
23

Concepts of C++ Programming
Lecture 2: Basic Syntax and Object Model

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2024/25

24

Reminder: C++ Reference

These slides will necessarily be inaccurate or incomplete at times.

Use the reference!
https://en.cppreference.com/w/cpp

https://en.cppreference.com/w/cpp

25

Comments5

▶ “C-style” or “multi-line” comments: /*comment */

▶ “C++-style” or “single-line” comments: //comment

Example:
/* This comment is unnecessarily

split over two lines */
int a = 42;

// This comment is also split
// over two lines
int b = 123;

5https://en.cppreference.com/w/cpp/comment

https://en.cppreference.com/w/cpp/comment

26

Fundamental Types6

▶ void – empty type, has no values
▶ E.g., used to indicate functions that return no value

▶ Integer types
▶ Boolean type: bool (1-bit integer, true/false)
▶ Integer types: int, long, unsigned long, ...
▶ Character types: char, char16_t, . . .

▶ Floating-point types
▶ float, double, long double

6https://en.cppreference.com/w/cpp/language/types

https://en.cppreference.com/w/cpp/language/types

27

Integer Types

▶ Sign modifiers: signed (default), unsigned
▶ Size modifiers: short, long (≥32 bit), long long (≥64 bit)
▶ Keyword: int (optional if modifiers are present)

▶ Order of keywords is arbitrary
▶ unsigned long long = long unsigned int long

▶ Signed integers use two’s complement (since C++20)

28

Integer Types: Minimum Width

Canonical Type Specifier Minimum Width Minimum Range

short 16 bit −215 to 215 − 1
unsigned short 0 to 216 − 1

int 16 bit −215 to 215 − 1
unsigned 0 to 216 − 1

long 32 bit −231 to 231 − 1
unsigned long 0 to 232 − 1

long long 64 bit −263 to 263 − 1
unsigned long long 0 to 264 − 1

▶ Exact width of integer types is not specified by the standard!

29

Fixed-Width Integer Types7

▶ Use fixed-width types from when... a fixed width is required
▶ #include <cstdint>
▶ int8_t, int16_t, int32_t, int64_t,

uint8_t, uint16_t, uint32_t, uint64_t
▶ But: optional, only available if supported by implementation

▶ Guideline: use fixed-width types only when really required
▶ E.g., data structures where size is important, bitwise operations
▶ Otherwise, prefer regular integers

7https://en.cppreference.com/w/cpp/types/integer

https://en.cppreference.com/w/cpp/types/integer

30

Integer Literals8

▶ Decimal (42), octal (052), hexadecimal (0x2a), binary (0b101010)

▶ unsigned suffix: 42u or 42U
▶ long suffix: 42l or 42L; long long suffix: 42ll or 42LL
▶ Both suffixes can be combined, e.g. 42ul, 42ull

▶ Separable by single quotes, e.g. 1’000’000’000ull, 0b0010’1010

Quiz: What is the type of the integer literal 0xdeadcabel?
(Assume 32-bit int, 32-bit long, as on, e.g., Windows)
A. int B. long C. unsigned long D. long long

8https://en.cppreference.com/w/cpp/language/integer_literal

https://en.cppreference.com/w/cpp/language/integer_literal

31

Character Types

▶ Represent character codes and integers
▶ signed char, unsigned char
▶ char — implementation-defined whether signed/unsigned!

▶ Use char only for actual characters, not for arithmetic

▶ Size: defined as 1 byte
▶ Size of byte: at least 8 bit9

▶ For UTF characters: char8_t (C++20), char16_t, char32_t

9Might change for C++26 to exactly 8 bits; proposal: https://wg21.link/p3477r0

https://wg21.link/p3477r0

32

Character Literals10

▶ E.g. ’a’, ’b’, ’€’
▶ Any character from the source character set except: ’, \, newline

▶ Escape sequences, e.g. ’\”, ’\\’, ’\n’, ’\u1234’

▶ UTF-8 prefix: u8’a’, u8’b’
▶ UTF-16 prefix: u’a’, u’b’
▶ UTF-32 prefix: U’a’, U’b’

10https://en.cppreference.com/w/cpp/language/character_literal

https://en.cppreference.com/w/cpp/language/character_literal

33

Floating-Point Types

▶ float – usually IEEE-754 32-bit binary format
▶ double – usually IEEE-754 64-bit binary format

▶ long double – extended precision, format varies strongly
▶ Some platforms use 64-bit (like double), e.g. MSVC on x86
▶ Some platforms use 128-bit, e.g. usually AArch64

(this is typically a softfloat implementation ⇝ slow)
▶ On x86, typically 80-bit x87 binary floating-point

▶ Usual caveats of FP arithmetic apply: infinity, signed zero, NaN

34

Floating-Point Literals11

▶ Without exponent: 3.1415926, .5
▶ With exponent: 1e9, 3.2e20, .5e-6

▶ float suffix: 1.0f or 1.0F
▶ long double suffix: 42.0l or 42.0L

▶ Separable by single quotes, e.g. 1’000.000’001, .141’592e12

11https://en.cppreference.com/w/cpp/language/floating_literal

https://en.cppreference.com/w/cpp/language/floating_literal

35

Operator Precedence Table (1)12

Prec. Operator Description Associativity

1 :: Scope resolution left-to-right

2 a++ a-- Postfix increment/decrement left-to-right
<type>() <type>{} Functional Cast
a() a[] Function Call/Subscript
. -> Member Access

3 ++a --a Prefix increment/decrement right-to-left
+a -a !a ˜a plus/minus/logical not/bitwise not
(<type>) C-style cast
*a &a Dereference/Address-of
sizeof Size-of
new new[] Dynamic memory allocation
delete delete[] Dynamic memory deallocation

12https://en.cppreference.com/w/cpp/language/operator_precedence

https://en.cppreference.com/w/cpp/language/operator_precedence

36

Operator Precedence Table (2)

Prec. Operator Description Associativity

4 .* ->* Pointer-to-member left-to-right

5 a*b a/b a%b Multiplication/Division/Remainder left-to-right

6 a+b a-b Addition/Subtraction left-to-right

7 << >> Bitwise shift left-to-right

8 <=> Three-way comparison left-to-right

9 < <= Relational < and ≤ left-to-right
> >= Relational > and ≥

10 == != Relational = and ̸= left-to-right

37

Operator Precedence Table (3)
Prec. Operator Description Associativity

11 & Bitwise AND left-to-right

12 ˆ Bitwise XOR left-to-right

13 | Bitwise OR left-to-right

14 && Logical AND left-to-right

15 || Logical OR left-to-right

16 a?b:c Ternary conditional right-to-left
throw throw operator
= Direct assignment
+= -= *= /= %= Compound assignment
<<= >>= &= ˆ= |= Compound assignment

17 , Comma left-to-right

38

Observable Behavior

Observable behavior of C++ programs precisely defined, unless:

▶ implementation-defined behavior – documented by C++ implementation
▶ unspecified behavior – one of multiple options can happen

▶ E.g., evaluation order of function arguments: one permutation must happen

▶ program ill-formed – syntax/semantic error, compiler must diagnose
▶ program ill-formed, no diagnostic required – semantically invalid, hard to

diagnose
▶ Typically not detectable during compilation, not too many cases

▶ undefined behavior – the standard imposes no requirements

39

Undefined Behavior14 (UB)

▶ Some violations of language rules are undefined behavior:
standard enforces no restrictions ⇝ anything can happen
▶ Typically cases, where checks would be costly or impossible

⇒ A C++ program must never contain undefined behavior!

▶ Examples: out-of-bounds array access, signed integer overflow,
shift by negative index, shift larger than value size, . . .
▶ Signed integers: UB on overflow; unsigned integers: well-defined wrap

▶ Compiler can assume that program contains no undefined behavior13

▶ Allows for more optimizations, e.g. eliminate some checks

13https://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
14https://en.cppreference.com/w/cpp/language/ub

https://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
https://en.cppreference.com/w/cpp/language/ub

40

Undefined Behavior – Example

Quiz: Which answer is correct?

bool f1(int x) { return x + 1 > x; }
bool f2(unsigned x) { return x + 1 > x; }

A. The return value of f1 is always false.
B. The return value of f2 is always true.
C. The return value of f1 depends on the parameter.
D. The return value of f2 depends on the parameter.
E. f2 might invoke undefined behavior.

41

Variables15

▶ Declaration: type specifier followed by declarators (variable names)

▶ Declarator can optionally be followed by an initializer
▶ No initializer: default-initialized

▶ Non-local variables: zero-initialized
▶ Local variables: not initialized

▶ Access of uninitialized variable is undefined behavior

void foo() {
unsigned i = 0, j;
unsigned meaningOfLife = 42;

}

15https://en.cppreference.com/w/cpp/language/declarations

https://en.cppreference.com/w/cpp/language/declarations

42

Variable Initializers16

▶ variableName(<expression>)
▶ variableName = <expression>
▶ variableName{<expression>} (error on possible information loss)

double a = 3.1415926;
double b(42);
unsigned c = a; // OK: c == 3
unsigned d(b); // OK: d == 42
unsigned e{a}; // ERROR: potential information loss
unsigned f{b}; // ERROR: potential information loss

16https://en.cppreference.com/w/cpp/language/initialization

https://en.cppreference.com/w/cpp/language/initialization

43

Simple Statements17

Declaration statement: Declaration followed by a semicolon

int i = 0;

Expression statement: Any expression followed by a semicolon

i + 5; // valid, but useless
foo(); // valid and possibly useful

Compound statement (blocks): Brace-enclosed sequence of statements

{ // start of block
int i = 0; // declaration statement

} // end of block, i goes out of scope
int i = 1; // declaration statement

17https://en.cppreference.com/w/cpp/language/statements

https://en.cppreference.com/w/cpp/language/statements

44

Scope18

Names in a C++ program are valid only within their scope
▶ The scope of a name begins at its point of declaration
▶ The scope of a name ends at the end of the relevant block
▶ Scopes may be shadowed resulting in discontiguous scopes (bad practice)

int a = 21;
int b = 0;
{
int a = 1; // scope of the first a is interrupted
int c = 2;
b = a + c + 39; // a refers to the second a, b == 42

} // scope of the second a and c ends
b = a; // a refers to the first a, b == 21
b += c; // ERROR: c is not in scope

18https://en.cppreference.com/w/cpp/language/scope

https://en.cppreference.com/w/cpp/language/scope

45

If Statement19

▶ Conditionally execute
another statement

▶ Condition converted to bool
decides which branch is taken

▶ Optional initialization
statement

▶ Optional else branch

if (value < 42)
valueLessThan42();

else
valueTooLarge();

if (unsigned n = compute(); n > 4) {
// do something

}
// The latter is equivalent to:
{
unsigned n = compute();
if (n > 4) {
// do something

}
}

19https://en.cppreference.com/w/cpp/language/if

https://en.cppreference.com/w/cpp/language/if

46

If Statement Nesting
▶ else is associated with the closest if that has no else

// INTENTIONALLY BUGGY!
if (condition0)
if (condition1)
// do something if (condition0 && condition1) == true

else
// do something if condition0 == false

▶ When in doubt, use curly braces to make scopes explicit

// Working as intended
if (condition0) {
if (condition1)
// do something if (condition0 && condition1) == true

} else {
// do something if condition0 == false

}

47

Switch Statements20

▶ Conditional control flow
transfer based on integral type

▶ Constant values for case,
must be unique

▶ break exits switch
▶ Implicit fallthrough!

▶ Use [[fallthrough]];
when intended

▶ Condition can have declaration

switch (compute()) {
case 42:
// do something for 42
break;

case 20:
// do something for 20
[[fallthrough]];

case 21:
case 22:
// do something for 20/21/22
break;

default:
break;

}

20https://en.cppreference.com/w/cpp/language/switch

https://en.cppreference.com/w/cpp/language/switch

48

While and Do-While Loops
▶ while:21 repeatedly execute statement while condition is true

unsigned i = 42;
while (i < 42) {
// never executed

}

▶ do–while:22 like while, but execute body at least once
unsigned i = 42;
do {
// executed once

} while (i < 42);

▶ break/continue to exit loop/skip remainder of body

21https://en.cppreference.com/w/cpp/language/while
22https://en.cppreference.com/w/cpp/language/do

https://en.cppreference.com/w/cpp/language/while
https://en.cppreference.com/w/cpp/language/do

49

For Loops23

for (unsigned i = 0; i < 10; ++i) {
// iterate 0, 1, 2, ..., 9

}
for (unsigned i = 0, len = getLength(); i != len; ++i) {
// do something; doesn’t call getLength() every iteration

}
for (unsigned i = 42; i-- > 0;) {
// iterate 41, 40, ..., 0

}
uint8_t i = 0;
for (; i < 256; ++i)
std::println("{}", i); // hmmm....

Quiz: What could be a problem of the last loop?
A. No Problem B. Syntax Error C. Endless Loop D. Undefined Behavior

23https://en.cppreference.com/w/cpp/language/for

https://en.cppreference.com/w/cpp/language/for

50

Basic Functions24

▶ Associate a sequence of statements (body) with a name
▶ Function can have parameters and a return type (can be void)
▶ Non-void functions must execute return statement
▶ Arguments are passed by value (unlike Java for classes)

▶ Pass-by-reference requires explicit annotation, see later

void procedure(unsigned parameter0, double parameter1) {
// do something with parameter0 and parameter1

}
unsigned meaningOfLife() {
// complex computation, takes 7.5 million years
return 42;

}

24https://en.cppreference.com/w/cpp/language/function

https://en.cppreference.com/w/cpp/language/function

51

Basic Function Arguments
▶ Parameters can be unnamed ⇝ unusable, but still required on call
▶ Function can specify default arguments25 in parameter list

▶ After first param with default value, all must have a default value

unsigned meaningOfLife(unsigned /*unused*/) {
return 42;

}
unsigned addNumbers(int a, int b = 2, int c = 3) {
unsigned v = meaningOfLife(); // ERROR: expected argument
unsigned w = meaningOfLife(123); // OK
return a + b + c;

}
int main() {
int x = addNumbers(1); // x == 6
int y = addNumbers(1, 1); // y == 5
int z = addNumbers(1, 1, 1); // z == 3

}
25https://en.cppreference.com/w/cpp/language/default_arguments

https://en.cppreference.com/w/cpp/language/default_arguments

52

Namespaces26

▶ Large projects contain many names ⇝ organize in logical units
▶ namespaces allow preventing name conflicts

namespace A {
void foo() { /* do something */ }
void bar() { foo(); /* refers to A::foo */ }
} // end namespace A
namespace B {
void foo() { /* do something */ }
} // end namespace B
int main() {
A::foo(); // qualified name lookup
B::foo(); // qualified name lookup
foo(); // ERROR: foo was not declared in this scope

}

26https://en.cppreference.com/w/cpp/language/namespace

https://en.cppreference.com/w/cpp/language/namespace

53

Namespace Nesting

▶ Namespaces can be nested

namespace A {
namespace B {
void foo() { /* do something */ }
} // end namespace B
} // end namespace A

// equivalent definition
namespace A::B {
void bar() { foo(); /* refers to A::B::foo */ }
} // end namespace A::B

int main() {
A::B::bar();

}

54

Namespaces: using and Conventions
▶ Typically: add comments to closing namespace brace

▶ Always using fully qualified names makes code easier to read
▶ But: sometimes, source is obvious and typing cumbersome...

▶ using namespace X; imports everything from X
▶ using X::a; imports only a from X

namespace A { int x; }
namespace B { int y; int z; }
using namespace A;
using B::y;
int main() {
x = 1; // Refers to A::x
y = 2; // Refers to B::y
z = 3; // ERROR: z was not declared in this scope
B::z = 3; // OK

}

55

Memory Model

▶ Fundamental storage unit: byte
▶ There can (theoretically) be more than 8 bits in a byte

▶ Memory consists of one or more contiguous sequences of bytes
▶ Memory can have holes, e.g. due to virtual memory

▶ Every byte has a unique address

56

Objects27

▶ Object: region of storage; properties:
▶ Size (see next slides)
▶ Alignment (see next slides)
▶ Storage duration (see next slides)
▶ Lifetime (see next slides)
▶ Type
▶ Value
▶ Optionally: name

▶ C++ programs create, destroy, refer to, access, and manipulate objects
▶ Examples for objects: local/global variables, parameters

▶ Not objects: functions, references, values

27https://en.cppreference.com/w/cpp/language/object

https://en.cppreference.com/w/cpp/language/object

57

Object Size and Alignment

▶ Size and alignment requirements are defined by the type

▶ sizeof operator28: query size in bytes of object/type
▶ sizeof(char) = sizeof(std::byte) = 1
▶ All other sizes implementation-defined

▶ alignof operator29: query minimum alignment in bytes of type
▶ Depending on implementation, some values must be aligned in memory
▶ Alignment is always a power of 2
▶ Address must be a multiple of the alignment

28https://en.cppreference.com/w/cpp/language/sizeof
29https://en.cppreference.com/w/cpp/language/alignof

https://en.cppreference.com/w/cpp/language/sizeof
https://en.cppreference.com/w/cpp/language/alignof

58

Storage Duration31

▶ Every object has a storage duration

Storage Duration Begin End Note/Example

automatic Scope begin Scope end Local variables

static Program begin Program end Global variables

thread Thread start Thread end thread_local vars

dynamic new delete

▶ Static: allocated/initialized before main in non-guaranteed order30

▶ Thread: one copy of the object per thread
▶ Dynamic: allocation/deallocation must be done manually

30https://en.cppreference.com/w/cpp/language/siof
31https://en.cppreference.com/w/cpp/language/storage_duration

https://en.cppreference.com/w/cpp/language/siof
https://en.cppreference.com/w/cpp/language/storage_duration

59

Lifetime32

Lifetime of an object...
▶ starts when it is fully initialized
▶ ends when destructor called (classes)

or storage is deallocated/reused (others)
▶ never exceeds the lifetime of the storage (see storage duration)

▶ Using an object outside its lifetime is undefined behavior
▶ This is a main source of memory bugs

▶ Compilers can only warn about very basic errors
⇒ If compiler warns, always fix your program

32https://en.cppreference.com/w/cpp/language/lifetime

https://en.cppreference.com/w/cpp/language/lifetime

60

Lifetime: Example
Quiz: When does the lifetime of p end?

int g;
void matterOfLifeOrDeath(unsigned a) {
thread_local int t = 1;
unsigned c = a;
{
unsigned p = a + 1;

}
unsigned m = t - 1;

}

A. At the end of the function.
B. At the end of the innermost block.
C. At the end of the program.
D. When the underlying stack space is reuseed (e.g., for m).

61

Lifetime: Example

Quiz: What is problematic about this function?

int fancyZero() { // fancy way to return zero
int x = x ^ x;
return x;

}

A. Ill-formed/compile error: x used before its declaration.
B. Undefined behavior: signed integer overflow.
C. Undefined behavior: x used outside its lifetime.
D. Undefined behavior: x used outside its storage duration.

62

Basic Syntax and Object Model – Summary

▶ Fundamental types: void, integral, floating-point
▶ Exact width, representation, etc. not specified by standard
▶ Undefined behavior means anything can happen
▶ Undefined behavior must therefore never happen
▶ Basic syntax similar to other C-like languages, with additions
▶ Use namespaces to avoid naming collisions
▶ C++ programs resolve around working with objects
▶ Objects’ lifetime is often implicit, leading to subtle bugs

63

Basic Syntax and Object Model – Questions

▶ What is the required minimum size of an unsigned int?
▶ Why is arithmetic on char problematic?
▶ Why is long double rarely used?
▶ What can happen when undefined behavior is encountered?
▶ How can compilers use undefined behavior for optimizations?
▶ Which variable initializer prevents loss of accuracy?
▶ What is the storage duration of an object?
▶ What is the relation between storage duration and lifetime?

	Basic Syntax and Object Model
	Types
	Operators
	Observable Behavior
	Basic Syntax
	Namespaces
	Memory & Object Model

