // consume build side and create hash table
int n = probe->next()// get tuples from probe side
// *Interpretation*: compute hashes
vec<int> hashes = probeHash_.eval(n)
// find hash candidate matches for hashes
vec<Entry*> candidates = ht.findCandidates(hashes)
// matches: int references a position in hashes
vec<Entry*, int> matches = {}
// check candidates to find matches
while(candidates.size() > 0)

// *Interpretation*
vec<bool> isEqual = compareKeys_.eval(n, candidates)
hits, candidates = extractHits(isEqual, candidates)
matches += hits

// *Interpretation*: gather from hash table into
// buffers for next operator
buildGather_.eval(matches)
return matches.size()

(b) Vectorized code that performs a hash join

Figure 2: Hash Join Implementations in Typer and Tectorwise
– Generated code (Figure 2a) can take any form, e.g., it can com-
bine the equality check of hash table keys. In vectorized code (Fig-
ure 2b), this is only possible with one primitive for each check.

Tectorwise, is to first consume all tuples from one input and place
them into a hash table. The entries are stored in row format for
better cache locality. Afterwards, for each tuple from the other in-
put, we probe the hash table and yield all found combinations to
the parent operator. The corresponding code that Typer generates
is depicted in Figure 2a.

Tectorwise cannot proceed in exactly the same manner. Probing
a hash table with composite keys is the intricate part here, as each
probe operation needs to test equality of all parts of the composite
key. Using the former approach would, however, violate (i). There-
fore, the techniques from Section 2.1 are applied: The join function
first creates hashes from the probe keys. It does this by evaluating
the probeHash expression. A user of the vectorized hash join must
configure the probeHash and other expressions that belong to the
operator so that when the expressions evaluate, they use data from
the operator’s children. Here, the probeHash expression hashes key
columns by invoking one primitive per key column and writes the
hashes into an output vector. The join function then uses this vector
of hashes to generate candidate match locations in the hash table. It
then inspects all discovered locations and checks for key equality.
It performs the equality check by evaluating the cmpKey expression.
For composite join-keys, this invokes multiple primitives: one for
every key column, to avoid violating (i) and (ii). Then, the join
function adds the matches to the list of matching tuples, and, in
case any candidates have an overflow chain, it uses the overflow
entries as new candidates for the next iteration. The algorithm con-

tinues until the candidate vector is empty. Afterwards, the join uses
buildGather to move data from the hash table into buffers for the
next operator.

We take a similar approach in the group by operator. Both phases
of the aggregation use a hash table that contains group keys and
aggregates. The first step for all inbound tuples is to find their group
in the hash table. We perform this with the same technique as in the
hash join. For those tuples whose group is not found, one must be
added. Unfortunately, it is not sufficient to just add one group per
group-less tuple as this could lead to groups added multiple times.
We therefore shuffle all group-less tuples into partitions of equal
keys (proceeding component by component for composite keys),
and add one group per partition to the hash table. Once the groups
for all incoming tuples are known we run aggregation primitives.
Transforming into vectorized form led to an even greater deviation
from Typer data access patterns. For the join operator, this leads
to more independent data accesses (as discussed in Section 4.1).
However, aggregation incurs extra work.

Note that in order to implement Tectorwise operators we need
to deviate from the Typer implementations. This deviation is not
by choice, but due to the limitations (i) and (ii) which vectorization
imposes. This yields two different implementations for each oper-
ator, but at its core, each operator executes the same algorithm with
the same parallelization strategy.

3. METHODOLOGY
To isolate the fundamental properties of the execution model

from incidental differences found in real-world systems, we im-
plemented a compilation-based engine (Typer) and a vectorization-
based engine (Tectorwise) in a single test system (available at [16]).
To make experiments directly comparable, both implementations
use the same algorithms and data structures. When testing queries,
we use the same physical query plans for vectorized and compiled
execution. We do not include query parsing, optimization, code
generation, and compilation time in our measurements. This test-
ing methodology allows an apples-to-apples comparison of both
approaches because the only difference between Tectorwise and
Typer is the query execution method: vectorized versus data-centric
compiled execution.

3.1 Related Work
Vectorization was proposed by Boncz et al. [7] in 2005. It was

first used in MonetDB/X100, which evolved into the commercial
OLAP system VectorWise, and later adopted by systems like DB2
BLU [40], columnar SQL Server [21], and Quickstep [33]. In
2011, Neumann [28] proposed data-centric code generation using
the LLVM compiler framework as the query processing model of
HyPer, an in-memory hybrid OLAP and OLTP system. It is also
used by Peloton [26] and Spark [2].

To the best of our knowledge, this paper is the first systemic
comparison of vectorization and data-centric compilation. Som-
polski et al. [45] compare the two models using a number of mi-
crobenchmarks, but do not evaluate end-to-end performance for full
queries. More detailed experimental studies are available for OLTP
systems. Appuswamy et al. [4] evaluate different OLTP system ar-
chitectures in a common prototype, and Sirin et al. [43] perform
a detailed micro-architectural analysis of existing commercial and
open source OLTP systems.

3.2 Query Processing Algorithms
We implemented five relational operators both in Tectorwise and

Typer: scan, select, project (map), join, and group by. The scan
operator at its core consists of a (parallel) for loop over the scanned



R
u

n
tim

e
 [
m

s
]

q1

Typer     TW

0

20

40

60

80

q6

Typer     TW

0

5

10

15

q3

Typer     TW

0

10

20

30

40

50
q9

Typer     TW

0

50

100

150
q18

Typer     TW

0

50

100

150

Figure 3: Performance – TPC-H SF=1, 1 thread

relation. Select statements are expressed as if branches. Projection
is achieved by transforming the expression to the corresponding C
code. Unlike production-grade systems, our implementation does
not perform overflow checking of arithmetic expressions. Join uses
a single hash table3 with chaining for collision detection. Using
16 (unused) bits of each pointer, the hash table dictionary encodes
a small Bloom filter-like structure [22] that improves performance
for selective joins (a probe miss usually does not have to traverse
the collision list). The group by operator is split into two phases
for cache friendly parallelization. A pre-aggregation handles heavy
hitters and spills groups into partitions. Afterwards, a final step
aggregates the groups in each partition. Using these algorithms
in data-centric code is quite straightforward, while vectorization
requires adaptations, which we describe in Section 2.1.

3.3 Workload
In this paper we focus on OLAP performance, and therefore use

the well-known TPC-H benchmark for most experiments. To be
able to show detailed statistics for each individual query as op-
posed to only summary statistics, we chose a representative subset
of TPC-H. The selected queries and their performance bottlenecks
are listed in the following:
• Q1: fixed-point arithmetic, (4 groups) aggregation
• Q6: selective filters
• Q3: join (build: 147 K entries, probe: 3.2 M entries)
• Q9: join (build: 320 K entries, probe: 1.5 M entries)
• Q18: high-cardinality aggregation (1.5 M groups)

The given cardinalities are for scale factor (SF) 1 and grow lin-
early with it. Of the remaining 17 queries, most are dominated by
join processing and are therefore similar to Q3 and Q9. A smaller
number of queries spend most of the time in a high-cardinality ag-
gregation and are therefore similar to Q18. Finally, despite being
the only two single-table queries, we show results for both Q1 and
Q6 as they behave quite differently. Together, these five queries
cover the most important performance challenges of TPC-H and
any execution engine that performs well on them will likely be also
efficient on the full TPC-H suite [6].

3.4 Experimental Setup
Unless otherwise noted, we use a system equipped with an In-

tel i9-7900X (Skylake X) CPU with 10 cores for our experiments.
Detailed specifications for this CPU can be found in the hardware
section in Table 4. We use Linux as OS and compile our code
with GCC 7.2. The CPU counters were obtained using Linux’ perf
events API. Throughout this paper, we normalize CPU counters by
the total number of tuples scanned by that query (i.e., the sum of
the cardinalities of all tables scanned). This normalization enables
intuitive observations across systems (e.g., “Tectorwise executes 41
instructions per tuple more than Typer on query 1“) as well as in-
teresting comparisons across other dimensions (e.g., “growing the
3Although recent research argues for partitioned hash joins [5, 41], single-table joins
are still prevalent in production systems and are used by both HyPer and VectorWise.

Table 1: CPU Counters – TPC-H SF=1, 1 thread, normalized by
number of tuples processed in that query

cycles IPC instr. L1
miss

LLC
miss

branch
miss

Q1 Typer 34 2.0 68 0.6 0.57 0.01
Q1 TW 59 2.8 162 2.0 0.57 0.03

Q6 Typer 11 1.8 20 0.3 0.35 0.06
Q6 TW 11 1.4 15 0.2 0.29 0.01

Q3 Typer 25 0.8 21 0.5 0.16 0.27
Q3 TW 24 1.8 42 0.9 0.16 0.08

Q9 Typer 74 0.6 42 1.7 0.46 0.34
Q9 TW 56 1.3 76 2.1 0.47 0.39

Q18 Typer 30 1.6 46 0.8 0.19 0.16
Q18 TW 48 2.1 102 1.9 0.18 0.37

data size by a factor of 10, causes 0.5 additional cache misses per
tuple“).

4. MICRO-ARCHITECTURAL ANALYSIS
To understand the two query processing paradigms, we perform

an in-depth micro-architectural comparison. We initially focus on
sequential performance and defer discussing data-parallelism (SIMD)
to Section 5 and multi-core parallelization to Section 6.

4.1 Single-Threaded Performance
Figure 3 compares the single-threaded performance of the two

models for selected TPC-H queries. For some queries (Q1, Q18),
Typer is faster and for others (Q3, Q9) Tectorwise is more efficient.
The relative performance ranges from Typer being faster by 74%
(Q1) to Tectorwise being faster by 32% (Q9). Before we look at
the reasons for this, we note that these are not large differences, es-
pecially when compared to the performance gap to other systems.
For example the difference between HyPer and PostgresSQL is be-
tween one and two orders of magnitude [17]. In other words, the
performance of both query processing paradigms is quite close—
despite the fact that the two models appear different from the point
of someone implementing these systems. Nevertheless, neither
paradigm is clearly dominated by the other which makes both vi-
able options to implement a processing engine. Therefore, in the
following we analyze the performance differences to understand
the strengths and weaknesses of the two models.

Table 1 shows some important CPU statistics, from which a num-
ber of observations can be made. First, Tectorwise executes signif-
icantly more instructions (up to 2.4×) and usually has more L1
data cache misses (up to 3.3×). Tectorwise breaks all operations
into simple steps and must materialize intermediate results between
these steps, which results in additional instructions and cache ac-
cesses. Typer, in contrast, can often keep intermediate results in
CPU registers and thus perform the same operations with fewer
instructions. Based on these observations, it becomes clear why
Typer is significantly faster on Q1. This query is dominated by
fixed-point arithmetic operations and a cheap in-cache aggregation.
In Tectorwise intermediate results must be materialized, which is
similarly expensive as the computation itself. Thus, one key dif-
ference between the two models is that Typer is more efficient for
computational queries that can hold intermediate results in CPU
registers and have few cache misses.

We observe furthermore, that for Q3 and Q9, whose performance
is determined by the efficiency of hash table probing, Tectorwise is
faster than Typer (by 4% and 32%). This might be surprising given
the fact that both engines use exactly the same hash table layout
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and therefore also have an almost identical number of last level
cache (LLC) misses. As Figure 4 shows, Tectorwise’s join advan-
tage increases up to 40% for larger data (and hash table) sizes. The
reason is that vectorization is better at hiding cache miss latency,
as observed from the memory stall counter that measures the num-
ber of cycles during which the CPU is stalled waiting for memory.
This counter explains the performance difference. On the one hand,
Tectorwise’s hash table probing code is only a simple loop. It exe-
cutes only hash table probes thus the CPU’s out-of-order engine can
speculate far ahead and generate many outstanding loads. These
can even be executed out of order. On the other hand, Typer’s code
has more complex loops. Each loop can contain code for a scan, se-
lection, hash-table probe, aggregation and more. The out-of-order
window of each CPU fills up more quickly with complex loops
thus they generate less outstanding loads. In addition every branch
miss is more expensive than in a complex loop as more work that is
performed under speculative execution is discarded and must be re-
peated on a miss. Overall, Tectorwise’s simpler loops enable better
latency hiding.

Another difference between the two executions models is their
sensitivity regarding the hash function. After trying different hash
functions, we settled on Murmur2 for Tectorwise, and a CRC-based
hash function, which combines two 32-bit CRC results into a sin-
gle 64-bit hash, for Typer. Murmur2 requires twice as many in-
structions as CRC hashing, but has higher throughput and is there-
fore slightly faster in Tectorwise, which separates hash computa-
tion from probing. For Typer, in contrast, the CRC hash function
improves the performance up to 40% on larger scale factors—even
though most time is spent waiting for cache misses. The lower
latency and smaller number of instructions for CRC significantly
improve the speculative, pipelined execution of consecutive loop
iterations, thereby enabling more concurrent outstanding loads.4

As a note of caution, we remark that one may observe from Ta-
ble 1 that Tectorwise generally executes more instructions per cycle
(IPC) and deduce that Tectorwise performs better. However, this is
not necessarily correct. While IPC is a measure of CPU utilization,
having a higher IPC is not always better: As can be observed in
Q1, Tectorwise’s IPC is 40% higher, but it is still 74% slower due

4Despite using different hash functions, this is still a fair comparison of join perfor-
mance, as each system uses the more beneficial hash function.
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to executing almost twice the number of instructions. This means
that one has to be cautious when using IPC to compare database
systems’ performance. It is a valid measure of the amount of free
processing resources, but should not be used as the sole proxy for
overall query processing performance.

To summarize, looking at the micro-architectural footprint of the
two models we found that (1) both are efficient and fairly close in
performance, (2) Typer is more efficient for computational queries
with few cache misses, and (3) Tectorwise is slightly better at hid-
ing cache miss latency.

4.2 Interpretation and Instruction Cache
Systems based on Volcano-style iteration perform expensive vir-

tual function calls and type dispatch for each processed tuple. This
is a form of interpretation overhead as it does not contribute to
the actual query processing work. Generating machine code for a
given query, by definition, avoids interpretation overhead. Vector-
ized systems like VectorWise are still fundamentally interpretation-
based engines and use Volcano-style iteration. In contrast to clas-
sical database systems, the interpretation overhead is not incurred
for each tuple but is amortized across the eponymous vector of tu-
ples. Each primitive is specialized for a particular data type and is
called for (e.g., 1,000 values). This amortization is effective: Using
a profiler, we determined that across our query set the interpreted
part is less than 1.5% of the query runtime (measured at scale factor
10). Thus, the DBMS spends 98.5% of its time in primitives doing
query processing work. From Table 1 we observe that vectorized
code usually executed more instructions per tuple than compiled
code. Since the vast majority of the query execution time is spent
within primitives, also the time to execute these extra instructions
must be spent within primitives. As primitives know all involved
types at compile time, we conclude that the extra instructions are
not interpretation code that is concerned with interpretation deci-
sions and virtual function calls. It is rather due to the load/store
instructions for materializing primitive results into vectors.

Recent work has found that instruction cache misses can be a
problem for OLTP workloads [43]. To find out whether this is the
case for our two query engines, we measured L1 instruction cache
misses for both systems and found that instruction cache misses are
negligible, thus not a performance bottleneck for OLAP queries.
For all queries measured, the L1 instruction cache (32 KB) was
large enough to contain all hot code.

4.3 Vector Size
The vector size is an important parameter for any vectorized en-

gine. So far, our Tectorwise experiments used a value of 1,000
tuples, which is also the default in VectorWise. Figure 5 shows
normalized query runtimes for vector sizes from 1 to the maximum
(i.e., full materialization). We observe that small (<64) and large
vector sizes (>64 K) decrease performance significantly. With a



vector size of 1, Tectorwise is a Volcano-style interpreter with its
large CPU overhead. Large vectors do not fit into the CPU caches
and therefore cause cache misses. The other end of the spectrum is
to process the query one column at a time; this approach is used in
MonetDB [9]. Generally, a vector size of 1,000 seems to be a good
setting for all queries. The only exception is Q3, which executes
15% faster using a vector size of 64K.

4.4 Star Schema Benchmark
So far, we investigated a carefully selected subset of TPC-H. To

show that our findings are more generally applicable, we also im-
plemented the Star Schema Benchmark (SSB), which consists of 4
query templates (with different selections) and which is dominated
by hash table probes. We use one thread and scale factor 30:

cycles IPC instr. L1
miss

LLC
miss

branch
miss

mem
stall

Q1.1 Typer 28 0.7 21 0.3 0.31 0.69 6.33
Q1.1 TW 12 2.0 23 0.4 0.29 0.05 2.77

Q2.1 Typer 39 0.8 30 1.3 0.12 0.17 18.35
Q2.1 TW 30 1.5 44 1.6 0.13 0.23 7.63

Q3.1 Typer 55 0.7 40 1.1 0.20 0.24 27.95
Q3.1 TW 53 1.3 71 1.7 0.23 0.41 15.68

Q4.1 Typer 78 0.5 39 1.8 0.31 0.38 45.91
Q4.1 TW 59 1.0 61 2.5 0.32 0.63 19.48

These results are quite similar to TPC-H Q3 and Q9 and show
once more that Tectorwise requires more instructions but has an ad-
vantage for join heavy queries due to better hidden memory stalls.
In general, we find that TPC-H subsumes SSB for our purposes and
in the name of conciseness, we present our findings using TPC-H
in the rest of this paper.

4.5 Tectorwise/Typer vs. VectorWise/HyPer

Table 2: Production Systems

HyPer VW Typer TW

Q1 53 71 44 85
Q6 10 21 15 15
Q3 48 50 47 44
Q9 124 154 126 111
Q18 224 159 90 154

Let us close this section
by comparing Actian Vec-
tor 5.0 (the current market-
ing name for VectorWise) and
the research (TUM) version
of HyPer (a related system is
now with Tableau). The re-
sults are shown in Table 2 use
one thread and TPC-H scale
factor 1. The first observation
is that HyPer performs simi-

larly to Typer, and Tectorwise’s performance is similar to Vector-
Wise. Second, except for Q65, either Typer or Tectorwise are
slightly faster than both production-grade systems. It is unsur-
prising given that these must handle complex issues like overflow
checking (that our prototype ignores).

5. DATA-PARALLEL EXECUTION (SIMD)
Let us now turn our attention to data-parallel execution using

SIMD operations. There has been extensive research investigat-
ing SIMD for database operations [51, 50, 36, 37, 38, 35, 46, 44].
It is not surprising that this research generally assumes a vector-
ized execution model. The primitives of vectorized engines consist
of simple tight loops that can be translated to data-parallel code.
Though there has been research on utilizing SIMD in data-centric

5HyPer is faster on Q6 than the other systems because it evaluates selections using
SIMD instructions directly on compressed columns [19].
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Figure 6: Scalar vs. SIMD Selection in Tectorwise – (a) 40%
selectivity. (b) Secondary selection: Input selection vector selects
40% and selection selects 40%. (c) Runtime of TPC-H Q6, SF=1

code [34, 26], this is more challenging since the generated code is
more complex. We will therefore use Tectorwise as the platform
for evaluating how large the impact of SIMD on in-memory OLAP
workloads is. In contrast to most research on SIMD, we use TPC-H
and not micro-benchmarks.

The Skylake X CPU we use for this paper supports the new AVX-
512 instruction set and can execute two 512-bit SIMD operations
per cycle—doubling register widths and throughput in comparison
with prior microarchitectures. In other words, using AVX-512 one
can process 32 values of 32-bit per cycle, while scalar code is lim-
ited to 4 values per cycle. Furthermore, in comparison with prior
SIMD instruction sets like AVX2, AVX-512 is more powerful (al-
most all operations support masking and there are new instructions
like compress and expand) and orthogonal (almost all operations
are available in 8, 16, 32, and 64-bit variants). One would therefore
expect significant benefits from using SIMD. In the following, we
focus on selection and hash table probing, which are both common
and important operations.

5.1 Data-Parallel Selection
A vectorized selection primitive produces a selection vector con-

taining the indexes of all matching tuples. Using AVX-512 this can
be implemented using SIMD quite easily6. The comparison in-
struction generates a mask that we then pass to a compress store
(COMPRESSSTORE) instruction. This operation works across SIMD
lanes and writes out the positions selected by the mask to memory.

We performed a micro-benchmark for selection, comparing a
branch-free scalar x86 implementation with a SIMD variant. In the
benchmark, we select all elements from an 8192 element integer
array which are smaller than a constant. Results for a best-case sce-
nario, in which all consumed data are 32-bit integers, are present in
the L1 cache, and the input is a contiguous vector, are shown in Fig-
ure 6a. The observed performance gain for this micro-benchmark
is 8.4×. However, as Figure 6c shows, in a realistic query with
multiple expensive selections like Q6, we only observe a speedup
of 1.4×—even though almost 90% of the processing time is spent
in SIMD primitives. Our experiments revealed two effects that ac-
count for this discrepancy: sparse data loading due to selection
vectors and cache misses due to varying stride. The remainder of
this section discusses these effects.

Sparse data loading occurs in all selection primitives except for
the first one. From the second selection primitive on, all primi-
tives receive a selection vector that determines the elements to con-
sider for comparison. These elements must be gathered from non-
contiguous memory locations. A comparison of selection primi-
tives with selection vectors (40% selectivity) is shown in Figure 6b.
Performance gains in this case range only up to a 2.7× (again for

6With AVX2, the selection primitive is non-trivial and either requires a lookup ta-
ble [35, 19, 26] or complex permutation logic based on BMI2 [1].
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32-bit types). Considering that the selections in Q6 consist of one
initial selection without input selection vector and four subsequent
selections that have to consider a selection vector, we can expect
the overall speedup to be closer to 3× than to 8×.

The previous benchmarks only considered data sets which reside
in L1 cache. For larger data sets, accessing memory can become a
limiting factor. Figure 7 shows the interplay of selection perfor-
mance and input sparsity on a 4 GB data set. Note that the per-
formance drops for selectivities below 100%, while the scalar and
SIMD variants are nearly equal when the is selectivity are below
50%. We also show an estimate of how many cycles on average
are spent resolving cache misses. We observe that most of the time
is spent waiting for data. Thus the memory subsystem becomes
the bottleneck of the selection operation and the positive effect of
utilizing SIMD instructions disappears. In the selection cascade of
Q6, only the first selection primitive benefits from SIMD and se-
lects 43% of the tuples. This leaves all subsequent selections to
operate in a selectivity area where the scalar variant is just as fast.

5.2 Data-Parallel Hash Table Probing
We next examine hash join probing, where most of the query

processing time is spent in TPC-H. There are two opportunities to
apply SIMD: computing the hash values, and the actual lookups in
the hash table. For hashing we use Murmur2, which consists of
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Figure 10: Compiler Auto-Vectorization – (ICC 18)

arithmetic operations like integer shifts and multiplications that are
available in AVX-512. We can also apply SIMD to lookups into
hash tables by using gather, compress store, and masking.

A performance breakdown of components necessary for hash
joins is shown in Figure 8. Figure 8(a) shows that for hashing
alone a gain of 2.3× is possible. For gather instructions, shown
in Figure 8(b), we observe an improvement of 1.1× (in the best
case). This is because the memory system of the test machine
can perform at most two load operations per cycle—regardless of
whether SIMD gather or scalar loads are used. Figure 8(c) shows
that when employing gather and other SIMD instructions to the
Tectorwise probe primitive, a best-case performance gain of 1.4×
can be achieved.

With a SIMD speedup of 2.3× for hashing and 1.4× for prob-
ing, one may expect an overall speedup in between. However, as
is shown in Figure 8(d) the performance gains almost vanish for
TPC-H join queries. This happens even though the majority of the
time (55% and 65%) is spent in SIMD-optimized primitives. The
reason for this behavior can be found in Figure 9. With a growing
working set, gains from SIMD diminish and the execution costs are
dominated by memory latency. SIMD is only beneficial when all
data fits into the cache. We are not the first to observe this phe-
nomenon: Polychroniou et al. [35] found this effect in their study
of application of SIMD to database operators.

5.3 Compiler Auto-Vectorization
We manually rewrote Tectorwise primitives using SIMD intrin-

sics. Given that the code of most primitives is quite simple, one
may reasonably ask whether compilers can do this job automati-
cally. We tested the GCC 7.2, Clang 5.0, and ICC 18 compilers. Of
these, only ICC was able to auto-vectorize a fair amount of prim-
itives (and only with AVX-512). Figure 10 shows how successful
ICC was in relevant paths for query processing. Its vectorized vari-
ant reduces the observed number of instructions executed per tuple
by between 20% to 60%. By inspecting traces of the executed code,
we confirmed that automatic vectorization was applied to hashing,
selection, and projection primitives. Hash table probing and ag-
gregation, however, were not transformed. We also show a variant
with automatic and manual SIMD application combined, which has
a benefit for Q3 and Q9.

Unfortunately, these automatic SIMD optimizations do not yield
any significant improvements in query runtime. Automatic vec-
torization alone hardly creates any gains but even introduces cases
where the optimized code becomes slower. This means that even
though primitives can be auto-vectorized, this is not yet a fire-and-
forget solution.

5.4 Summary
We found with AVX-512 it is often straightforward to trans-

late scalar code to data-parallel code, and observed performance
gains of up to 8.4× in micro-benchmarks. However, for the more



Table 3: Multi-Threaded Execution – TPC-H SF=100 on Skylake
(10 cores, 20 hyper-threads)

Thr.
Typer

ms
Typer

speedup
TW
ms

TW
speedup Ratio

Q1 1 4426 1.0 7871 1.0 0.56
Q1 10 496 8.9 867 9.1 0.57
Q1 20 466 9.5 708 11.1 0.66

Q6 1 1511 1.0 1443 1.0 1.05
Q6 10 243 6.2 213 6.8 1.14
Q6 20 236 6.4 196 7.4 1.20

Q3 1 9754 1.0 7627 1.0 1.28
Q3 10 1119 8.7 913 8.4 1.23
Q3 20 842 11.6 743 10.3 1.13

Q9 1 28086 1.0 20371 1.0 1.38
Q9 10 3047 9.2 2394 8.5 1.27
Q9 20 2525 11.1 2083 9.8 1.21

Q18 1 13620 1.0 18072 1.0 0.75
Q18 10 2099 6.5 2432 7.4 0.86
Q18 20 1955 7.0 2026 8.9 0.97

complicated TPC-H queries, the performance gains are quite small
(around 10% for join queries). Fundamentally, this is because most
OLAP queries are bound by data access, which does not (yet) bene-
fit much from SIMD, and not by computation, which is the strength
of SIMD. Coming back to the comparison between data-centric
compilation and vectorization, we therefore argue that SIMD does
not shift the balance in favor of vectorization much7.

6. INTRA-QUERY PARALLELIZATION
Given the decade-long trends of stagnating single-threaded per-

formance and growing number of CPU cores—Intel is selling 28
cores (56 hyper-threads) on a single Xeon chip—any modern query
engine must make good use of all available cores. In the following,
we discuss how to incorporate parallelism into the two query pro-
cessing models.

6.1 Exchange vs. Morsel-Driven Parallelism
The original implementations of VectorWise and HyPer use dif-

ferent approaches. VectorWise uses exchange operators [3]. This
classic approach [13] keeps its query processing operators like ag-
gregation and join largely unaware of parallelism. HyPer, on the
other hand, uses morsel-driven parallelism, in which joins and ag-
gregations use shared hash-tables and are explicitly aware of paral-
lelism. This allows HyPer to achieve better locality, load-balancing,
and thus scalability, than VectorWise [22]. Using the 20 hyper-
threads on our 10-core CPU, we measured an average speedup
on the five TPC-H queries of 11.7× in HyPer, but only 7.2× in
VectorWise. The parallelization framework is, however, orthogonal
to the query processing model and we implemented morsel-driven
parallelization in both Tectorwise and Typer, as it has been shown
to scale better than exchange operators [22].

Morsel-driven parallelism was developed for HyPer [22] and can
therefore be implemented quite straightforwardly in Typer: The
table scan loop is replaced with a parallel loop and shared data
structures like hash tables are appropriately synchronized similar
to HyPer’s implementation [22, 23].

For Tectorwise, it is less obvious how to use morsel-driven par-
allelism. The runtime system of Tectorwise creates an operator tree

7We note that the benefit of SIMD can be larger when data is compressed [19] and on
vector-oriented CPUs like Xeon Phi (see Section 7).

Table 4: Hardware Platforms – used in experiments.

Intel AMD Intel
Skylake T.ripper KNL

model i9-7900X 1950X Phi 7210
cores (SMT) 10 (x2) 16 (x2) 64 (x4)
issue width 4 4 2
SIMD [bit] 2×512 2×128 2×512
clock rate [GHz] 3.4-4.5 3.4-4.0 1.2-1.5
L1 cache 32 KB 32 KB 64 KB
L2 cache 1 MB 1 MB 1 MB
LLC 14 MB 32 MB (16 GB)
list price [$] 989 1000 1881
launch Q2’17 Q3’17 Q4’16
mem BW [GB/s] 58 56 68

and exclusive resources for every worker. To achieve that the work-
ers can work together on one query, every operator can have shared
state. For each operator, a single instance of shared state is created.
All workers have access to it and use it to communicate. For ex-
ample, the shared state for a hash join contains the hash-table for
the build side and all workers insert tuples into it. In general, the
shared state of each operator is used to share results and coordinate
work distribution. Additionally, pipeline breaking operators use a
barrier to enforce a global order of sub-tasks. The hash join oper-
ator uses this barrier to enforce that first all workers consume the
build side and insert results into a shared hash table. Only after
that, the probe phase of the join can start. With shared state and a
barrier, the Tectorwise implementation exhibits the same workload
balancing parallelization behavior as Typer.

6.2 Multi-Threaded Execution
We executed our TPC-H workload on scale factor 100 (ca. 100 GB

of data). Table 3 shows runtimes and speedups in comparison with
single-threaded execution. Using the 10 physical cores of our Sky-
lake CPU, we see speedups between 8× and 9× for Q1, Q3, and
Q9 in both systems. Given that modern CPUs reduce clock rates
significantly when multiple threads are used these results are close
to perfect scalability. For the scan query Q6 the speedup is lim-
ited by the available read memory bandwidth, and the large-scale
aggregation of Q18 approaches the write bandwidth.

We also conducted these experiments on AWS EC2 machines
and found that both systems scale equally well. However, we ob-
serve that when we use a larger EC2 instance to speed up query ex-
ecution, the price per query rises. For example, the geometric mean
over our TPC-H queries for a m5.2xlarge instance with 8 vCPUs is
0.0002$ per query (2027 ms runtime). On an instance with 48 cores
it is 0.00034$ per query (534 ms runtime). So in this case, running
queries 4× faster costs 1.7× more.

Tectorwise and Typer have similar scaling behavior. Neverthe-
less, the “Ratio” column of Table 3, which is the quotient of the
runtimes of both systems, reveals an interesting effect: For all but
one query, the performance gap between the two systems becomes
smaller when all 20 hyper-threads are used8. For the join queries
Q3 and Q9, the performance benefit of Tectorwise is cut in half, and
Tectorwise comes closer to Typer for Q1 and Q18. This indicates
that hyper-threading is effective at hiding some of the downsides of
microarchitecturally sub-optimal code.

8Q6 is memory bound and is the only exception. Typer’s branch-
free selection implementation consumes more memory bandwidth
resulting in 20% lower performance at high thread counts.
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Figure 11: Skylake vs. Threadripper. – SF=100

6.3 Out-Of-Memory Experiments
Table 5: SSD Results

Typer
ms

TW
ms Ratio

Q1 923 1184 0.78
Q6 808 773 1.05
Q3 1405 1313 1.07
Q9 3268 2827 1.16
Q18 2747 2795 0.98

To compare Tectorwise and Typer
at maximum speed, all measure-
ments so far were in-memory (i.e.,
all table data was present in main
memory). Large OLAP databases
often exceed main memory capac-
ity, which is why we also measured
the impact of fetching the data from
secondary storage. To do this, we
stored the table data in a RAID 5
array of 3 SATA SSDs providing
1.4 GB/s read bandwidth instead of

main memory, which has a bandwidth of 55 GB/s. Table 5 shows
the runtimes with 20 threads on scale factor 100 when data is read
from secondary storage. Comparing these with the in-memory re-
sults (c.f. Table 3), we can observe that the performance differences
between the two query engines are slightly smaller but still notice-
able (“Ratio” moves closer to one). Furthermore, as expected, the
performance of the scan-dominated Q1 and Q6 are more affected
by the slower bandwidth than the performance of the join and ag-
gregation queries. Overall, we find that our in-memory analysis
applies to out-of-memory settings with modern I/O devices.

7. HARDWARE
In previous experiments, we solely measured on Intel’s latest mi-

croarchitecture Skylake. To find out whether our results also hold
for other hardware platforms, we now also look at AMD with its
recent Zen microarchitecture and Intel’s Phi product line.

7.1 Intel Skylake X vs. AMD Threadripper
Table 4 shows the technical specifications for our Intel and AMD

CPUs. Intel Skylake and AMD Threadripper cost almost the same,
which directly allows comparing performance per dollar. Both sys-
tems also posses an almost equal memory bandwidth. However,
the AMD Threadripper features 16 compute cores, clocked at max-
imally 4.0GHz, while the Intel Skylake clocks at a higher rate
of 4.5GHz but contains only 10 cores. The differences between
these processors is not coincidental but rather represents the de-
sign choices of the overall CPU product palettes of AMD and Intel.
AMD offers more cores per dollar, but has only a quarter of com-
putational SIMD throughput.

In terms of query processing performance our experiments show
that both CPU models are roughly on par in absolute performance.
Figure 11 shows the performance (in queries / second) for our ex-
perimental queries and systems both on Skylake and on Threadrip-
per. As both processors have a different core counts the graphs are

normalized on the x-axis to show which percentage of the avail-
able cores was used to achieve the runtime. Notably, the perfor-
mance of both CPUs is very similar for Q6 and Q18 and the re-
maining queries are still quite similar (Q1 < 20%, Q3 < 25%, Q9
< 40%). Also the relative performance of Typer and Tectorwise
are quite similar. The join queries Q3 and Q9 and the selective
scan in Q6 are processed faster by Tectorwise. Typer has an ad-
vantage on the computational query Q1. Overall, the performance
characteristics two platforms are quite similar and the relative per-
formance between the two hardware platforms is almost the same
on both CPUs.

The only significant difference between the two platforms is that,
although both platforms offer 2-way Simultaneous Multi-Threading
(SMT), Intel’s hyper-threading implementation seems to be much
better. On the Skylake, we see a performance boost from hyper-
threading for all queries. On the AMD system, the benefit of SMT
is either very small, and for some queries the use of hyper-threads
results in a performance degradation.

7.2 Knights Landing (Xeon Phi)
Despite being from two different hardware manufacturers, Sky-

lake and Threadripper are quite similar. This cannot be said of
the second generation of Intel’s Xeon Phi product line. This mi-
croarchitecture is also called Knights Landing and is designed as
a processor for high-performance computing (HPC). It is an inte-
grated many-core architecture: There are 64 to 72 cores on each
chip, but every core is relatively slow compared to Xeon cores. On
the plus side, each core is equipped with two 512-bit vector pro-
cessing units with an aggregate capacity of multiple TFLOPs. That
makes it attractive for HPC applications.

From a database systems perspective, Knights Landing seems
promising. Main memory can directly be accessed using six DDR4
memory channels (in contrast to GPUs data does not have to copied
through PCIe). Each core features a 64 KB L1 cache and a 1 MB
L2 cache that is shared with one neighboring core. Additionally,
16 GB of high-bandwidth memory, with a bandwidth of around
300 GB per second, is available. The available memory, number of
cores, and the fact that many SIMD resources are available make
the Knights Landing processor seem like a perfect OLAP machine.

Naturally, we want to explore this machine’s qualities and see
how Tectorwise and Typer perform in this scenario.

For our experiments on Knights Landing we configured the high-
bandwidth memory as a hardware-managed L3 cache and expose
all CPUs as one NUMA node (Quadrant Mode). A comparison of
query processing performance of Knights Landing against Skylake
is shown in Figure 12. Without any changes to the code we observe
about the join queries Q3 and Q9 that Knights Landing’s execution
performance is from 0 to 25% higher than Skylake’s. The relative
performance of Tectorwise and Typer is similar on both CPUs.
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Figure 12: Skylake vs. Knights Landing – SF=100.

For query Q18 Knights Landing’s performance is about 20%
lower. On query Q1 it is about 30% lower. Finally, on Q6 Knights
Landing is up to 2× faster. Recall that on Skylake query Q6 is
bandwidth bound. Thus the extra 2 DDR4 channels of Knights
Landing combined with the high-bandwidth memory as cache pro-
vide the required resources to get ahead of the Skylake processor.
This measurement, however, must be seen in perspective: Each
of our measurements is executed repeatedly. The cache of 16 GB,
which can hold the entire working set of query Q6, boosts the per-
formance unrealistically. In a real workload the cache would be
shared with other queries which would likely evict much of query
Q6’s data. As a frame of reference one may use our measurement of
query Q6 with the hardware configured not to have an L3 cache. In
that case Knights Landing’s Q6 performance is only 10% higher
than the respective performance on Skylake. In a mixed work-
load one can expect the difference to be between these two. As
a summary up to this point, with some queries being slightly faster
and others slightly slower than Skylake, Knights Landings’s per-
formance seems not that great.

To be fair, this platform is designed for heavy use of SIMD in-
structions. Therefore, we need to take the measurements with man-
ual SIMD optimizations into account. We observe that Knights
Landing is able to execute a join query up to 50% faster than Sky-
lake. On the selection query Q6 even a factor of almost 3× is
achieved (although the same remark as for the scalar variant of Q6
applies). However, when taking a step back and looking at the
whole performance picture, we also need to take the cost of each
processor into account. Unfortunately, Knights Landing comes at
almost twice the price of our Intel and AMD processors. Thus when
the performance is broken down to execution speed per dollar, the
commodity CPUs come out on top.

8. OTHER FACTORS
So far, we have focused on OLAP workloads and found only

moderate performance differences between the two model—in par-
ticular, when properly parallelized. The performance differences
are not large enough to make a general recommendation whether
to use vectorization or compilation. Therefore, as a practical mat-
ter, other factors like OLTP performance or implementation effort,
which we discuss in this section, may be of greater importance.

8.1 OLTP and Multi-Language Support
The vectorized execution model achieves efficiency when many

vectors of values are processed, which is almost always the case in
OLAP, but not in OLTP, where a query might only touch a single
tuple. For OLTP workloads, vectorization has little benefit over tra-
ditional Volcano-style iteration. With compilation, in contrast, it is
possible to compile all queries of a stored procedure into a single,

efficient machine code fragment. This is a major benefit of compi-
lation for OLTP and HTAP systems. Despite already having a mod-
ern vectorized engine (Apollo [21, 20]), the Microsoft SQL Server
team felt compelled to additionally integrate the compilation-based
engine Hekaton [12].

Compilation can also be highly beneficial for integrating user-
defined functions and multiple languages into the same execution
environment [11, 32, 31, 42].

8.2 Compilation Time
A disadvantage of code generation is the risk of compilation time

dominating execution time [48]. This can be an issue in OLTP
queries, though in transactional workloads it can be countered by
relying on stored procedures, in which case code-generation can be
done ahead of time. However, compilation time can also become
large if the generated code is large because (optimizing) LLVM
compile time is often super-linear to code size. OLAP queries that
consist of many operators will generate large amounts of code, but
also a small SQL query such as SELECT * FROM T can produce a
lot of code if table T has thousands of columns, as each column
leads to some code generation. Real-world data-centric compila-
tion systems take mitigating measures against this. HyPer switches
off certain LLVM optimization passes such as register allocation
and replaces them by its own more scalable register allocation al-
gorithm, and even contains a LLVM IR interpreter that is used to
execute the first morsels of data; if that is enough to answer the
query, full LLVM compilation is omitted [17]. This largely obvi-
ates this downside of compilation—but comes at the cost of addi-
tional system complexity. Spark falls back to interpreted tuple-at-
a-time execution if a pipeline generates more than 8 KB Java byte
code.

8.3 Profiling and Debuggability
A practical advantage of vectorized execution is that detailed

profiling is possible without slowing down queries, since getting
clock cycle counts for each primitive adds only marginal overhead,
as each call to the function works on a thousand values. For data-
centric compilation, it is hard to separate the contribution of the in-
dividual relational operators to the final execution time of a pipeline,
though it could be done using sample-based code profiling, if the
system can map back generated code lines to the relational operator
in the query plan responsible for it. For this reason it is currently
not possible in Spark SQL to know the individual contributions to
execution time of relational operators, since the system can only
measure performance on a per-pipeline basis.

8.4 Adaptivity
Adaptive query execution, for instance to re-order the evaluation

order of conjunctive filter predicates or even joins is a technique



for improving robustness that can compensate for (inevitable) esti-
mation errors in query optimization. Integrating adaptivity in com-
piled execution is very hard; the idea of adaptive execution works
best in systems that interpret a query—in adaptive systems they can
change the way they interpret it during runtime. Vectorized execu-
tion is interpreted, and thus amenable for adaptivity. The combina-
tion of fine-grained profiling and adaptivity allows VectorWise to
make various micro-adaptive decisions [39].

We saw that VectorWise was faster than Tectorwise on TPC-H
Q1 (see Table 1); this is due to an adaptive optimization in the for-
mer, similar to [15], that it not present in the latter. During aggre-
gation, the system partitions the input tuples in multiple selection
vectors; one for each group-by key. This task only succeeds if there
are few groups in the current vector; if it fails the system exponen-
tially backs off from trying this optimization in further vectors. If it
succeeds, by iterating over all elements in a selection vector, i.e. all
tuples of one group in the vector, hash-based aggregation is turned
into ordered aggregation. Ordered aggregation then performs par-
tial aggregate calculation, keeping e.g. the sum in a register which
strongly reduces memory traffic, since updating aggregate values
in a hash table for each tuple is no longer required. Rather, the
aggregates are just updated once per vector.

8.5 Implementation Issues
Both models are non-trivial to implement. In vectorized exe-

cution the challenge is to separate the functionality of relational
operators in control logic and primitives such that the primitives
are responsible for the great majority of computation time (see
Section 2.1). In compiled query execution, the database system
is a compiler and consists of code that generates code, thus it is
harder to comprehend and debug; especially if the generated code
is quite low-level, such as LLVM IR. To make code generation
maintainable and extensible, modern compilation systems intro-
duce abstraction layers that simplify code generation [42] and make
it portable to multiple backends [32, 31]. For HyPer, some of these
abstractions have been discussed in the literature [29], while others
have yet to be published.

It is worth mentioning that vectorized execution is at some disad-
vantage when sort-keys in order by or window functions are com-
posite (consist of multiple columns). Such order-aware operations
depend on comparison primitives, but primitives can only be spe-
cialized for a single type (in order to avoid code explosion). There-
fore, such comparisons must be decomposed in multiple primitives,
which requires a (boolean) vector as interface to these multiple
primitives. This extra materialization costs performance. Com-
piled query execution can generate a full sort algorithm specifically
specialized to the record format and sort keys at hand.

8.6 Summary
As a consequence of their architecture and code structure compi-

lation and vectorization have distinct qualities that are not directly
related to OLAP performance:

OLTP Lang.
Support

Comp.
Time

Pro-
filing

Adapt-
ivity

Imple-
mentation

Comp. X X (X) Indirection
Vect. X X X Constraints

On the one hand, compiled queries allow for fast OLTP stored
procedures and seamlessly integrating different programming lan-
guages. Vectorization, on the other hand, offers very low query
compile times, as primitives are precompiled: As a result of this
structure, parts of a vectorized query can be swapped adaptively

System R [25] VectorWise [7]

HyPer [28] Peloton [26]

Sompolski [45]

Tuple-at-a-time Vectorization

Compilation

Interpretation

HyPer + Data Blocks [19]

Figure 13: Design space between vectorization and compilation
– hybrid models integrate the advantages of the other approach.

during runtime and profiling is easier. Finally, both systems have
their own implementation challenges: Implementing operators with
code generation introduces an additional indirection, whereas vec-
torization comes with a set of constraints on the code, which can
be complicated to handle.

9. BEYOND BASIC VECTORIZATION AND
DATA-CENTRIC CODE GENERATION

9.1 Hybrid Models
Vectorization and data-centric code generation are fundamen-

tally different query processing models and the applied techniques
are mostly orthogonal. That means that a design space, as visu-
alized in Figure 13, exists between them. Many systems combine
ideas from both paradigms in order to achieve the “best of both
worlds”. We first describe how vectorization can be used to im-
prove the performance of the compilation-based systems HyPer and
Peloton, before discussing how compilation can help vectorization.

In contrast to other operators in HyPer, scans of the compressed,
columnar Data Block format [19] are implemented in template-
heavy C++ using vectorization and without generating any code
at runtime. Each attribute chunk (e.g., 216 values) of a Data Block
may use a different compression format (based on the data in that
block). Using the basic data-centric compilation model, a scan
would therefore have to generate code for all combinations of ac-
cessed attributes and compression formats—yielding exponential
code size growth [19]. Besides compilation time, a second bene-
fit of using vectorization-style processing in scans is that it allows
utilizing SIMD instructions where it is most beneficial (Section 5).
Since, Data Blocks is the default storage data format, HyPer (in
contrast to Typer) may be considered a hybrid system that uses vec-
torization for base table selections and decompression, and data-
centric code generation for all other operators.

By default, data-centric code generation fuses all operators of
the same pipeline into a single code fragment. This is often ben-
eficial for performance, as it avoids writing intermediate results
to cache/memory by keeping the attributes of the current row in
CPU registers as much as possible. However, there are also cases
where it would be better to explicitly break a single pipeline into
multiple fragments—for example, in order to better utilize out-of-
order execution and prefetching during a hash join. This is the
key insight behind Peloton’s relaxed operator fusion [26] model,
which selectively introduces explicit materialization boundaries in
the generated code. By batching multiple tuples, Peloton can easily
introduce SIMD and software prefetching instructions [26]. Con-
sequently, Peloton’s pipelines are shorter and their structure resem-
bles vectorized code (see Figure 13). If the query optimizer’s de-
cision about whether to break up a pipeline is correct (which is
non-trivial [24]), Peloton can be faster than both standard models.



Table 6: Query Processing Models – and pioneering systems.

System Pipelining Execution Year

System R [25] pull interpretation 1974
PushPull [27] push interpretation 2001
MonetDB [9] n/a vectorization 1996
VectorWise [7] pull vectorization 2005
Virtuoso [8] push vectorization 2013
Hique [18] n/a compilation 2010
HyPer [28] push compilation 2011
Hekaton [12] pull compilation 2014

The two previous approaches use vectorization to improve an
engine that is principally based on compilation. Conversely, com-
pilation can also improve the performance of vectorized systems.
Sompolski et al. [45], for example, observed that it is sometimes
beneficial to fuse the loops of two (or more) VectorWise-style prim-
itives into a single loop—saving materialization steps. This fusion
step would require JIT compilation and result in a hybrid approach,
thus moving it towards compilation-based systems in Figure 13.
However, to the best of our knowledge, this idea has not (yet) been
integrated into any system.

Tupleware is a data management system focused on UDFs, specif-
ically a hybrid between data-centric and vectorized execution, and
uses a cost model and UDF-analysis techniques to choose the exe-
cution method best suited to the task [11].

Apache Impala uses a form of compiled execution, which, in
a different way, is also a hybrid with vectorized execution [49].
Rather than fusing relational operators together, they are kept apart,
and interface with each other using vectors representing batches of
tuples. The Impala query operators are C++ templates, parame-
terized by tuple-specific functions (data movement, record access,
comparison expressions) in, for example, a join. Impala has default
slow ADT implementations for these functions. During compila-
tion, the generic ADT function calls are replaced with generated
LLVM IR. The advantages of this approach is that (unit) testing,
debugging and profiling can be integrated easily—whereas the dis-
advantage is that by lack of fusing operators into pipelines makes
the Impala code less efficient.

9.2 Other Query Processing Models
Vectorization and data-centric compilation are the two state-of-

the-art query processing paradigms used by most modern systems,
and have largely superseded the traditional pull-based iterator model,
which effectively is an interpreter. Nevertheless, there are also
other (more or less common) models. Before discussing the strengths
and weaknesses of these alternative approaches, we taxonomize
them in Table 6. We classify query processing paradigms regarding
(1) how/whether pipelining is implemented, and (2) how execution
is performed. Pipelining can be implemented either using the pull
(next) interface, the push (produce/consume) interface, or not at all
(i.e., full materialization after each operator). Orthogonally to the
pipelining dimension, we use the execution method (interpreted,
vectorized, or compilation-based) as the second classification cri-
terion. Thus, in total there are 9 configurations, and, as Table 6
shows, 8 of these have actually been used/proposed.

Since System R, most database systems avoided materializing
intermediate results using pull-based iteration. The push model be-
came prominent as a model for compilation, but has also been used
in vectorized and interpreted engines. One advantage of the push
model is that it enables DAG-structured query plans (as opposed
to trees), i.e., an operator may push its output to more than one
consumer [27]. Push-based execution also has advantages in dis-
tributed query processing with Exchange operators, which is one

of the reasons it has been adopted by Virtuoso [8]. One downside
of the push model is that it is slightly less flexible in terms of con-
trol flow: A merge-sort, for example, has to fully materialize one
input relation. Some systems, mostly notably MonetDB [10], do
not implement pipelining at all—and fully materialize intermediate
results. This simplifies the implementation, but comes at the price
of increased main memory bandwidth consumption.

In the last decade, compilation emerged as a viable alternative
to interpretation and vectorization. As Table 6 shows, although
compilation can be combined with all 3 pipelining approaches, the
push model is most widespread as it tends to result in more efficient
code [47]. One exception is Hekaton [12], which uses pull-based
compilation. An advantage of pull-based compilation is that it au-
tomatically avoids exponential code size growth for operators that
call consume more than once. With push-based compilation, an op-
erator like full outer join that produces result tuples from two dif-
ferent places in the source code, must avoid inlining the consumer
code twice by moving it into a separate function that is called twice.

10. SUMMARY
To our surprise, the performance of vectorized and data-centric

compiled query execution is quite similar in OLAP workloads. In
the following, we summarize some of our main findings:

< Computation: Data-centric compiled code is better at compu-
tationally-intensive queries, as it is able to keep data in registers
and thus needs to execute fewer instructions.

> Parallel data access: Vectorized execution is slightly better in
generating parallel cache misses, and thus has some advantage
in memory-bound queries that access large hash-tables for ag-
gregation or join.

= SIMD has lately been one of the prime mechanisms employed
by hardware architects to increase CPU performance. In theory,
vectorized query execution is in a better position to profit from
that trend. In practice, we find that the benefits are small as most
operations are dominated by memory access cost.

= Parallelization: With find that with morsel-driven parallelism
both vectorized and compilation based-engines can scale very
well on multi-core CPUs.

= Hardware platforms: We performed all experiments on Intel
Skylake, Intel Knights Landing, and AMD Ryzen. The effects
listed above occur on all of the machines and neither vector-
ization nor data-centric compilation dominates on any hardware
platform.

Besides OLAP performance, other factors also play an important
role. Compilation-based engines have advantages in

< OLTP as they can create fast stored procedures and

< language support as they can seamlessly integrate code written
in different languages.

Vectorized engines have advantages in terms of

> compile time as primitives are pre-compiled,

> profiling as runtime can be attributed to primitives, and

> adaptivity as execution primitives can be swapped mid-flight.
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