
1

Concepts of C++ Programming
Lecture 1: Overview and Hello World

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2024/25

2

Module “Concepts of C++ Programming” (CIT323000)

Goals
▶ Write good and modern C++ code
▶ Apply widely relevant C++ constructs
▶ Understand some advanced language concepts

Non-Goals
▶ Become experts in C++
▶ Fancy language features
▶ Apply involved

optimizations

Prerequisites

▶ Fundamentals of object-oriented programming EIDI, PGdP

▶ Fundamentals of data structures and algorithms GAD

▶ Beneficial: operating systems, computer architecture GBS, ERA

3

Lecture Organization

▶ Lecture: Mon 14:30 – 17:00, MW 0001
▶ Lecturer: Dr. Alexis Engelke engelke@in.tum.de
▶ Live stream and recording via RBG: https://live.rbg.tum.de/
▶ Tweedback for questions during lecture

▶ Exercises: Tue 14:15 – 15:45, Interims II HS 3
▶ Florian Drescher, Mateusz Gienieczko

▶ Material: https://db.in.tum.de/teaching/ws2425/cpp/
▶ Zulip-Streams: #CPP, #CPP Homeworks, #CPP Random/Memes

▶ Exam: written exam on your laptop, on-site, 90 minutes
▶ Open book, but no communication/AI tools allowed
▶ Same submission system as for homework

https://live.rbg.tum.de/
https://db.in.tum.de/teaching/ws2425/cpp/

4

Homework

▶ 1–2 programming tasks as homework every week
▶ Released on Monday, deadline next Sunday 11:59 PM

▶ Automatic tests and grading, points only for completely solved tasks
▶ Typically all1 tests provided with the assignment

▶ Container environment provided, no support for other setups
▶ Submission via git+ssh only

▶ Grade bonus: 0.3 for 75% of exercise points
▶ Applies only for the main exam, not for the retake

▶ Cheating in homework ⇝ 5.0U in final grade

1We may add extra cases to prevent hard-coding of test cases.

5

Literature
Primary
▶ C++ Reference Documentation. (https://en.cppreference.com/)

▶ Lippman, 2013. C++ Primer (5th edition). Only covers C++11.
▶ Stroustrup, 2013. The C++ Programming Language (4th edition). Only

covers C++11.
▶ Meyers, 2015. Effective Modern C++. 42 specific ways to improve your use

of C++11 and C++14..

Supplementary
▶ Aho, Lam, Sethi & Ullman, 2007. Compilers. Principles, Techniques &

Tools (2nd edition).
▶ Tanenbaum, 2006. Structured Computer Organization (5th edition).

https://en.cppreference.com/

6

What is C++?

▶ Multi-paradigm general-purpose programming language
▶ Imperative programming
▶ Object-oriented programming
▶ Generic programming
▶ Functional programming

▶ Key characteristics
▶ Compiled
▶ Statically typed
▶ Facilities for low-level programming

7

Some C++ History

Initial development
▶ Bjarne Stroustrup at Bell Labs (since 1979)

▶ Originally “C with classes”, renamed in 1983 to C++
▶ In large parts based on C
▶ Inspirations from Simula67 (classes) and Algol68 (operator overloading)
▶ Initially developed as a C++-to-C converter (Cfront)

First ISO standardization in 1998 (C++98)
▶ Further amendments in following years (C++03/11/14/17/20)
▶ Current standard: C++23

8

C++ Standard vs. Implementations

▶ C++ standard specifies requirements for C++ implementations
about language features and standard library

▶ “Implementation” consists of: compiler, standard library impl, OS, . . .

▶ Some things are specified rigidly in the standard
▶ Some things are implementation-defined

▶ Standard specifies options, implementation chooses one and documents that
▶ Example: size of an int

▶ Implementations can offer extensions2

2https://clang.llvm.org/docs/LanguageExtensions.html

https://clang.llvm.org/docs/LanguageExtensions.html

9

Why Study C++?

▶ Performance
▶ Very flexible level of abstraction
▶ Direct mapping to hardware capabilities easily possible
▶ Zero-overhead rule: “What you don’t use, you don’t pay for.”

▶ Scales to large systems (with some discipline)
▶ Interoperability with other languages, esp. C

▶ Huge amount of legacy code needs developers/maintainers
▶ compilers, databases, simulations, . . .

10

This Lecture

▶ Go bottom-up through important language constructs
▶ Some things (e.g. standard library) appear rather late
▶ Cyclic dependencies are unavoidable

▶ Focus: widely used constructs and important cases
▶ Topic selection based on relevance real-world projects
▶ Many special cases not discussed, lecture will be inaccurate at times
▶ Use the C++ reference!

11

Hello World!

#include <print>
int main() {
std::println("Hello␣World!");
return 0;

}

On the command line:
$ clang++ -std=c++23 -o hello hello.cpp
$./hello
Hello World!

12

Hello World, explained3

// Make print and println available
#include <print>

// Definition of function main().
// Program execution starts at main.
int main() {
// std:: is a namespace prefix. std is for the C++ standard library
std::println("Hello␣World!");

// End program with exit code 0. (zero = everything ok, non-zero = error)
return 0;

}

3A bit hand-wavy, but we have to start somewhere.

13

Program Arguments
▶ main can take two paramters to hold command-line arguments

▶ int argc: number of arguments
▶ char** argv: the actual arguments, ∼array of strings
▶ First argument is the program invocation itself (e.g., ./hello2)

#include <print>
int main(int argc, char** argv) {
std::println("Hello␣{}!", argv[1]); // DON’T DO THIS
return 0;

}

$ clang++ -std=c++23 -o hello2 hello2.cpp
$./hello2 World
Hello World!
$./hello2
Segmentation fault

14

Debugging 101

▶ Pass -g to Clang to enable debug info generation
▶ Run gdb ./hello2

$ clang++ -g -std=c++23 -o hello2 hello2.cpp
$ gdb ./hello2
(gdb) run
Program received signal SIGSEGV, Segmentation fault.
(gdb) backtrace
// ...
#16 in main (argc=0x1, argv=0x7fffffffe868) at hello2.cpp:3
(gdb) up 16
(gdb) print argc
1
(gdb) quit

15

Debugging 102

▶ Print debugging.

#include <print>
int main(int argc, char** argv) {
std::println("argc={}", argc);
std::println("Hello␣{}!", argv[1]);
return 0;

}

$ clang++ -std=c++23 -o hello2 hello2.cpp
$./hello2 World
Hello World!
$./hello2
Segmentation fault

16

Program Arguments, attempt 2

#include <print>
int main(int argc, char** argv) {
if (argc >= 2)
std::println("Hello␣{}!", argv[1]);

else
std::println("Hi␣there!");

return 0;
}

$ clang++ -std=c++23 -o hello2 hello2.cpp
$./hello2 World
Hello World!
$./hello2
Hi there!

17

Compiler Flags

Compiler invocation: clang++ [flags] -o output inputs...

▶ -std=c++23 — set standard to C++23
▶ Always specify the version of the C++ standard!

▶ -g — enable debugging information

▶ -Wall — enable many warnings
▶ -Wextra — enable some more warnings

▶ Always compile with -Wall -Wextra! Warnings often hint at bugs.

▶ -O0 — no optimization, typically good for debugging
▶ -O1/-O2/-O3 — enable optimizations at specified level

18

Build Systems: CMake

▶ Frequent use of long compiler commands is tedious and error-prone
▶ Manual work doesn’t scale to larger projects
▶ Different systems may require different flags

▶ CMake: build system specialized for C/C++
▶ Widely used by large projects and supported by many IDEs

▶ CMakeLists.txt specifies project, files, etc.

▶ Reference: https://cmake.org/cmake/help/latest/

https://cmake.org/cmake/help/latest/

19

CMake Example
CMakeLists.txt:
Require a specific CMake version, here 3.20 for C++23 support
cmake_minimum_required(VERSION 3.20)
Set project name, required for every project
project(hello2)
We use C++23, basically adds -std=c++23 to compiler flags
set(CMAKE_CXX_STANDARD 23)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
Compile executable hello2 from hello2.cpp
add_executable(hello2 hello2.cpp)

On the command line:
$ mkdir build; cd build # create separate build directory
$ cmake ..
$ cmake --build .
$./hello2

20

Further CMake Commands and Variables

▶ add_executable(myprogram a.cpp b.cpp)
Define an executable to be built from the source files a.cpp and b.cpp

▶ add_compile_options(-Wall -Wextra)
Add -Wall -Wextra to compiler flags

▶ set(CMAKE_CXX_COMPILER clang++)
Set C++ compiler to clang++

▶ set(CMAKE_BUILD_TYPE Debug)
Set “build type” Debug (other values: Release, RelWithDebInfo);
affects optimization and debug info

Variables can be set on the command line invocation of CMake:
cmake .. -DCMAKE_BUILD_TYPE=RelWithDebInfo

21

Overview and Hello World – Summary

▶ C++ is a compiled, widely-used, multi-paradigm language
▶ Program execution typically starts at int main()
▶ Command line arguments accessible via argc/argv
▶ Basic debugging techniques: GDB and print debugging
▶ Important compiler options for warnings and optimizations
▶ Basic usage of CMake for building C++ projects

22

Overview and Hello World – Questions

▶ What are key characteristics of the C++ language?
▶ Why is C++ one of the most important languages today?
▶ How to access program arguments?
▶ What are important flags for compiling C++ code with Clang?
▶ How to debug a compiled C++ program with GDB?
▶ What is a segmentation fault?
▶ What are advantages of using a build system like CMake?

	Overview and Hello World
	Organization
	Introduction
	Hello World!
	CMake

