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Introduction

1. Introduction

• Overview Query Processing
• Overview Query Optimization
• Overview Query Execution
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Introduction Query Processing

Reason for Query Optimization

• query languages like SQL are declarative
• query specifies the result, not the exact computation
• multiple alternatives are common
• often vastly different runtime characteristics
• alternatives are the basis of query optimization

Note: Deciding which alternative to choose is not trivial
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Introduction Query Processing

Overview Query Processing

result

plan

query

runtime system

compile time system

• input: query as text
• compile time system compiles and optimizes

the query
• intermediate: query as exact execution plan
• runtime system executes the query
• output: query result

separation can be very strong (embedded SQL/prepared queries etc.)
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Introduction Query Processing

Overview Compile Time System

execution plan

query

code generation

rewrite II

plan generation

rewrite I

factorization

normalization

semantic analysis

parsing 1. parsing, AST production
2. schema lookup, variable binding, type

inference
3. normalization, factorization, constant folding

etc.
4. view resolution, unnesting, deriving

predicates etc.
5. constructing the execution plan
6. refining the plan, pushing group by etc.
7. producing the imperative plan

rewrite I, plan generation, and rewrite II form the query optimizer
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Introduction Query Processing

Processing Example - Input

select name, salary
from employee, department
where dep=did
and location=’München’
and area=’Research’

Note: example is so simple that it can be presented completely, but does not allow for many
optimizations. More interesting (but more abstract) examples later on.



8 / 638

Introduction Query Processing

Processing Example - Parsing
Constructs an AST from the input

SelectFromWhere

Projection From Where

Identifier name

Identifier salary

Identifier employee

Identifier department

BinaryExpression eq

Identifier area

String "Research"

BinaryExpression eq

Identifier location

String "München"

BinaryExpression eq

Identifier dep

Identifier did

BinaryExpression and

BinaryExpression and
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Introduction Query Processing

Processing Example - Semantic Analysis
Resolves all variable binding, infers the types and checks semantics

SFW

Projection From Where

Attrib. e.name

Attrib. e.salary

Rel. e:employee

Rel. d:department

Expression eq

Attrib. e.area

Const "Research"

Expression eq

Attrib. d.location

Const "München"

Expression eq

Attrib. e.dep

Attrib. d.did

Expression and

Expression and

Types omitted here, result is bag < string , number >
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Introduction Query Processing

Processing Example - Normalization
Normalizes the representation, factorizes common expressions, folds constant expressions

SFW

Projection From Where

Attrib. e.name

Attrib. e.salary

Rel. e:employee

Rel. d:department

Expression eq

Attrib. e.area

Const "Research"

Expression eq

Attrib. d.location

Const "München"

Expression eq

Attrib. e.dep

Attrib. d.did

Expression and
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Introduction Query Processing

Processing Example - Rewrite I
resolves views, unnests nested expressions, expensive optimizations

SFW

Projection From Where

Attrib. e.name

Attrib. e.salary

Rel. e:person

Rel. d:department

Expression eq

Attrib. e.area

Const "Research"

Expression eq

Attrib. d.location

Const "München"

Expression eq

Attrib. e.dep

Attrib. d.did

Expression and

Expression eq Attrib. e.kind Const "emp"
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Introduction Query Processing

Processing Example - Plan Generation

Finds the best execution strategy, constructs a physical plan

σlocation=''München"

⨝dep=did

departmentperson

σkind=''emp''

σarea=''Research''
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Introduction Query Processing

Processing Example - Rewrite II

Polishes the plan

σarea=''Research''∧

department

⨝dep=did

σlocation="München"

person

kind=''Emp''
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Introduction Query Processing

Processing Example - Code Generation
Produces the executable plan

<
@c1 string 0
@c2 string 0
@c3 string 0
@kind string 0
@name string 0
@salary float64
@dep int32
@area string 0
@did int32
@location string 0
@t1 uint32 local
@t2 string 0 local
@t3 bool local

>
[main

load_string "emp" @c1
load_string "M\u00fcnchen" @c2
load_string "Research" @c3
first_notnull_bool
<#1 BlockwiseNestedLoopJoin

memSize 1048576
[combiner

unpack_int32 @dep
eq_int32 @dep @did @t3
return_if_ne_bool @t3
unpack_string @name
unpack_float64 @salary

]

[storer
check_pack 4
pack_int32 @dep
pack_string @name
check_pack 8
pack_float64 @salary
load_uint32 0 @t1
hash_int32 @dep @t1 @t1
return_uint32 @t1

]
[hasher

load_uint32 0 @t1
hash_int32 @did @t1 @t1
return_uint32 @t1

]
<#2 Tablescan

segment 1 0 4
[loader

unpack_string @kind
unpack_string @name
unpack_float64 @salary
unpack_int32 @dep
unpack_string @area
eq_string @kind @c1 @t3
return_if_ne_bool @t3
eq_string @area @c3 @t3
return_if_ne_bool @t3

]
>

<#3 Tablescan
segment 1 0 5
[loader

unpack_int32 @did
unpack_string @location
eq_string @location @c2 @t3
return_if_ne_bool @t3

]
>

> @t3
jf_bool 6 @t3
print_string 0 @name
cast_float64_string @salary @t2
print_string 10 @t2
println
next_notnull_bool #1 @t3
jt_bool -6 @t3

]
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Introduction Optimization Overview

What to Optimize?

Different optimization goals reasonable:
• minimize response time
• minimize resource consumption
• minimize time to first tuple
• maximize throughput

Expressed during optimization as cost function. Common choice: Minimize response time
within given resource limitations.
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Introduction Optimization Overview

Basic Goal of Algebraic Optimization

When given an algebraic expression:
• find a cheaper/the cheapest expression that is equivalent to the first one

Problems:
• the set of possible expressions is huge
• testing for equivalence is difficult/impossible in general
• the query is given in a calculus and not an algebra (this is also an advantage, though)
• even ”simpler” optimization problems (e.g. join ordering) are typically NP hard in general
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Introduction Optimization Overview

Search Space

equivalent plans

potential
search space

actual
search
space

Query optimizers only search the ”optimal” solution
within the limited space created by known optimiza-
tion rules
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Introduction Optimization Overview

Optimization Approaches

constructive transformative

transformative is simpler, but finding the optimal solution is hard
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Introduction Query Execution

Query Execution

Understanding query execution is important to understand query optimization
• queries executed using a physical algebra
• operators perform certain specialized operations
• generic, flexible components
• simple base: relational algebra (set oriented)
• in reality: bags, or rather data streams
• each operator produces a tuple stream, consumes streams
• tuple stream model works well, also for OODBMS, XML etc.
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Introduction Query Execution

Relational Algebra
Notation:
• A(e) attributes of the tuples produces by e
• F(e) free variables of the expression e
• binary operators e1θe2 usually require A(e1) = A(e2)

e1 ∪ e2 union, {x |x ∈ e1 ∨ x ∈ e2}
e1 ∩ e2 intersection, {x |x ∈ e1 ∧ x ∈ e2}
e1 \ e2 difference, {x |x ∈ e1 ∧ x 6∈ e2}
ρa→b(e) rename, {x ◦ (b : x .a) \ (a : x .a)|x ∈ e}
ΠA(e) projection, {◦a∈A(a : x .a)|x ∈ e}
e1 × e2 product, {x ◦ y |x ∈ e1 ∧ y ∈ e2}
σp(e) selection, {x |x ∈ e ∧ p(x)}
e1⋈pe2 join, {x ◦ y |x ∈ e1 ∧ y ∈ e2 ∧ p(x ◦ y)}

per definition set oriented. Similar operators also used bag oriented (no implicit duplicate
removal).



21 / 638

Introduction Query Execution

Relational Algebra - Derived Operators

Additional (derived) operators are often useful:
e1⋈e2 natural join, {x ◦ y|A(e2)\A(e1)|x ∈ e1 ∧ y ∈ e2 ∧ x =|A(e1)∩A(e2) y}
e1 ÷ e2 division, {x|A(e1)\A(e2)|x ∈ e1 ∧ ∀y ∈ e2∃z ∈ e1 :

y =|A(e2) z ∧ x =|A(e1)\A(e2) z}
e1⋉pe2 semi-join, {x |x ∈ e1 ∧ ∃y ∈ e2 : p(x ◦ y)}
e1▷pe2 anti-join, {x |x ∈ e1∧ 6 ∃y ∈ e2 : p(x ◦ y)}
e1⟕pe2 outer-join, (e1⋈pe2) ∪ {x ◦ ◦a∈A(e2)(a : null)|x ∈ (e1▷pe2)}
e1⟗pe2 full outer-join, (e1⟕pe2) ∪ (e2⟕pe1)
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Introduction Query Execution

Relational Algebra - Extensions

The algebra needs some extensions for real queries:
• map/function evaluation

χa:f (e) = {x ◦ (a : f (x))|x ∈ e}
• group by/aggregation

ΓA;a:f (e) = {x ◦ (a : f (y))|x ∈ ΠA(e) ∧ y = {z|z ∈ e ∧ ∀a ∈ A : x .a = z.a}}
• dependent join (djoin). Requires F(e2) ⊆ A(e1)

e1⧑pe2 = {x ◦ y |x ∈ e1 ∧ y ∈ e2(x) ∧ p(x ◦ y)}
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Introduction Query Execution

Physical Algebra

• relational algebra does not imply an implementation
• the implementation can have a great impact
• therefore more detailed operators (next slides)
• additional operators needed due to stream nature
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Introduction Query Execution

Physical Algebra - Enforcer

Some operators do not effect the (logical) result but guarantee desired properties:
• sort

Sorts the input stream according to a sort criteria
• temp

Materializes the input stream, makes further reads cheap
• ship

Sends the input stream to a different host (distributed databases)
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Introduction Query Execution

Physical Algebra - Joins

Different join implementations have different characteristics:
• e1⋈NLe2 Nested Loop Join

Reads all of e2 for every tuple of e1. Very slow, but supports all kinds of predicates
• e1⋈BNLe2 Blockwise Nested Loop Join

Reads chunks of e1 into memory and reads e2 once for each chunk. Much faster, but
requires memory. Further improvement: Use hashing for equi-joins.

• e1⋈SMe2 Sort Merge Join
Scans e1 and e2 only once, but requires suitable sorted input. Equi-joins only.

• e1⋈HHe2 Hybrid-Hash Join
Partitions e1 and e2 into partitions that can be joined in memory. Equi-joins only.
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Introduction Query Execution

Physical Algebra - Aggregation

Other operators also have different implementations:
• ΓSI Aggregation Sorted Input

Aggregates the input directly. Trivial and fast, but requires sorted input
• ΓQS Aggregation Quick Sort

Sorts chunks of input with quick sort, merges sorts
• ΓHS Aggregation Heap Sort

Like ΓQS . Slower sort, but longer runs
• ΓHH Aggregation Hybrid Hash

Partitions like a hybrid hash join.
Even more variants with early aggregation etc. Similar for other operators.
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Introduction Query Execution

Physical Algebra - Summary

• logical algebras describe only the general approach
• physical algebra fixes the exact execution including runtime characteristics
• multiple physical operators possible for a single logical operator
• query optimizer must produce physical algebra
• operator selection is a crucial step during optimization
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Textbook Query Optimization

2. Textbook Query Optimization

• Algebra Revisited
• Canonical Query Translation
• Logical Query Optimization
• Physical Query Optimization
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Textbook Query Optimization Algebra Revisited

Algebra Revisited

The algebra needs some more thought:
• correctness is critical for query optimization
• can only be guaranteed by a formal model
• the algebra description in the introduction was too cursory

What we ultimately want to do with an algebraic model:
• decide if two algebraic expressions are equivalent (produce the same result)

This is too difficult in practice (not computable in general), so we at least want to:
• guarantee that two algebraic expressions are equivalent (for some classes of expressions)

This still requires a strong formal model. We accept false negatives, but not false positives.
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Textbook Query Optimization Algebra Revisited

Tuples
Tuple:
• a (unordered) mapping from attribute names to values of a domain
• sample: [name: ”Sokrates”, age: 69]

Schema:
• a set of attributes with domain, written A(t)
• sample: {(name,string),(age, number)}

Note:
• simplified notation on the slides, but has to be kept in mind
• domain usually omitted when not relevant
• attribute names omitted when schema known
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Textbook Query Optimization Algebra Revisited

Tuple Concatenation

• notation: t1 ◦ t2
• sample: [name: ”Sokrates”, age: 69]◦[country: ”Greece”]

= [name: ”Sokrates”, age: 69, country: ”Greece”]
• note: t1 ◦ t2 = t2 ◦ t1, tuples are unordered

Requirements/Effects:
• A(t1) ∩ A(t2) = ∅
• A(t1 ◦ t2) = A(t1) ∪ A(t2)
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Textbook Query Optimization Algebra Revisited

Tuple Projection
Consider t = [name: ”Sokrates”, age: 69, country: ”Greece”]

Single Attribute:
• notation t.a
• sample: t.name = ”Sokrates”

Multiple Attributes:
• notation t|A
• sample: t|{name,age} = [name: ”Sokrates”, age: 69]

Requirements/Effects:
• a ∈ A(t), A ⊆ A(t)
• A(t|A) = A
• notice: t.a produces a value, t|A produces a tuple
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Textbook Query Optimization Algebra Revisited

Relations

Relation:
• a set of tuples with the same schema
• sample: {[name: ”Sokrates”, age: 69], [name: ”Platon”, age: 45]}

Schema:
• schema of the contained tuples, written A(R)
• sample: {(name,string),(age, number)}
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Textbook Query Optimization Algebra Revisited

Sets vs. Bags
• relations are sets of tuples
• real data is usually a multi set (bag)

Example: select age
from student

age
23
24
24
…

• we concentrate on sets first for simplicity
• many (but not all) set equivalences valid for bags

The optimizer must consider three different semantics:
• logical algebra operates on bags
• physical algebra operates on streams (order matters)
• explicit duplicate elimination ⇒ sets
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Textbook Query Optimization Algebra Revisited

Set Operations

Set operations are part of the algebra:
• union (L ∪ R), intersection (L ∩ R), difference (L \ R)
• normal set semantic
• but: schema constraints
• for bags defined via frequencies (union → +, intersection → min, difference → −)

Requirements/Effects:
• A(L) = A(R)
• A(L ∪ R) = A(L) = A(R), A(L ∩ R) = A(L) = A(R), A(L \ R) = A(L) = A(R)
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Textbook Query Optimization Algebra Revisited

Free Variables

Consider the predicate age = 62

• can only be evaluated when age has a meaning
• age behaves a free variable
• must be bound before the predicate can be evaluated
• notation: F(e) are the free variables of e

Note:
• free variables are essential for predicates
• free variables are also important for algebra expressions
• dependent join etc.
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Textbook Query Optimization Algebra Revisited

Selection

Selection:
• notation: σp(R)
• sample: σa≥2({[a : 1], [a : 2], [a : 3]}) = {[a : 2], [a : 3]}
• predicates can be arbitrarily complex
• optimizer especially interested in predicates of the form attrib = attrib or attrib = const

Requirements/Effects:
• F(p) ⊆ A(R)
• A(σp(R)) = A(R)



38 / 638

Textbook Query Optimization Algebra Revisited

Projection

Projection:
• notation: ΠA(R)
• sample: Π{a}({[a : 1, b : 1], [a : 2, b : 1]}) = {[a : 1], [a : 2]}
• eliminates duplicates for set semantic, keeps them for bag semantic
• note: usually written as Πa,b instead of the correct Π{a,b}

Requirements/Effects:
• A ⊆ A(R)
• A(ΠA(R)) = A
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Textbook Query Optimization Algebra Revisited

Rename

Rename:
• notation: ρa→b(R)
• sample: ρa→c({[a : 1, b : 1], [a : 2, b : 1]}) = {[c : 1, b : 1], [c : 2, b : 2]}?
• often a pure logical operator, no code generation
• important for the data flow

Requirements/Effects:
• a ∈ A(R), b 6∈ A(R)
• A(ρa→b(R)) = A(R) \ {a} ∪ {b}
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Textbook Query Optimization Algebra Revisited

Join
Consider L = {[a : 1], [a : 2]},R = {[b : 1], [b : 3]}

Cross Product:
• notation: L× R
• sample: L× R = {[a : 1, b : 1], [a : 1, b : 3], [a : 2, b : 1], [a : 2, b : 3]}

Join:
• notation: L⋈pR
• sample: L⋈a=bR = {[a : 1, b : 1]}
• defined as σp(L× R)

Requirements/Effects:
• A(L) ∩ A(R) = ∅,F(p) ⊆ (A(L) ∪ A(R))
• A(L× R) = A(L) ∪ A(R)
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Textbook Query Optimization Algebra Revisited

Equivalences
Equivalences for selection and projection:

σp1∧p2(e) ≡ σp1(σp2(e)) (1)
σp1(σp2(e)) ≡ σp2(σp1(e)) (2)

ΠA1(ΠA2(e)) ≡ ΠA1(e) (3)
if A1 ⊆ A2

σp(ΠA(e)) ≡ ΠA(σp(e)) (4)
if F(p) ⊆ A

σp(e1 ∪ e2) ≡ σp(e1) ∪ σp(e2) (5)
σp(e1 ∩ e2) ≡ σp(e1) ∩ σp(e2) (6)
σp(e1 \ e2) ≡ σp(e1) \ σp(e2) (7)
ΠA(e1 ∪ e2) ≡ ΠA(e1) ∪ΠA(e2) (8)
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Textbook Query Optimization Algebra Revisited

Equivalences
Equivalences for joins:

e1 × e2 ≡ e2 × e1 (9)
e1⋈pe2 ≡ e2⋈pe1 (10)

(e1 × e2)× e3 ≡ e1 × (e2 × e3) (11)
(e1⋈p1e2)⋈p2e3 ≡ e1⋈p1(e2⋈p2e3) (12)

σp(e1 × e2) ≡ e1⋈pe2 (13)
σp(e1 × e2) ≡ σp(e1)× e2 (14)

if F(p) ⊆ A(e1)
σp1(e1⋈p2e2) ≡ σp1(e1)⋈p2e2 (15)

if F(p1) ⊆ A(e1)
ΠA(e1 × e2) ≡ ΠA1(e1)×ΠA2(e2) (16)

if A = A1 ∪ A2,A1 ⊆ A(e1),A2 ⊆ A(e2)
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Textbook Query Optimization Canonical Query Translation

Canonical Query Translation
Canonical translation of SQL queries into algebra expressions.
Structure:

select distinct a1, . . . , an
from R1, . . . ,Rk
where p

Restrictions:
• only select distinct (sets instead of bags)
• no group by, order by, union, intersect, except
• only attributes in select clause (no computed values)
• no nested queries, no views
• not discussed here: NULL values
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Textbook Query Optimization Canonical Query Translation

From Clause

1. Step: Translating the from clause

Let R1, . . . ,Rk be the relations in the from clause of the query.
Construct the expression:

F =

{
R1 if k = 1
((. . . (R1 × R2)× . . .)× Rk) else
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Textbook Query Optimization Canonical Query Translation

Where Clause

2. Step: Translating the where clause

Let p be the predicate in the where clause of the query (if a where clause exists).
Construct the expression:

W =

{
F if there is no where clause
σp(F ) otherwise
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Textbook Query Optimization Canonical Query Translation

Select Clause

3. Step: Translating the select clause

Let a1, . . . , an (or ”*”) be the projection in the select clause of the query.
Construct the expression:

S =

{
W if the projection is ”*”
Πa1,...,an(W ) otherwise

4. Step: S is the canonical translation of the query.
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Textbook Query Optimization Canonical Query Translation

Sample Query

select distinct s.sname
from student s, attend a, lecture l , professor p
where s.sno = a.asno and a.alno = l .lno and

l .lpno = p.pno and p.pname =′′ Sokrates ′′

Πsname

σsno=asno∧alno=lno∧lpno=pno∧pname=''Sokrates''

⨉

⨉

⨉

professorlectureattendstudent
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Textbook Query Optimization Canonical Query Translation

Extension - Group By Clause

2.5. Step: Translating the group by clause. Not part of the ”canonical” query translation!

Let g1, . . . , gm be the attributes in the group by clause and agg the aggregations in the
select clause of the query (if a group by clause exists).
Construct the expression:

G =

{
W if there is no group by clause
Γg1,...,gm;agg(W ) otherwise

use G instead of W in step 3.
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Textbook Query Optimization Logical Query Optimization

Optimization Phases

Textbook query optimization steps:
1. translate the query into its canonical algebraic expression
2. perform logical query optimization
3. perform physical query optimization

we have already seen the translation, from now one assume that the algebraic expression is
given.
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Textbook Query Optimization Logical Query Optimization

Concept of Logical Query Optimization

• foundation: algebraic equivalences
• algebraic equivalences span the potential search space
• given an initial algebraic expression: apply algebraic equivalences to derive new

(equivalent) algebraic expressions
• note: algebraic equivalences do not indicate a direction, they can be applied in both ways
• the conditions attached to the equivalences have to be checked

Algebraic equivalences are essential:
• new equivalences increase the potential search space
• better plans
• but search more expensive
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Textbook Query Optimization Logical Query Optimization

Performing Logical Query Optimization

Which plans are better?
• plans can only be compared if there is a cost function
• cost functions need details that are not available when only considering logical algebra
• consequence: logical query optimization remains a heuristic
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Textbook Query Optimization Logical Query Optimization

Performing Logical Query Optimization

Most algorithms for logical query optimization use the following strategies:
• organization of equivalences into groups
• directing equivalences

Directing means specifying a preferred side.
A directed equivalences is called a rewrite rule. The groups of rewrite rules are applied
sequentially to the initial algebraic expression. Rough goal: reduce the size of intermediate

results
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Textbook Query Optimization Logical Query Optimization

Phases of Logical Query Optimization

1. break up conjunctive selection predicates
(equivalence (1) →)

2. push selections down
(equivalence (2) →, (14) →)

3. introduce joins
(equivalence (13) →)

4. determine join order
(equivalence (9), (10), (11), (12))

5. introduce and push down projections
(equivalence (3) ←, (4) ←, (16) →)
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Textbook Query Optimization Logical Query Optimization

Step 1: Break up conjunctive selection predicates
• selection with simple predicates can be moved around easier

σpname=''Sokrates''

σsno=asno

σalno=lno

σlpno=pno

student attend lecture professor

⨉

⨉

⨉

Πsname
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Textbook Query Optimization Logical Query Optimization

Step 2: Push Selections Down
• reduce the number of tuples early, reduces the work for later operators

σpname=''Sokrates''

σsno=asno

σalno=lno

σlpno=pno

student attend lecture professor

⨉

⨉

⨉

Πsname
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Textbook Query Optimization Logical Query Optimization

Step 3: Introduce Joins

• joins are cheaper than cross products

⨝lpno=pno

⨝alno=lno

⨝sno=asno

σpname=''Sokrates''

student attend lecture professor

Πsname
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Textbook Query Optimization Logical Query Optimization

Step 4: Determine Join Order

• costs differ vastly
• difficult problem, NP hard (next chapter discusses only join ordering)

Observations in the sample plan:
• bottom most expression is

student⋈sno=asnoattend
• the result is huge, all students, all their lectures
• in the result only one professor relevant

σname=′′Sokrates′′(professor)
• join this with lecture first, only lectures by him, much smaller



58 / 638

Textbook Query Optimization Logical Query Optimization

Step 4: Determine Join Order

• intermediate results much smaller

⨝lpno=pno

⨝alno=lno

\joinsno=asno

σpname=''Sokrates''

studentattendlectureprofessor

Πsname
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Textbook Query Optimization Logical Query Optimization

Step 5: Introduce and Push Down Projections
• eliminate redundant attributes
• only before pipeline breakers

Πlpno,lno

Πsname

professor lecture attend student

σpname=''Sokrates''

⨝sno=asno

⨝alno=lno

⨝lpno=pno

Πpno

Πlno Πalno,asno

Πasno Πsno,sname
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Textbook Query Optimization Logical Query Optimization

Limitations
Consider the following SQL query

select distinct s.sname
from student s, lecture l , attend a
where s.sno = a.asno and a.alno = l .lno and l .ltitle =′′ Logic ′′

Steps 1-2 could result in plan below. No further selection push down.

σalno=lno

σsno=asno

student attendlecture

⨉

⨉

Πsname

σltitle=''Logic''
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Textbook Query Optimization Logical Query Optimization

Limitations
However a different join order would allow further push down:

σalno=lno

σsno=asno

student attend lecture

⨉

⨉

Πsname

σltitle=''Logic''

⇒

σalno=lno

σsno=asno

student attend lecture

⨉

⨉

Πsname

σltitle=''Logic''

• the phases are interdependent
• the separation can loose the optimal solution



62 / 638

Textbook Query Optimization Physical Query Optimization

Physical Query Optimization

• add more execution information to the plan
• allow for cost calculations
• select index structures/access paths
• choose operator implementations
• add property enforcer
• choose when to materialize (temp/DAGs)
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Textbook Query Optimization Physical Query Optimization

Access Paths Selection

• scan+selection could be done by an index lookup
• multiple indices to choose from
• table scan might be the best, even if an index is available
• depends on selectivity, rule of thumb: 10%
• detailed statistics and costs required
• related problem: materialized views
• even more complex, as more than one operator could be substitued
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Textbook Query Optimization Physical Query Optimization

Operator Selection

• replace a logical operator (e.g. ⋈) with a physical one (e.g. ⋈HH)
• semantic restrictions: e.g. most join operators require equi-conditions
• ⋈BNL is better than ⋈NL

• ⋈SM and ⋈HH are usually better than both
• ⋈HH is often the best if not reusing sorts
• decission must be cost based
• even ⋈NL can be optimal!
• not only joins, has to be done for all operators
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Textbook Query Optimization Physical Query Optimization

Property Enforcer

• certain physical operators need certain properties
• typical example: sort for ⋈SM

• other example: in a distributed database operators need the data locally to operate
• many operator requirements can be modeled as properties (hashing etc.)
• have to be guaranteed as needed
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Textbook Query Optimization Physical Query Optimization

Materializing

• sometimes materializing is a good idea
• temp operator stores input on disk
• essential for multiple consumers (factorization, DAGs)
• also relevant for ⋈NL

• first pass expensive, further passes cheap
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Textbook Query Optimization Physical Query Optimization

Physical Plan for Sample Query

⨝SM
sno=asno

⨝SM
alno=lno

sortsno

sortalno

sortasno

indexscanpname=''Sokrates''

sortlno

⨝SM
lpno=pno

sortlpnosortpno

Πsno,snameΠasno

Πalno,asnoΠlno

Πpno

studentattendlectureprofessor

Πsname

Πlpno,lno
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Textbook Query Optimization Physical Query Optimization

Outlook

• separation in two phases looses optimality
• many decissions (e.g. view resolution) important for logical optimization
• textbook physical optimization is incomplete
• did not discuss cost calculations
• will look at this again in later chapters
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Join Ordering

3. Join Ordering
• Basics
• Search Space
• Greedy Heuristics
• IKKBZ
• MVP
• Dynamic Programming
• Simplifying the Query Graph
• Adaptive Optimization
• Generating Permutations
• Transformative Approaches
• Randomized Approaches
• Metaheuristics
• Iterative Dynamic Programming
• Order Preserving Joins
• Complexity of Join Processing
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Join Ordering Basics

Queries Considered

Concentrate on join ordering, that is:
• conjunctive queries
• simple predicates
• predicates have the form a1 = a2 where a1 is an attribute and a2 is either an attribute or

a constant
• even ignore constants in some algorithms

We join relations R1, . . . ,Rn, where Ri can be
• a base relation
• a base relation including selections
• a more complex building block or access path

Pretending to have a base relation is ok for now.
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Join Ordering Basics

Query Graph

Queries of this type can be characterized by their query graph:
• the query graph is an undirected graph with R1, . . . ,Rn as nodes
• a predicate of the form a1 = a2, where a1 ∈ Ri and a2 ∈ Rj forms an edge between Ri

and Rj labeled with the predicate
• a predicate of the form a1 = a2, where a1 ∈ Ri and a2 is a constant forms a self-edge on

Ri labeled with the predicate
• most algorithms will not handle self-edges, they have to be pushed down
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Join Ordering Basics

Sample Query Graph

student attend

lectureprofessor

sno=asno

lno=alno

pno=lpno

pname="Sokrates"
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Join Ordering Basics

Shapes of Query Graphs

chains cycles stars

cliques cyclic tree grid
• real world queries are somewhere in-between
• chain, cycle, star and clique are interesting to study
• they represent certain kind of problems and queries
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Join Ordering Basics

Join Trees

A join tree is a binary tree with
• join operators as inner nodes
• relations as leaf nodes

Algorithms will produce different kinds of join trees
• ordered or unordered
• with cross products or without

The most common case is ordered, without cross products
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Join Ordering Basics

Shape of Join Trees

Commonly used classes of join trees:
• left-deep tree
• right-deep tree
• zigzag tree
• bushy tree

The first three are summarized as linear trees.
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Join Ordering Basics

Join Selectivity

Input:
• cardinalities |Ri |
• selectivities fi,j : if pi,j is the join predicate between Ri and Rj , define

fi,j =
|Ri⋈pi,jRj |
|Ri × Rj |

Calculate:
• result cardinality:

|Ri⋈pi,jRj | = fi,j |Ri ||Rj |

Rational: The selectivity can be computed/estimated easily (ideally).
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Join Ordering Basics

Cardinality of Join Trees

Given a join tree T , the result cardinality |T | can be computed recursively as

|T | =
{
|Ri | if T is a leaf Ri
(
∏

Ri∈T1,Rj∈T2
fi,j)|T1||T2| if T = T1⋈T2

• allows for easy calculation of join cardinality
• requires only base cardinalities and selectivities
• assumes independence of the predicates
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Join Ordering Basics

Sample Statistics

As running example, we use the following statistics:

|R1| = 10

|R2| = 100

|R3| = 1000

f1,2 = 0.1

f2,3 = 0.2

• implies query graph R1 − R2 − R3

• assume fi,j = 1 for all other combinations
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Join Ordering Basics

A Basic Cost Function

Given a join tree T , the cost function Cout is defined as

Cout(T ) =

{
0 if T is a leaf Ri
|T |+ Cout(T1) + Cout(T2) if T = T1⋈T2

• sums up the sizes of the (intermediate) results
• rational: larger intermediate results cause more work
• we ignore the costs of single relations as they have to be read anyway
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Join Ordering Basics

Basic Join Specific Cost Functions
For single joins:

Cnlj(e1⋈e2) = |e1||e2|
Chj(e1⋈e2) = 1.2|e1|

Csmj(e1⋈e2) = |e1| log(|e1|) + |e2| log(|e2|)

For sequences of join operators s = s1⋈ . . .⋈sn:

Cnlj(s) =

n∑
i=2

|s1⋈ . . .⋈si−1||si |

Chj(s) =

n∑
i=2

1.2|s1⋈ . . .⋈si−1|

Csmj(s) =

n∑
i=2

|s1⋈ . . .⋈si−1| log(|s1⋈ . . .⋈si−1|) +
n∑

i=2

|si | log(|si |)
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Join Ordering Basics

Remarks on the Basic Cost Functions

• cost functions are simplistic
• algorithms are modelled very simplified (e.g. 1.2, no n-way sort etc.)
• designed for left-deep trees
• Chj and Csmj do not work for cross products (fix: take output cardinality then, which is

Cnl)

• in reality: other parameters than cardinality play a role
• cost functions assume the same join algorithm for the whole join tree
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Join Ordering Basics

Sample Cost Calculations

Cout Cnl Chj Csmj
R1⋈R2 100 1000 12 697.61
R2⋈R3 20000 100000 120 10630.26
R1 × R3 10000 10000 10000 10000.00
(R1⋈R2)⋈R3 20100 101000 132 11327.86
(R2⋈R3)⋈R1 40000 300000 24120 32595.00
(R1 × R3)⋈R2 30000 1010000 22000 143542.00

• costs differ vastly between join trees
• different cost functions result in different costs
• the cheapest plan is always the same here, but relative order varies
• join trees with cross products are expensive
• join order is essential under all cost functions
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Join Ordering Basics

More Examples
For the query |R1| = 1000, |R2| = 2, |R3| = 2, f1,2 = 0.1, f1,3 = 0.1
we have costs:

Cout
R1⋈R2 200
R2 × R3 4
R1⋈R3 200
(R1⋈R2)⋈R3 240
(R2 × R3)⋈R1 44
(R1⋈R3)⋈R2 240

• here cross product is best
• but relies on the small sizes of |R2| and |R3|
• attractive if the cardinality of one relation is small
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Join Ordering Basics

More Examples (2)

For the query |R1| = 10, |R2| = 20, |R3| = 20, |R4| = 10, f1,2 = 0.01, f2,3 = 0.5, f3,4 = 0.01
we have costs:

Cout
R1⋈R2 2
R2⋈R3 200
R3⋈R4 2
((R1⋈R2)⋈R3)⋈R4 24
((R2 × R3)⋈R1)⋈R4 222
(R1⋈R2)⋈(R3⋈R4) 6

• covers all join trees due to the symmetry of the query
• the bushy tree is better than all join trees
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Join Ordering Basics

Symmetry and ASI

• cost function Cimpl is called symmetric if Cimpl(e1⋈imple2) = Cimpl(e2⋈imple1)
• for symmetric cost functions commutativity can be ignored
• ASI: adjacent sequence interchange (see IKKBZ algorithm for a definition)

Our basic cost functions can be classified as:
ASI ¬ASI

symmetric Cout Csmj
¬symmetric Chj -
• more complex cost functions are usually ¬ASI, often also ¬symmetric
• symmetry and especially ASI can be exploited during optimization
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Join Ordering Search Space

Classification of Join Ordering Problems

We distinguish four different dimensions:
1. query graph class: chain, cycle, star, and clique
2. join tree structure: left-deep, zig-zag, or bushy trees
3. join construction: with or without cross products
4. cost function: with or without ASI property

In total, 48 different join ordering problems.
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Join Ordering Search Space

Reminder: Catalan Numbers

The number of binary trees with n leave nodes is given by C(n − 1), where C(n) is defined as

C(n) =
{

1 if n = 0∑n−1
k=0 C(k)C(n − k − 1) if n > 0

It can be written in a closed form as

C(n) = 1

n + 1

(
2n
n

)

The Catalan Numbers grown in the order of Θ(4n/n 3
2 )
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Join Ordering Search Space

Number Of Join Trees with Cross Products

left deep n!
right deep n!
zig-zag n!2n−2

bushy n!C(n − 1)

= (2n−2)!
(n−1)!

• rational: number of leaf combinations (n!) × number of unlabeled trees (varies)
• grows exponentially
• increases even more with a flexible tree structure
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Join Ordering Search Space

Chain Queries, no Cross Products

Let us denote the number of left-deep join trees for a chain query R1 − . . .− Rn as f (n)
• obviously f (0) = 1, f (1) = 1

• for n > 1, consider adding Rn to all join trees for R1 − . . .− Rn−1

• Rn can be added at any position following Rn−1

• lets denote the position of Rn−1 from the bottom with k ([1, n − 1])
• there are n − k join trees for adding Rn after Rn−1

• one additional tree if k = 1, Rn can also be added before Rn−1

• for Rn−1 to be at k, Rn−k − . . .Rn−2 must be below it. f (k − 1) trees
for n > 1 :

f (n) = 1 +

n−1∑
k=1

f (k − 1) ∗ (n − k)
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Join Ordering Search Space

Chain Queries, no Cross Products (2)

The number of left-deep join trees for chain queries of size n is

f (n) =
{

1 if n < 2

1 +
∑n−1

k=1 f (k − 1) ∗ (n − k) if n ≥ 2

solving the recurrence gives the closed form

f (n) = 2n−1

• generalization to zig-zag as before
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Join Ordering Search Space

Chain Queries, no Cross Products (3)
The generalization to bushy trees is not as obvious
• each subtree must contain a subchain to avoid cross products
• thus do not add single relations but subchains
• whole chain must be R1 − . . .− Rn, cut anywhere
• consider commutativity (two possibilities)

This leads to the formula

f (n) =
{

1 if n < 2∑n−1
k=1 2f (k)f (n − k) if n ≥ 2

solving the recurrence gives the closed form

f (n) = 2n−1C(n − 1)
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Join Ordering Search Space

Star Queries, no Cross Products

Consider a star query with R1 at the center and R2, . . . ,Rn as satellites.
• the first join must involve R1

• afterwards all other relations can be added arbitrarily

This leads to the following formulas:
• left-deep: 2 ∗ (n − 1)!

• zig-zag: 2 ∗ (n − 1)! ∗ 2n−2 = (n − 1)! ∗ 2n−1

• bushy: no bushy trees possible (R1 required), same as zig-zag
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Join Ordering Search Space

Clique Queries, no Cross Products

• in a clique query, every relation is connected to each other
• thus no join tree contains cross products
• all join trees are valid join trees, the number is the same as with cross products
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Join Ordering Search Space

Sample Numbers, without Cross Products

Chain Queries Star Queries
Left-Deep Zig-Zag Bushy Left-Deep Zig-Zag/Bushy

n 2n−1 22n−3 2n−1C(n − 1) 2(n − 1)! 2n−1(n − 1)!

1 1 1 1 1 1
2 2 2 2 2 2
3 4 8 8 4 8
4 8 32 40 12 48
5 16 128 224 48 384
6 32 512 1344 240 3840
7 64 2048 8448 1440 46080
8 128 8192 54912 10080 645120
9 256 32768 366080 80640 10321920

10 512 131072 2489344 725760 18579450
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Join Ordering Search Space

Sample Numbers, with Cross Products

Left-Deep Zig-Zag Bushy
n n! n!2n−2 n!C(n − 1)

1 1 1 1
2 2 2 2
3 6 12 12
4 24 96 120
5 120 960 1680
6 720 11520 30240
7 5040 161280 665280
8 40320 2580480 17297280
9 362880 46448640 518918400

10 3628800 968972800 17643225600
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Join Ordering Search Space

Problem Complexity

query graph join tree cross products cost function complexity
general left-deep no ASI NP-hard
tree/star/chain left-deep no ASI, 1 joint. P
star left-deep no NLJ+SMJ NP-hard
general/tree/star left-deep yes ASI NP-hard
chain left-deep yes - open
general bushy no ASI NP-hard
tree bushy no - open
star bushy no ASI P
chain bushy no any P
general bushy yes ASI NP-hard
tree/star/chain bushy yes ASI NP-hard
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Join Ordering Greedy Heuristics

Greedy Heuristics - First Algorithm

• search space of joins trees is very large
• greedy heuristics produce suitable join trees very fast
• suitable for large queries

For the first algorithm we consider:
• left-deep trees
• no cross products
• relations ordered to some weight function (e.g. cardinality)

Note: the algorithms produces a sequence of relations; it uniquely identifies the left-deep join
tree.
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Join Ordering Greedy Heuristics

Greedy Heuristics - First Algorithm (2)

GreedyJoinOrdering-1(R = {R1, . . . ,Rn},w : R → R)
Input: a set of relations to be joined and weight function
Output:a join order
S = ε
while (|R | > 0) {
m = arg minRi∈R w(Ri)
R = R \ {m}
S = S◦ < m >

}
return S

• disadvantage: fixed weight functions
• already chosen relations do not affect the weight
• e.g. does not support minimizing the intermediate result
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Join Ordering Greedy Heuristics

Greedy Heuristics - Second Algorithm

GreedyJoinOrdering-2(R = {R1, . . . ,Rn},w : R ,R∗ → R)
Input: a set of relations to be joined and weight function
Output:a join order
S = ε
while (|R | > 0) {
m = arg minRi∈R w(Ri ,S)
R = R \ {m}
S = S◦ < m >

}
return S

• can compute relative weights
• but first relation has a huge effect
• and the fewest information available
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Join Ordering Greedy Heuristics

Greedy Heuristics - Third Algorithm
GreedyJoinOrdering-3(R = {R1, . . . ,Rn},w : R ,R∗ → R)
Input: a set of relations to be joined and weight function
Output:a join order
S = ∅
for each Ri ∈ R {
R ′ = R \ {Ri}
S ′ =< Ri >
while (|R ′| > 0) {
m = arg minRj∈R ′ w(Rj ,S ′)

R ′ = R ′ \ {m}
S ′ = S ′◦ < m >

}
S = S ∪ {S ′}

}
return arg minS′∈S w(S ′[n],S ′[1 : n − 1])
• commonly used: minimize selectivities (MinSel)
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Join Ordering Greedy Heuristics

Greedy Operator Ordering

• the previous greedy algorithms only construct left-deep trees
• Greedy Operator Ordering (GOO) [1] constructs bushy trees

Idea:
• all relations have to be joined somewhere
• but joins can also happen between whole join trees
• we therefore greedily combine join trees (which can be relations)
• combine join trees such that the intermediate result is minimal
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Join Ordering Greedy Heuristics

Greedy Operator Ordering (2)

GOO(R = {R1, . . . ,Rn})
Input: a set of relations to be joined
Output:a join tree
T = R
while |T | > 1 {
(Ti ,Tj) = arg min(Ti∈T ,Tj∈T ),Ti 6=Tj |Ti⋈Tj |
T = (T \ {Ti}) \ {Tj}
T = T ∪ {Ti⋈Tj}

}
return T0 ∈ T

• constructs the result bottom up
• join trees are combined into larger join trees
• chooses the pair with the minimal intermediate result in each pass
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Join Ordering IKKBZ

IKKBZ

Polynomial algorithm for join ordering (original [2], improved [3])
• produces optimal left-deep trees without cross products
• requires acyclic join graphs
• cost function must have ASI property
• join method must be fixed

Can be used as heuristic if the requirements are violated
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Join Ordering IKKBZ

Overview

• the algorithms considers each relation as first relation to be joined
• it tries to order the other relations by ”benefit” (rank)
• if the ordering violates the query constraints, it constructs compounds
• the compounds guarantee the constraints (locally) and are again ordered by benefit
• related to a known job-ordering algorithm
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Join Ordering IKKBZ

Cost Function

The IKKBZ algorithm considers only cost functions of the form

C(Ti⋈Rj) = |Ti | ∗ hj(|Rj |)

• each relation Rj can have its own hj

• we denote the set of hj by H, writing CH for the parametrized cost function
• examples: hj ≡ 1.2 for Chj , hj ≡ id for Cnl

We will often use cardinalities, thus we define ni :
• ni is the cardinality of Ri (ni = |Ri |)
• hi(ni) is are the costs per input tuple of a join with Ri
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Join Ordering IKKBZ

Precedence Graph

Given a query graph G = (V ,E) and a starting relation Rk , we construct the directed
precedence graph GP

k = (V P
k ,EP

k ) rooted in Rk as follows:
1. choose Rk as the root node of GP

k , V P
k = {Rk}

2. while |V P
k | < |V |, choose a Ri ∈ V \ V P

k such that ∃Rj ∈ V P
k : (Rj ,Ri) ∈ E . Add Ri to

V P
k and Rj → Ri to EP

k .

The precedence graph describes the (partial) ordering of joins implied by the query graph.
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Join Ordering IKKBZ

Sample Precedence Graph

R6

R5

R4R3

R2

R1

R2

R6R5

R4

R3

R1

query graph precedence graph rooted in R1
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Join Ordering IKKBZ

Conformance to a Precedence Graph

A sequence S = v1, . . . , vk of nodes conforms to a precedence graph G = (V ,E) if the
following conditions are satisfied:
1. ∀i ∈ [2, k]∃j ∈ [1, i [: (vj , vi) ∈ E
2. 6 ∃i ∈ [1, k], j ∈]i , k] : (vj , vi) ∈ E

Note: IKKBZ constructs left-deep trees, therefore it is sufficient to consider sequences.
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Join Ordering IKKBZ

Notations
For non-empty sequences S1 and S2 and a precedence graph G = (V ,E), we write S1 → S2 if
S1 must occur before S2. More precisely S1 → S2 iff:
1. S1 and S2 conform to G
2. S1 ∩ S2 = ∅
3. ∃vi , vj ∈ V : vi ∈ S1 ∧ vj ∈ S2 ∧ (vi , vj) ∈ E
4. 6 ∃vi , vj ∈ V : vi ∈ S1 ∧ vj ∈ V \ S1 \ S2 ∧ (vi , vj) ∈ E

Further, we write

R1,2,...,k = R1⋈R2⋈ . . .⋈Rk

n1,2,...,k = |R1,2,...,k |
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Join Ordering IKKBZ

Selectivities

For a given precedence graph, let Ri be a relation and Ri be the set of a relations from which
there exists a path to Ri

• in any conforming join tree which includes Ri , all relations from Ri must be joined first
• all other relations Rj that might be joined before Ri will have no connection to Ri , thus

fi,j = 1

Hence, we can define the selectivity of the join with Ri as

si =

{
1 if |Ri | = 0∏

Rj∈Ri
fi,j if |Ri | > 0

Note: we call the si a selectivities, although they depend on the precedence graph
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Join Ordering IKKBZ

Cardinalities

If the query graph is a chain (totally ordered), the following conditions holds:

n1,2,...,k = sk ∗ |Rk | ∗ |R1,2,...,k−1|
= sk ∗ nk ∗ n1,2,...,k−1

As a closed form, we can write

n1,2,...,k =

k∏
i=1

sini

as s1 = 1
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Join Ordering IKKBZ

Costs
The costs for a totally ordered precedence graph G can be computed as follows:

CH(G) =

n∑
i=2

[n1,2,...,i−1hi(ni)]

=

n∑
i=2

[(

i−1∏
j=1

sjnj)hi(ni)]

• if we choose hi(ni) = sini then CH ≡ Cout

• the factor sini determines how much the input relation to be joined with Ri changes its
cardinality after the join has been performed

• if sini is less than one, we call the join decreasing, if it is larger than one, we call the join
increasing
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Join Ordering IKKBZ

Costs (2)
For the algorithm, we prefer a (equivalent) recursive definition of the cost function:

CH(ε) = 0

CH(Ri) = 0 if Ri is the root
CH(Ri) = hi(ni) else

CH(S1S2) = CH(S1) + T (S1) ∗ CH(S2)

where

T (ε) = 1

T (S) =
∏

Ri∈S
sini
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Join Ordering IKKBZ

ASI Property

Let A and B be two sequences and V and U two non-empty sequences. We say a cost
function C has the adjacent sequence interchange property (ASI property), if and only if there
exists a function T and a rank function defined as

rank(S) = T (S)− 1

C(S)

such that the following holds

C(AUVB) ≤ C(AVUB)⇔ rank(U) ≤ rank(V )

if AUVB and AVUB satisfy the precedence constraints imposed by a given precedence graph.
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Join Ordering IKKBZ

First Lemma
Lemma: The cost function Ch has the ASI-Property.
Proof: The proof can be derived from the definition of CH :

CH(AUVB) = CH(A)
+T (A)CH(U)

+T (A)T (U)CH(V )

+T (A)T (U)T (V )CH(B)

and, hence,

CH(AUVB)− CH(AVUB) = T (A)[CH(V )(T (U)− 1)− CH(U)(T (V )− 1)]

= T (A)CH(U)CH(V )[rank(U)− rank(V )]

The lemma follows.



116 / 638

Join Ordering IKKBZ

Module

Let M = {A1, . . . ,An} be a set of sequences of nodes in a given precedence graph. Then, M is
called a module, if for all sequences B that do not overlap with the sequences in M, one of the
following conditions holds:

• B → Ai , ∀Ai ∈ M
• Ai → B, ∀Ai ∈ M
• B 6→ Ai and Ai 6→ B, ∀Ai ∈ M
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Join Ordering IKKBZ

Second Lemma

Lemma: Let C be any cost function with the ASI property and {A,B} a module. If A→ B
and additional rank(B) ≤ rank(A), then we find an optimal sequence among those in which B
directly follows A.
Proof: by contradiction. Every optimal permutation must have the form UAVBW since
A→ B.
Assumption: V 6= ε for all optimal solutions.
• if rank(V ) ≤ rank(A), we can exchange V and A without increasing the costs.
• if rank(A) ≤ rank(V ), rank(B) ≤ rank(V ) due to the transitivity of ≤. Hence, we can

exchange B and V without increasing the costs.
Both exchanges produces legal sequences since {A,B} is a module.
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Join Ordering IKKBZ

Contradictory Sequences and Compound Relations

• if the precedence graph demands A→ B but rank(B) ≤ rank(A), we speak of
contradictory sequences A and B

• second lemma ⇒ no non-empty subsequence can occur between A and B
• we combine A and B into a new single node replacing A and B
• this nodes represents a compound relation comprising of all relations in A and B
• its cardinality is computed by multiplying the cardinalities of all relations in A and B
• its selectivity is the product of all selectivities si of relations Ri contained in A and B
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Join Ordering IKKBZ

Normalization and Denormalization

• the continued process of building compound relations until no more contradictory
sequences exist is called normalization

• the opposite step, replacing a compound relation by the sequence of relations it was
derived from is called denormalization
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Join Ordering IKKBZ

Algorithm

IKKBZ(G,CH)
Input: an acyclic query graph G for relations R = {R1, . . . ,Rn},

a cost function CH
Output:the optimal left-deep tree
S = ∅
for each Ri ∈ R {
Gi = the precedence graph derived from G rooted at Ri
Si = IKKBZ-Sub(Gi ,CH)
S = S ∪ {Si}

}
return arg minSi∈S CH(Si)

• considers each relation as starting relation
• constructs the precedence graph and starts the main algorithm
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Algorithm (2)
IKKBZ-Sub(Gi ,CH)
Input: a precedence graph Gi for relations R = {R1, . . . ,Rn} rooted at Ri ,

a cost function CH
Output:the optimal left-deep tree under Gi
while Gi is not a chain {
r = a subtree of Gi whose subtrees are chains
IKKBZ-Normalize(r)
merge the chains under r according to the rank function (ascending)

}
IKKBZ-Denormalize(Gi)
return Gi

• transforms the precedence graph into a chain
• wherever there are multiple choices, there are serialized according to the rank
• normalization required to preserve the query graph
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Algorithm (3)

IKKBZ-Normalize(R)
Input: a subtree R of a precedence graph G = (V ,E)
Output:a normalized subtree
while ∃r , c ∈ T , (r , c) ∈ E : rank(r) > rank(c) {
replace r and c by a compound relation r ′ that represent rc

}
return R

• merges relations that would have been reorder if only considering the rank
• guarantees that the rank is ascending in each subchain
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Algorithm (4)

IKKBZ-Denormalize(R)
Input: a precedence graph R containing relations and compound relations
Output:a denormalized precedence graph, containing only relations
while ∃r ∈ R : r is a compound relation {
replace r by the sequence of relations it represents

}
return R

• unpacks the compound relations
• required to get a real join tree as final result
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Join Ordering IKKBZ

Sample Algorithm Execution

18100

100 10 20

R7R3

R1

R2

R4

R5

R6

10 100 R3

R1

R2 R4

R5 R6

R7

Input: query graph Step 1: precedence graph for R1

the precedence graph includes the ranks
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Sample Algorithm Execution (2)

R3

R1

R2 R4

R5 R6

R7

R6,7R5

R4R2

R1

R3

Step 1: precedence graph for R1 Step 2: normalization

rank(R6) > rank(R7), but R6 → R7
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Sample Algorithm Execution (3)

R6,7R5

R4R2

R1

R3

R5

R6,7

R4R2

R1

R3

Step 2: normalization Step 3: merging subchains

rank(R6,7) < rank(R5)
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Sample Algorithm Execution (3)

R5

R6,7

R4R2

R1

R3

R5

R4,6,7R2

R1

R3

Step 3: merging subchains Step 4: normalization

rank(R4) > rank(R6,7), but R4 → R6,7
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Sample Algorithm Execution (4)

R5

R4,6,7R2

R1

R3

R4,6,7

R5

R3

R2

R1

Step 4: normalization Step 5: merging subchains

rank(R4,6,7) < rank(R5) < rank(R3) < rank(R2)
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Sample Algorithm Execution (5)

R4,6,7

R5

R3

R2

R1

R2

R3

R5

R7

R6

R4

R1

Step 5: merging subchains Step 6: denormalization
Algorithm has to continue for all other root relations.
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Maximum Value Precedence Algorithm

• greedy heuristics can produce poor results
• IKKBZ only support acyclic queries and ASI cost functions
• Maximum Value Precedence (MVP) [4] algorithm is a polynomial time heuristic with

good results
• considers join ordering a graph theoretic problem
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Directed Join Graph

Given a conjunctive query with predicates P .
• for all join predicates p ∈ P , we denote by R(p) the relations whose attributes are

mentioned in p.
• the directed join graph of the query is a triple G = (V ,Ep ,Ev ), where V is the set of

predicates and Ep and Ev are sets of directed edges defined as follows
• for any nodes u, v ∈ V , if R(u) ∩R(v) 6= ∅ then (u, v) ∈ Ep and (v , u) ∈ Ep

• if R(u) ∩R(v) = ∅ then (u, v) ∈ Ev and (v , u) ∈ Ev

• edges in Ep are called physical edges, those in Ev virtual edges
Note: all nodes u, v there is an edge (u, v) that is either physical or virtual. Hence, G is a
clique.



132 / 638

Join Ordering MVP

Examples: Spanning Tree and Join Tree
• every spanning tree in the directed join graph leads to a join tree

R4R3R2R1 p1,2 p3,4

p2,3

query graph directed join graph

p1,2 p3,4

p2,3 R4

R3

R2R1

spanning tree I join tree I
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Join Ordering MVP

Examples: Spanning Tree and Join Tree (2)

R4R3R2R1 p1,2 p3,4

p2,3

query graph directed join graph

p1,2

p2,3

p3,4 R1 R2 R3 R4

spanning tree II join tree II
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Join Ordering MVP

Examples: Spanning Tree and Join Tree (3)

R5R1 R2 R3 R4 p4,5

p3,4p2,3

p1,2

query graph directed join graph

p4,5

p3,4p2,3

p1,2

R5

R4R3R3R2 R2R1

spanning tree III join tree III (?)

• spanning tree does not correspond to a (effective) join tree!
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Effective Spanning Trees

It can be shown that a spanning tree T = (V ,E) is effective, it is satisfies the following
conditions:
1. T is a binary tree
2. for all inner nodes v and nodes u with (u, v) ∈ E :
R(T (u))) ∩R(v) 6= ∅

3. for all nodes v , u1, u2 with u1 6= u2, (u1, v) ∈ E and (u2, v) ∈ E one of the following
conditions holds:
3.1 ((R(T (u1)) ∩R(v)) ∩ (R(T (u2)) ∩R(v))) = ∅ or
3.2 (R(T (u1)) = R(v)) ∨ (R(T (u2)) = R(v))

We denote by T (v) the partial tree rooted at v .
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Adding Weights to the Edges

For two nodes v , u ∈ V we define u u v = R(u) ∩R(v)
• for simplicity, we assume that every predicate involves exactly two relations
• then for all u, v ∈ V , a u v contains a single relation (or none)

Let v ∈ V be a node with R(v) = {Ri ,Rj}
• we abbreviate Ri⋈vRj by ⋈v

Using these notations, we can attach weights to the edges to define the weighted directed join
graph.
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Adding Weights to the Edges (2)

Let G = (V ,Ep ,Ev ) be a directed join graph for a conjunctive query with join predicates P .
The weighted directed join graph is derived from G by attaching a weight to each edge as
follows:
• Let (u, v) ∈ Ep be a physical edge. The weight wu,v of (u, v) is defined as

wu,v =
|⋈u|
|u u v |

• For virtual edges (u, v) ∈ Ev , we define

wu,v = 1

Note that wu,v is not symmetric.
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Remark on Edge Weights

The weights of physical edges are equal to the si used in the IKKBZ-Algorithm.
Assume R(u) = {R1,R2},R(v) = {R2,R3}. Then

wu,v =
|⋈u|
|u u v |

=
|R1⋈R2|
|R2|

=
f1,2|R1||R2|
|R2|

= f1,2|R1|

Hence, if the join R1⋈uR2 is executed before the join R2⋈vR3, the input size to the latter join
changes by a factor of wu,v
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Adding Weights to the Nodes

• the weight of a node reflects its results cardinality
• it depends on a (partial) spanning tree S

Given S, we denote by ⋈S
pi,j the result of the join ⋈pi,j if all joins preceding pi,j in S have been

executed. Then the weight attached to node pi,j is defined as

w(pi,j ,S) = |⋈S
pi,j |

For empty sequences we define w(pi,j , ε) = |Ri⋈pi,jRj |.
Similarly, we define the cost of a node pi,j depending on other joins preceding it in some given
spanning tree S. We denote this by C(pi,j ,S).
• the actual cost function can be chosen arbitrarily
• if we have several join implementations: take the minimum
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Algorithm Overview

The algorithm builds an effective spanning tree in two phases:
1. it takes those edges with a weight < 1

2. it adds the remaining edges
keeping track of effectiveness during the process.

• rational: weight < 1 is good
• decreases the work for later operators
• should be done early
• increasing intermediate results as late as possible
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MVP Algorithm

MVP(G)
Input: a weighted directed join graph G = (V ,Ep ,Ev )
Output:an effective spanning tree
Q1 = a priority queue for nodes, largest w first
Q2 = a priority queue for nodes, smallest w first
insert all nodes in V to Q1

G ′ = (V ′,E ′) with V ′ = V and E ′ = Ep // working graph
S = (VS ,Es) with Vs = V and Es = ∅ // result
MVP-Phase1(G,G ′,S,Q1,Q2)
MVP-Phase2(G,G ′,S,Q1,Q2)
return S
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MVP Algorithm (2)
MVP-Phase1(G,G ′,S,Q1,Q2)
Input: state from MVP
Output:modifies the state
while |Q1| > 0 ∧ |Es | < |V | − 1 {
v = head of Q1

U = {u|(u, v) ∈ E ′ ∧ wu,v < 1 ∧ (V ,ES ∪ {(u, v)}) is acyclic and effective}
if U = ∅ {
Q1 = Q1 \ {v}
Q2 = Q2 ∪ {v}

} else {
u = arg maxu∈U C(⋈v ,S)− C(⋈v , (V ,ES ∪ {(u, v)}))
MVPUpdate(G,G ′,S, (u, v))
recompute w for v and its ancestors

}
}
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MVP Algorithm (3)

MVP-Phase2(G,G ′,S,Q1,Q2)
Input: state from MVP
Output:modifies the state
while |Q2| > 0 ∧ |Es | < |V | − 1 {
v = head of Q2

U = {(x , y)|(x , y) ∈ E ′ ∧ (x = v ∨ y = v) ∧ (V ,ES ∪ {(x , y)}) is acyclic
and effective}

(x , y) = arg min(x ,y)∈U C(⋈v , (V ,ES ∪ {(x , y)}))− C(⋈v ,S)
MVPUpdate(G,G ′,S, (x , y))
recompute w for y and its ancestors

}
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MVP Algorithm (4)
MVPUpdate(G,G ′,S, (u, v))
Input: state from MVP, an edge to be added to S
Output:modifies the state
ES = ES ∪ {(u, v)}
E ′ = E ′ \ {(u, v), (v , u)}
E ′ = E ′ \ {(u,w)|(u,w) ∈ E ′}
E ′ = E ′ ∪ {(v ,w)|(u,w) ∈ Ep , (v ,w) ∈ Ev}
if v has two incoming edges in S {
E ′ = E ′ \ {(w , v)|(w , v) ∈ E ′}

}
if v has one outflowing edge in S {
E ′ = E ′ \ {(v ,w)|(v ,w) ∈ E ′}

}
• checks that S is a tree (one parent, at most two children)
• detects transitive physical edges
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Dynamic Programming

Basic premise:
• optimality principle
• avoid duplicate work

A very generic class of approaches:
• all cost functions (as long as optimality principle holds)
• left-deep/bushy, with/without cross products
• finds the optimal solution

Concrete algorithms can be more specialized of course.
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Optimality Principle

Consider the two joins trees
(((R1⋈R2)⋈R3)⋈R4)⋈R5

and
(((R3⋈R1)⋈R2)⋈R4)⋈R5

• if we know that ((R1⋈R2)⋈R3) is cheaper than ((R3⋈R1)⋈R2), we know that the first join
is cheaper than the second join

• hence, we could avoid generating the second alternative and still won’t miss the optimal
join tree
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Optimality Principle (2)

More formally, the optimality for join ordering:

Let T be an optimal join tree for relations R1, . . . ,Rn. Then, every subtree S of T
must be an optimal join tree for the relations contained in it.

• optimal substructure: the optimal solution for a problem can be constructed from optimal
solutions to its subproblems

• not true with physical properties (but can be fixed)
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Join Ordering Dynamic Programming

Overview Dynamic Programming Strategy

• generate optimal join trees bottom up
• start from optimal join trees of size one (relations)
• build larger join trees by (re-)using those of smaller sizes

To keep the algorithms concise, we use a subroutine CreateJoinTree that joins two trees.
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Creating Join Trees

CreateJoinTree(T1,T2)
Input: two (optimal) join trees T1, T2

for linear trees: assume that T2 is a single relation
Output:an (optimal) join tree for T1⋈T2

B = ∅
for each impl ∈ { applicable join implementations } {

if ¬right-deep only {
B = B ∪ {T1⋈

implT2}
}
if ¬left-deep only {
B = B ∪ {T2⋈

implT1}
}

}
return arg minT∈B C(T )



150 / 638

Join Ordering Dynamic Programming

Search Space with Sharing under Optimality Principle

R4R3R2R1

{R3,R4}

{R2,R4}

{R2,R3}

{R1,R2}

{R1,R3}

{R1,R4}

{R2,R3,R4}

{R1,R3,R4}

{R1,R2,R3}

{R1,R2,R4}

{R1,R2,R3,R4}
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Generating Linear Trees

• a (left-deep) linear tree T with |T | > 1 has the form T ′⋈Ri , with |T | = |T ′|+ 1

• if T is optimal, T ′ must be optimal too
• basic strategy: find the optimal T by joining all optimal T ′ with T \ T ′

enumeration order varies between algorithms
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Generating Linear Trees (2)
DPsizeLinear(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal left-deep (right-deep, zig-zag) join tree
B = an empty DP table 2R → join tree
for each Ri ∈ R
B[{Ri}] = Ri

for each 1 < s ≤ n ascending {
for each S ⊂ R ,Ri ∈ R : |S| = s − 1 ∧ Ri 6∈ S {

if ¬cross products ∧¬S connected to Ri continue
p1 = B[S], p2 = B[{Ri}]
if p1 = ε continue
P = CreateJoinTree(p1, p2);
if B[S ∪ {Ri}] = ε ∨ C(B[S ∪ {Ri}]) > C(P)
B[S ∪ {Ri}] = P

}
}
return B[{R1, . . . ,Rn}]
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Order in which Subtrees are generated

The ordering in which subtrees are generated does not matter as long as the following
condition is not violated:

Let S be a subset of {R1, . . . ,Rn}. Then, before a join tree for S can be generated,
the join trees for all relevant subsets of S must already be available.

• relevant means that they are valid subproblems by the algorithm
• usually this means connected (no cross products)
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Generation in Integer Order

000 {}
001 {R1}
010 {R2}
011 {R1,R2}
100 {R3}
101 {R1,R3}
110 {R2,R3}
111 {R1,R2,R3}

• can be done very efficiently
• set representation is just a number
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Generating Linear Trees (3)
DPsubLinear(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal left-deep (right-deep, zig-zag) join tree
B = an empty DP table 2R → join tree
for each Ri ∈ R
B[{Ri}] = Ri

for each 1 < i ≤ 2n − 1 ascending {
S = {Rj ∈ R |(bi/2j−1cmod 2) = 1}
for each Rj ∈ S {

if ¬cross products ∧¬S \ {Rj} connected to Rj continue
p1 = B[S \ {Rj}], p2 = B[{Rj}]
if p1 = ε continue
P = CreateJoinTree(p1, p2);
if B[S] = ε ∨ C(B[S]) > C(P) B[S] = P

}
}
return B[{R1, . . . ,Rn}]
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Generating Bushy Trees

• a bushy tree T with |T | > 1 has the form T1⋈T2, with |T | = |T1|+ |T2|
• if T is optimal, both T1 and T2 must be optimal too
• basic strategy: find the optimal T by joining all pairs of optimal T1 and T2
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Generating Bushy Trees (2)
DPsize(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal bushy join tree
B = an empty DP table 2R → join tree
for each Ri ∈ R
B[{Ri}] = Ri

for each 1 < s ≤ n ascending {
for each S1,S2 ⊂ R : |S1|+ |S2| = s {

if (¬cross products ∧¬S1 connected to S2) ∨ (S1 ∩ S2 6= ∅) continue
p1 = B[S1], p2 = B[S2]
if p1 = ε ∨ p2 = ε continue
P = CreateJoinTree(p1, p2);
if B[S1 ∪ S2] = ε ∨ C(B[S1 ∪ S2]) > C(P)
B[S1 ∪ S2] = P

}
}
return B[{R1, . . . ,Rn}]
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Generating Bushy Trees (3)
DPsub(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal bushy join tree
B = an empty DP table 2R → join tree
for each Ri ∈ R
B[{Ri}] = Ri

for each 1 < i ≤ 2n − 1 ascending {
S = {Rj ∈ R |(bi/2j−1cmod 2) = 1}
for each S1 ⊂ S,S2 = S \ S1 {

if ¬cross products ∧¬S1 connected to S2 continue
p1 = B[S1], p2 = B[S2]
if p1 = ε ∨ p2 = ε continue
P = CreateJoinTree(p1, p2);
if B[S] = ε ∨ C(B[S]) > C(P) B[S] = P

}
}
return B[{R1, . . . ,Rn}]
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Efficient Subset Generation

If we use integers as set representation, we can enumerate all subsets of S as follows:

S1 = S&(−S)
do {
S2 = S − S1
// Do something with S1 and S2
S1 = S&(S1 − S)

} while (S1! = S)

• enumerates all subsets except ∅ and S itself
• very fast
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Remarks

• DPsize/DPsizeLinear does not really test for p1 = ε

• it keeps a list of plans for a given size
• candidates can be found very fast
• ensures polynomial time in some cases (we will look at it again)
• DPsub/DPsubLinear is faster if the problem is not polynomial, though
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Memoization

• top-down formulation of dynamic programming
• recursive generation of join trees
• memoize already generated join trees to avoid duplicate work
• easier code
• sometimes more efficient (more knowledge, allows for pruning)
• but usually slower than dynamic programming
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Memoization (2)

Memoization(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal bushy join tree
B = an empty DP table 2R → join tree
for each Ri ∈ R
B[{Ri}] = Ri

MemoizationRec(B,R)
return B[{R1, . . . ,Rn}]

• initializes the DP table and triggers the recursive search
• main work done during recursion
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Memoization (3)

MemoizationRec(B,S)
Input: a DP table B and a set of relations S to be joined
Output:an optimal bushy join tree for the subproblem
if B[S] = ε {

for each S1 ⊂ S,S2 = S \ S1
p1 =MemoizationRec(B,S1), p2 =MemoizationRec(B,S2)
P=CreateJoinTree(p1, p2)
if B[S] = ε ∨ C(B[S]) > C(P) B[S] = P

}
}
return B[S]

• checks for connectedness omitted
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Dynamic Programming - Connected Subgraphs

• DP a very versatile strategy
• common usage scenario: bushy, no cross produts
• DPsize and DPsub support it, of course, but not optimal
• enumeration order does not consider the query graph
• many pairs have to be pruned due to conectedness
• especially bad for DPsub

Solution: consider the query graph structure during DP enumeration [5]
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Asymptotic Search Space
DPsize:
• organize DP by the size of the join tree
• problem: only few DP slots, many pairs considered

good algorithm for chains, very bad for cliques:
chains cycles stars cliques

pairs O(n4) O(n4) O(4n) O(4n)

DPsub:
• organize DP by the set of relations involved
• problem: always 2n DP slots, fixed enumeration

good algorithm for cliques, but adapts badly:
chains cycles stars cliques

pairs O(2n) O(n2n) O(3n) O(3n)
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Observation

DPsize and DPsub generate many pairs that are pruned anyway (connectedness, overlap).

Typical pruned pairs (chain with 4 relations):

not connected not disjoint invalid subproblems

last example ⇒ every join partner must be a connected subgraph:

. . .
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Graph Theoretic Approach

• reformulation as graph theoretic problem:
• enumerate all connected subgraphs of the query graph
• for each subgraph enumerate all other connected subgraphs that are disjoint but

connected to it
• each connected subgraph - complement pair (ccp) can be joined
• enumerate them suitable for DP ⇒ DP algorithm

algorithm adapts naturally to the graph structure:
chains cycles stars cliques

pairs O(n3) O(n3) O(n2n) O(3n)
Lohman et al: #ccp is a lower bound for all DP enumeration algorithms
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DP Algorithm using Connected Subgraphs
If we can efficiently enumerate all connected subgraphs/connected complement pairs, the
resulting DP algorithm is:
DPccp(R)
Input: a connected query graph with relations R = {R0, . . . ,Rn−1}
Output:an optimal bushy join tree
B = an empty DP table 2R → join tree
for ∀Ri ∈ R
B[{Ri}] = Ri

for ∀ csg-cmp-pairs (S1,S2), S = S1 ∪ S2 {
p1 = B[S1], p2 = B[S2]
P = CreateJoinTree(p1, p2);
if B[S] = ε ∨ C(B[S]) > C(P)
B[S] = P

}
return B[{R0, . . . ,Rn−1}]
The main problem is enumerating the pairs.
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Effect on Search Space
Absolute number of generated pairs

Chain Star
n DPccp DPsub DPsize DPccp DPsub DPsize
2 1 2 1 1 2 1
5 20 84 73 32 130 110
10 165 3,962 1,135 2,304 38,342 57,888
15 560 130,798 5,628 114,688 9,533,170 57,305,929
20 1,330 4,193,840 17,545 4,980,736 2,323,474,358 59,892,991,338

Cycle Clique
n DPccp DPsub DPsize DPccp DPsub DPsize
2 1 2 1 1 2 1
5 40 140 120 90 180 280
10 405 11,062 2,225 28,501 57,002 306,991
15 1,470 523,836 11,760 7,141,686 14,283,372 307,173,877
20 3,610 22,019,294 37,900 1,742,343,625 3,484,687,250 309,338,182,241
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Enumerating Connected Subgraphs

• two steps: enumerate all connected subgraphs, enumerate disjoint but connected
subgraphs for a given one ⇒ pairs

• enumerate all pairs, enumerate no duplicates, enumerate for DP
• if (a, b) is enumerated, do not enumerate (b, a)
• requires total ordering of connected subgraphs
• preparation: label nodes breadth-first from 0 to n − 1

Preliminaries, given query graph G = (V ,E):

V = {v0, . . . , vn−1}
N (V ′) = {v ′|v ∈ V ′ ∧ (v , v ′) ∈ E}
Bi = {vj |j ≤ i}
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Enumerating Connected Subgraphs (2)
EnumerateCsg(G):

EnumerateCsg(G, {n − 1, ..., 0}, ∅);

EnumerateCsg(G, S, X):
for all i ∈ S descending {

EnumerateCsgRec(G, {vi}, X ∪ (Bi ∩ S));
}

EnumerateCsgRec(G, S, X):
emit (S);
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G, (S ∪ S ′), (X ∪ N));
}

R0

R2

R4

R1 R3
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Join Ordering Dynamic Programming - Connected Subgraphs

Enumerating Connected Subgraphs (2)
EnumerateCsg(G):

EnumerateCsg(G, {n − 1, ..., 0}, ∅);

EnumerateCsg(G, S, X):
for all i ∈ S descending {

EnumerateCsgRec(G, {vi}, X ∪ (Bi ∩ S));
}

EnumerateCsgRec(G, S, X):
emit (S);
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G, (S ∪ S ′), (X ∪ N));
}

Choose all nodes as enumeration start
node once

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)
EnumerateCsg(G):

EnumerateCsg(G, {n − 1, ..., 0}, ∅);

EnumerateCsg(G, S, X):
for all i ∈ S descending {

EnumerateCsgRec(G, {vi}, X ∪ (Bi ∩ S));
}

EnumerateCsgRec(G, S, X):
emit (S);
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G, (S ∪ S ′), (X ∪ N));
}

Prohibit nodes with smaller labels. Thus
the set of valid nodes increases over time

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)
EnumerateCsg(G):
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for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G, (S ∪ S ′), (X ∪ N));
}

First emit only the node itself as subgraph

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)
EnumerateCsg(G):
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Enlarge the subgraph recursively
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R4

R1 R3
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Enumerating Connected Subgraphs (2)
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Enumerating Connected Subgraphs (2)
EnumerateCsg(G):

EnumerateCsg(G, {n − 1, ..., 0}, ∅);

EnumerateCsg(G, S, X):
for all i ∈ S descending {

EnumerateCsgRec(G, {vi}, X ∪ (Bi ∩ S));
}
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R1 R3
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Enumerating Connected Subgraphs (2)
EnumerateCsg(G):

EnumerateCsg(G, {n − 1, ..., 0}, ∅);

EnumerateCsg(G, S, X):
for all i ∈ S descending {

EnumerateCsgRec(G, {vi}, X ∪ (Bi ∩ S));
}

EnumerateCsgRec(G, S, X):
emit (S);
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G, (S ∪ S ′), (X ∪ N));
}

In each recursion, find all neighboring
nodes that are not prohibited

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)
EnumerateCsg(G):

EnumerateCsg(G, {n − 1, ..., 0}, ∅);

EnumerateCsg(G, S, X):
for all i ∈ S descending {

EnumerateCsgRec(G, {vi}, X ∪ (Bi ∩ S));
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emit (S);
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G, (S ∪ S ′), (X ∪ N));
}

Add all combinations to the subgraph and
increase recursively

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)
EnumerateCsg(G):

EnumerateCsg(G, {n − 1, ..., 0}, ∅);

EnumerateCsg(G, S, X):
for all i ∈ S descending {

EnumerateCsgRec(G, {vi}, X ∪ (Bi ∩ S));
}

EnumerateCsgRec(G, S, X):
emit (S);
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G, (S ∪ S ′), (X ∪ N));
}

The neighborhood is prohibited during
recursion, preventing duplicates

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G, S1):

X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
EnumerateCsg(G, N, X);

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G, S1):

X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
EnumerateCsg(G, N, X);

Prohibit all nodes that will be start nodes
later on and the primary subgraph

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G, S1):

X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
EnumerateCsg(G, N, X);

Find all neighboring nodes that are not pro-
hibited

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G, S1):

X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
EnumerateCsg(G, N, X);

Consider each of the nodes and emit com-
plementary connected subgraphs

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G, S1):

X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
EnumerateCsg(G, N, X);

R0

R2

R4

R1 R3



172 / 638

Join Ordering Dynamic Programming - Connected Subgraphs

Enumerating Complementary Subgraphs
EnumerateCmp(G, S1):

X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
EnumerateCsg(G, N, X);

• EnumerateCsg+EnumerateCmp produce all ccp
• resulting algorithm DPccp considers exactly #ccp pairs
• which is the lower bound for all DP enumeration algorithms
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Remarks

• DPsize is good for chains, DPsub for cliques
• implementation of DPccp is more involved
• each enumeration step must be fast (ideally O(1), at most O(n), where n is the number

of relations)
• but benefits are huge
• DPccg adopts to query graph structure
• considers minimal number of pairs
• especially for ”in-between queries” (e.g. stars) much faster
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Beyond (Regular) Query Graphs

Some queries are more complex

select *
from R1 r1, R2 r2, R3 r3,

R4 r4, R5 r5, R6 r6
where r1.a=r2.a and r2.b=r3.c and

r4.d=r5.d and r5.e=r6.e and
abs(r1.f + r3.f )

= abs(r4.g + r6.g)

R1 R4

R2 R5

R3 R6

• does not induce a graph but a hyper-graph
• graph based DP algorithm not directly applicable
• generic DP algorithms work, but not as efficient
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Handling Hypergraphs

A hypergraph is a pair H = (V ,E) such that
1. V is a non-empty set of nodes and
2. E is a set of hyperedges, where a hyperedge is an unordered pair (u, v) of non-empty

subsets of V (u ⊂ V and v ⊂ V ) with the additional condition that u ∩ v = ∅.
Nodes in V are totally ordered via an (arbitrary) relation ≺.

• enumeration is performed by decreasing ≺
• ≺ orders the search space (DP order, duplicates)
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Handling Hypergraphs (2)

In principle same approach as for regular graphs:

• start with one node
• expand recursively by following

edges

Problem:
• hyperedges are n:m edges
• where to expand to from
{R1,R2,R3}?

• must still guarantee DP order

R1 R4

R2 R5

R3 R6
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Handling Hypergraphs - Neighborhood
When computing the neighborhood, choose representatives:

• a hyperedge ”leads” to the least node
(regarding ≺)

• therefore N({R1,R2,R3}) = {R4}
• ensures DP order (and prevents

duplicates)
But:
• leads to (temporarily) disconnected

graphs
• {R1,R2,R3,R4} is not connected
• must expand further until R6 reached

R1 R4

R2 R5

R3 R6

Requires checks for connectedness
• can exploit the DP table for cheap tests
• if it is connected, a DP entry must exist
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Non-Inner Joins
Some queries use non-inner joins:
• either explicitly (OUTER JOIN etc.) or implicitly (unnesting etc.)
• are not freely reorderable

⟖A.x=C .y

⋈B.x=A.y

A B

C

6≡

⋈B.x=A.y

⟖A.x=C .y

A C

B

Must be taken into account during join ordering.
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Non-Inner Joins - Reordering Constraints

Examine pair-wise reorderings of operators
• for all ◦1, ◦2, check if (R ◦1 S) ◦2 T ≡ R ◦1 (S ◦2 T )

• assume syntax constraints are satisfied

Gives a big compatibility matrix

⋈ ⟕ ⟗ ▷ ⋉ ⋈Γ ...
⋈ + + - + + + ...
⟕ - + - - - - ...
⟗ - + + - - - ...
▷ - - - - - - ...
⋉ - - - - - - ...
⋈Γ - - - - - - ...
...
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Non-Inner Joins - TESs
Extract reordering constraints from operator tree in two steps:

1. build the syntactic eligibility set (SES) for each operator
I set of relations that has to be in the input

SES
⋈b=d {B,D}

▷a=c D {A,C}
⟗a=b C {A,B}

A B
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Non-Inner Joins - TESs
Extract reordering constraints from operator tree in two steps:

1. build the syntactic eligibility set (SES) for each operator
2. bottom up traversal, build the total eligibility set (TES)

I initialize TES with SES
I check for conflicts with other operators (can be in subtrees!)
I if conflict, add other TES to own TES

SES TES
⋈b=d {B,D} {A,B,D}

▷a=c D {A,C} {A,B,C}
⟗a=b C {A,B} {A,B}

A B
TESs capture reordering restrictions by requiring relations, which imply
operators.
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Non-Inner Joins - Using TESs

Add the TES to the join edge
• operator ”requires” certain relations, so encode it like this
• constructs hyperedges (n:m)
• eliminates invalid reorderings from the search space

Original query graph from previous example: C A B D

After adding TESs to the edges:
A

C D
B



182 / 638

Join Ordering Simplifying the Query Graph

Simplifying the Query Graph

The graph-based DP algorithm considers the minimal number of join-pairs
• we therefore cannot expect to get a better runtime for exact solutions
• many problems can be solved exactly, but not all
• depends on the structure of the query graph
• chains are simple, others, e.g., stars, are hard
• how to cope with these queries?

Greedy heuristics would work, but results are much worse than DP solutions.
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Simplifying the Query Graph - General Idea

If the problem is too complex to solve exactly, simplify the query graph until it gets tractable.

• the query graph describes all join possibilities
• by modifying the query graph we can rule out some possibilities
• this reduces the search space and the optimization time
• we prefer modifications that are ”safe”
• uses greedy steps only for the ”easy” problems, then use DP

Note: ”simplifying” means simpler for the optimizer.
For a human the query graph tends to get strange.



184 / 638

Join Ordering Simplifying the Query Graph

Simplifying a Star Query

graph
R0 R1

R3 R2

R0 R1

R3 R2

R0⋈R1

R0⋈R1

joins R0⋈R2

{R0,R1}⋈R2

R0⋈R3

R0⋈R3

original

1st step

graph
R0 R1

R3 R2

R0 R1

R3 R2

R0⋈R1 R0⋈R1

joins {R0,R1}⋈R2 {R0,R1}⋈R2

{R0,R1}⋈R3 {R0,R1,R2}⋈R3

2nd step 3rd step

search
space
size
6

We decide to order before (introduces hyperedge)
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Simplifying a Star Query

graph
R0 R1

R3 R2

R0 R1

R3 R2

R0⋈R1 R0⋈R1

joins R0⋈R2 {R0,R1}⋈R2

R0⋈R3 R0⋈R3

original 1st step

graph
R0 R1

R3 R2

R0 R1

R3 R2

R0⋈R1 R0⋈R1

joins {R0,R1}⋈R2 {R0,R1}⋈R2

{R0,R1}⋈R3 {R0,R1,R2}⋈R3

2nd step 3rd step

search
space
size
6 6
3

We decide to order R0⋈R1 before R0⋈R2 (introduces hyperedge)
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Simplifying a Star Query

graph
R0 R1

R3 R2

R0 R1

R3 R2

R0⋈R1 R0⋈R1

joins R0⋈R2 {R0,R1}⋈R2

R0⋈R3 R0⋈R3

original 1st step

graph
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R3 R2

R0 R1

R3 R2

R0⋈R1

R0⋈R1

joins {R0,R1}⋈R2

{R0,R1}⋈R2

{R0,R1}⋈R3

{R0,R1,R2}⋈R3

2nd step

3rd step

search
space
size
6 6
6 3
2

We decide to order R0⋈R1 before R0⋈R3 (introduces hyperedge)
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Simplifying a Star Query

graph
R0 R1

R3 R2

R0 R1

R3 R2

R0⋈R1 R0⋈R1

joins R0⋈R2 {R0,R1}⋈R2

R0⋈R3 R0⋈R3

original 1st step

graph
R0 R1

R3 R2

R0 R1

R3 R2

R0⋈R1 R0⋈R1

joins {R0,R1}⋈R2 {R0,R1}⋈R2

{R0,R1}⋈R3 {R0,R1,R2}⋈R3

2nd step 3rd step

search
space
size
6 6
6 3
6 2
1

We decide to order {R0,R1}⋈R2 before R0⋈R3 (introduces hyperedge)
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Performing A Simplification Step
Given a query graph G = (V ,E)

1. examine all joins ⋈1,⋈2 ∈ E that are neighboring
I neighboring ≈ have a relation in common (see [6])

2. make sure that ⋈2 could be ordered before ⋈1
I checks for contradictions, requires a fast cycle checker

3. compute the orderingBenefit(⋈1,⋈2)
I this is the heuristical part, different benefit heuristics could be used

4. retain the SL
1⋈1SR

1 ,SL
2⋈2SR

2 with the maximal orderingBenefit
I maintain priority queues to speed up repeated simplification

5. return G ′ = (V ,E \ {⋈1} ∪ {(SL
1 ∪ SL

2 ∪ SR
2 )⋈1SR

1 })

The resulting query graph is more restrictive, i.e., simpler.

(there are more cases due to different possible ways of neighboring)
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Estimating the Ordering Benefit

We want to prefer orderings that are almost certainly a good idea.
Therefore one approach is to maximize

orderingBenefit(X⋈1R1,X⋈2R2) =
C((X⋈1R1)⋈2R2)

C((X⋈2R2)⋈1R1)

If we cannot compute C due to missing information, use Cout .
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Adjusting the Problem Complexity

How much should we simplify?
• until optimization fits into resource constraints (memory or time)

How do we know when to stop simplifying?
• count the number of connected subgraphs of the query graph
• directly determines memory, indirectly optimization time
• stop counting when the limit is reached

Counting is fast, but not instantaneous
• counting 10,000 subgraphs in a query with 100 relations took ≈ 5ms
• we cannot do this after every simplification

Exact limit depends on hardware, a reasonable choice is 10,000 connected subgraphs.
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Full Optimization Algorithm

Given a Query Graph G = (V ,E) and a complexity budget b
1. compute a list Ḡ of query graphs

I repeatedly call the simplification step, stop when no change
2. perform binary search over Ḡ, find Gb

I for the current element G ′, c =#connected subgraphs in G ′ (count at most b + 1)
I if c > b increase, otherwise decrease

3. return DPhyp(Gb)

Simplifies as much as needed to meet the constraints, than uses DP.

(the algorithm does not materialize Ḡ explicitly, see [6])



189 / 638

Join Ordering Simplifying the Query Graph

Time/Quality Trade-off - Grid with 20 Relations
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• as expected plan quality degrades at some point
• but optimization times drops off much earlier
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Time/Quality Trade-off - Star with 20 Relations
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• same optimization time behavior, but plan quality remains perfect
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Adaptive Optimization using Search Space Linearization

• not all join problems are equal
• most queries are small, but we have a incredible long tail
• must handle all of them reasonably, with the correct expectations
• adapt the algorithm to the query complexity
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Join ordering: Solved!

R4

R5

R6

R7

R0

R1

R2

R3

R8

R9

• Dynamic Programming (DP),
pioneered by Selinger et al. (1979)

• Large body of follow-up work
I bushy plans
I graph awareness
I non-inner joins
I top-down formulations

• Exponential runtime in general
• Only viable for relatively small queries
• Generated queries we are increasingly

faced with tend to be too large
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Solved?

R1
R16

R17

R14

R15

R12

R13

R10

R11

R18

R19

R38

R39

R34

R35

R36

R37

R30

R31

R32
R33

R4

R5

R6

R7

R0

R43
R2

R3

R28 R8

R9

R49

R48

R45

R44

R47

R46

R41

R40

R29

R42

R27

R26

R25

R24

R23

R22

R21

R20

• Huge search space (NP-Hard)
• Too hard to solve optimally
• Heuristics to the rescue!?

1 10 100 1000 10000 1e+05 1e+06 1e+07 1e+08

normalized cost (log scale)

fre
qu

en
cy

• Suddenly, if just slightly too large
• Likely to result in disastrous plans
• Not the end of the spectrum
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Unsolved!

R499

R498

R491

R490

R493

R492

R495

R494

R497

R496

R396

R397

R394

R395

R392

R393

R390

R258
R257

R256

R255

R254

R253

R252

R398

R250

R262

R172

R173

R170

R171

R176

R177

R174

R175

R178

R179

R259

R391

R98

R99

R96

R97

R94

R95

R92

R93

R90

R91

R477

R476

R475

R474

R473

R472

R471

R470

R479

R478

R251

R399

R388

R213

R212

R211

R210

R217

R216

R215

R214

R219

R218

R358

R359

R352

R353

R350

R351

R356

R357

R354 R355

R70

R338

R72

R73

R74

R75

R76

R339

R78

R79

R136

R137

R134

R135

R132

R133

R130

R131

R138

R139
R238

R183

R182

R181

R180

R187

R186

R185

R184

R189

R188

R439

R438

R433
R432

R431

R430

R437

R436

R435

R434

R330

R318

R319

R316

R317

R314

R315

R312

R313

R310

R311

R38

R39

R34

R35

R36

R37

R30

R31

R32

R33

R4

R5

R6

R7

R0

R1

R2

R3

R8

R9

R381

R380

R383

R382

R385

R384

R387

R386R389

R263

R260

R261

R266

R267

R264

R265

R169

R168

R165

R164

R167

R166R161

R160

R163

R162
R442

R443

R440

R441

R446

R447

R444

R445

R448

R449

R361

R345

R344

R347

R346

R341

R340

R343

R342

R226

R227

R224

R225

R349

R223
R220

R221

R45

R44

R47

R46

R41

R40

R43

R42

R49

R48

R121

R120

R123

R122

R125

R124

R127

R126

R129

R128

R228

R229

R222

R348

R154

R155 R156

R157

R150

R151

R400

R153

R158

R159
R408

R409

R309

R308

R301

R300

R303

R302

R305

R304

R307

R306

R147

R146

R413

R412

R415

R414

R275

R274

R277

R276

R271

R270

R273 R272

R416

R279

R278

R378

R379

R374

R375

R376

R377

R370

R371

R372

R373

R417

R118

R119

R110

R111

R112

R113

R114

R115

R116

R117

R288

R289

R280

R281

R282

R283

R284

R285

R286

R287

R459

R458

R455

R454

R457

R456

R451

R450

R453

R452

R239
R331

R332

R333

R334

R335

R336

R337

R231

R230

R233

R232

R235

R234

R237

R236

R58

R59

R52

R53

R50

R51

R56
R57

R54

R55

R488

R489

R486

R487

R484

R485

R482

R483

R480

R481

R248

R249

R244

R245

R246

R247

R240

R241

R242

R243

R268

R269

R411

R410

R145

R144

R143

R142

R141

R140

R419

R418

R149

R148

R89

R88

R81

R80

R83

R82

R85

R84

R87

R86

R464

R465

R466

R467

R460

R461

R462

R463

R468

R469

R16

R17

R14

R15

R12

R13

R10

R11

R18

R19

R200

R201

R202

R203

R204

R205

R206

R207

R208

R209

R369

R368

R367

R366

R365

R364

R363

R362

R405

R360

R406

R407

R404

R63

R62

R61

R60

R67

R66

R65

R64

R402

R69

R68

R403

R152

R401

R109

R108

R103

R102

R101

R100

R107

R106

R105

R104

R299

R298

R71

R293

R292

R291

R290

R297

R296

R295

R294

R190

R191

R192

R193

R194

R195

R196

R197

R198

R199

R77

R428

R429

R420

R421

R422

R423

R424

R425

R426

R427

R323

R322

R321

R320

R327

R326

R325

R324

R329

R328

R29

R28

R27

R26

R25

R24

R23

R22

R21

R20

• Tableau: “Get Real: How Benchmarks
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Adaptive Optimization – The Big Picture

Query
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≤ 10K DP
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search space
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solve optimally gracefully introduce
greediness to keep
optimization time
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• For performance and correctness reasons: no cross products
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Join Ordering Adaptive Optimization

Adaptive Optimization – How to Measure Complexity

Structure DP complexity DP table size

chain O(n3) n2

clique O(3n) 2n

• Complexity depends on the structure of the query graph
• Size of DP table as measure of complexity
• Analyze query graph to determine the size of the DP table
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Join Ordering Adaptive Optimization

Adaptive Optimization – Small Queries

• Up to 10,000 DP entries
I chains: up to 100 relations
I cliques: less than 14 relations

• Run DPhyp
I Adapts to the query graph’s structure
I Completely and minimally enumerates all possibly optimal join orders without cross products

• Plan guaranteed to be optimal
• Optimization will be fast



198 / 638

Join Ordering Adaptive Optimization

Adaptive Optimization – Medium Queries

• Complexity depends on the structure of the query graph
• Can easily optimize chain queries on 100 relations exactly (polynomial runtime)
• Usually queries are not exactly linear
• Still benefit from this fast optimization through search space linearization
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Adaptive Optimization – Search Space Linearization

• Assume the order of relations in the optimal plan is
known

• Polynomial DP algorithm to generate optimal plan
from this linearization

• Optimally combine optimal solutions for subchains
of increasing size

• But: how to know the optimal order?
• IKKBZ (TODS 3/’84, VLDB ’86):

Optimal left-deep plan in O(n2)
• Good alternative to the optimal relative order of

relations

R1 R2

R5 R6

R3 R4

R2 R1 R3 R5 R6 R4

on ×
on

on

on
on
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Adaptive Optimization – Linearized DP
LinDP(R)
Input: a sequence of relations R = (R1, . . . ,Rn)
Output:an optimal bushy join tree (given the order)
B = an empty DP table n × n→ join tree
for each Ri ∈ R
B[i , i ] = Ri

for each 2 ≤ l ≤ n
for each 1 ≤ i ≤ n − l + 1
j = i + l − 1
for each i ≤ k < j

if ¬connected (Ri , . . . ,Rk), (Rk+1, . . . ,Rj) continue
P = CreateJoinTree(B[i , k],B[k + 1, j]);
if B[i , j] = ε ∨ C(B[i , j]) > C(P)
B[i , j] = P

return B[1, n]
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Adaptive Optimization – Linearized DP

Procedure
1. Linearize using IKKBZ
2. Build best bushy plan for linearization

Properties
• Runs in O(n3)
• Result at least as good as the optimal left-deep plan
• With proper linearization, discovers globally optimal bushy plan
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Adaptive Optimization – Large Queries

• Even linearized DP too expensive for the most complex queries
• Iterative Dynamic Programming (Kossmann & Stocker, TODS 1/2000):

1. Greedily build query plan, e.g. using Greedy Operator Ordering (GOO)
2. Iteratively refine by optimizing the most expensive sub trees of size k using DP

• Linearization greatly increases reordering freedom
I originally: k ≈ 7
I linearized: k = 100
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Generated Queries – Optimization Time
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Generated Queries – Plan Quality

Plan cost compared to cost of best plan found by any of the algorithms

Optimal plan known (371 queries)

Algorithm median 95% max

DPhyp 1.00 1.00 1.00

Linearized DP 1.00 1.23 2.23

adaptive 1.00 1.10 2.23

• Most of the plans generated by linearized DP are optimal or near-optimal
• Adaptive Optimization additionally benefits from full DPhyp as long as it is fast
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Generated Queries – Plan Quality

Linearized DP (≤ 100 relations; 1,000 queries)

Algorithm median 95% max

IKKBZ 1.00 1.97 58.47

Linearized DP 1.00 1.12 2.57

adaptive 1.00 1.07 2.57

• DP phase in linearized DP significantly increases plan quality
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Generated Queries – Plan Quality

Iterative Dynamic Programming (≤ 5,000 relations; 2,300 queries)

Algorithm median 95% max

GOO 1.05 2.81 19.18

GOO/DPhyp 1.01 2.53 19.18

GOO/linDP 1.00 1.60 4.02

adaptive 1.00 1.59 4.02

• Iterative DP benefits from additional freedom induced by linearized DP
• Adaptive Optimization generates good plans across the whole spectrum of queries
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Generating Permutations

The algorithms so far have some drawbacks:
• greedy heuristics only heuristics
• will probably not find the optimal solution
• DP algorithms optimal, but very heavy weight
• especially memory consumption is high
• find a solution only after the complete search

Sometimes we want a more light-weight algorithm:
• low memory consumption
• stop if time runs out
• still find the optimal solution if possible
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Generating Permutations (2)

We can achieve this when only considering left-deep trees:
• left-deep trees are permutations of the relations to be joined
• permutations can be generated directly
• generating all permutations is too expensive
• but some permutations can be ignored:

Consider the join sequence R1R2R3R4. If we know that R1R3R2 is cheaper than R1R2R3,
we do not have to consider R1R2R3R4.

Idea: successively add a relation. An extended sequence is only explored if exchanging the last
two relations does not result in a cheaper sequence.
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Recursive Search

ConstructPermutations(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal left-deep join tree
B = ε
P = ε
for each Ri ∈ R {
ConstructPermutationsRec(P◦ < Ri >,R \ {Ri},B)

} return B

• algorithm considers a prefix P and the rest R
• keeps track of the best tree found so far B
• increases the prefix recursively
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Recursive Search (2)

ConstructPermutationsRec(P ,R ,B)
Input: a prefix P , remaining relations R , best plan B
Output:side effects on B
if |R | = 0 {

if B = ε ∨ C(B) > C(P) {
B = P

}
} else {

for each Ri ∈ R {
if C(P◦ < Ri >) ≤ C(P [1 : |P | − 1]◦ < Ri ,P [|P |] >) {
ConstructPermutationsRec(P◦ < Ri >,R \ {Ri},B)

}
}

}
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Join Ordering Generating Permutations

Remarks

Good:
• linear memory
• immediately produces plan alternatives
• anytime algorithm
• finds the optimal plan eventually

Bad:
• worst-case runtime if ties occur
• worst-case runtime if no ties occur is an open problem

Often fast, can be stopped anytime, but may perform poorly.
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Transformative Approaches

Main idea: [7]
• use equivalences directly (associativity, commutativity)
• would make integrating new equivalences easy

Problems:
• how to navigate the search space
• equivalences have no order
• how to guarantee finding the optimal solution
• how to avoid exhaustive search
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Join Ordering Transformative Approaches

Rule Set

R1⋈R2  R2⋈R1 Commutativity
(R1⋈R2)⋈R3  R1⋈(R2⋈R3) Right Associativity
R1⋈(R2⋈R3)  (R1⋈R2)⋈R3 Left Associativity
(R1⋈R2)⋈R3  (R1⋈R3)⋈R2 Left Join Exchange
R1⋈(R2⋈R3)  R2⋈(R1⋈R3) Right Join Exchange

Two more rules are often used to transform left-deep trees:
• swap exchanges two arbitrary relations in a left-deep tree
• 3Cycle performs a cyclic rotation of three arbitrary relations in a left-deep tree.

To try another join method, another rule called join method exchange is introduced.
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Join Ordering Transformative Approaches

Rule Set RS-0

• commutativity
• left-associativity
• right-associativity
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Join Ordering Transformative Approaches

Basic Algorithm
ExhaustiveTransformation({R1, . . . ,Rn})
Input: a set of relations
Output: an optimal join tree
Let T be an arbitrary join tree for all relations
Done = ∅ // contains all trees processed
ToDo = {T} // contains all trees to be processed
while |ToDo| > 0 {

T = an arbitrary tree in ToDo
ToDo = ToDo \T ;
Done = Done ∪ {T};
Trees = ApplyTransformations(T );
for each T ∈ Trees {

if T 6∈ ToDo ∪ Done
ToDo = ToDo ∪ {T}

}
}
return arg minT∈Done C(T )
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Basic Algorithm (2)

ApplyTransformations(T )
Input: join tree
Output: all trees derivable by associativity and commutativity
Trees = ∅
Subtrees = all subtrees of T rooted at inner nodes
for each S ∈ Subtrees {

if S is of the form S1⋈S2
Trees = Trees ∪{S2⋈S1}

if S is of the form (S1⋈S2)⋈S3
Trees = Trees ∪{S1⋈(S2⋈S3)}

if S is of the form S1⋈(S2⋈S3)
Trees = Trees ∪{(S1⋈S2)⋈S3}

}
return Trees;
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Remarks

• if no cross products are to be considered, extend if conditions for associativity rules.
• problem 1: explores the whole search space
• problem 2: generates join trees more than once
• problem 3: sharing of subtrees is non-trivial
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Search Space
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Introducing the Memo Structure

A memoization strategy is used to keep the runtime reasonable:
• for any subset of relations, dynamic programming remembers the best join tree.
• this does not quite suffice for the transformation-based approach.
• instead, we have to keep all join trees generated so far including those differing in the

order of the arguments of a join operator.
• however, subtrees can be shared.
• this is done by keeping pointers into the data structure (see next slide).
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Memo Structure Example

{R1,R2,R3} {R1,R2}⋈R3,R3⋈{R1,R2},
{R1,R3}⋈R2,R2⋈{R1,R3},
{R2,R3}⋈R1,R1⋈{R2,R3}

{R2,R3} {R2}⋈{R3}, {R3}⋈{R2}
{R1,R3} {R1}⋈{R3}, {R3}⋈{R1}
{R1,R2} {R1}⋈{R2}, {R2}⋈{R1}
{R3} R3

{R2} R2

{R1} R1

• in Memo Structure: arguments are pointers to classes
• Algorithm: ExploreClass expands a class
• Algorithm: ApplyTransformation2 expands a member of a class



222 / 638

Join Ordering Transformative Approaches

Memoizing Algorithm

ExhaustiveTransformation2(Query Graph G)
Input: a query specification for relations {R1, . . . ,Rn}.
Output: an optimal join tree
initialize MEMO structure
ExploreClass({R1, . . . ,Rn})
return arg minT∈class {R1,...,Rn} C(T )

• stored an arbitrary join tree in the memo structure
• explores alternatives recursively
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Memoizing Algorithm (2)

ExploreClass(C)
Input: a class C ⊆ {R1, . . . ,Rn}
Output: none, but has side-effect on MEMO-structure
while not all join trees in C have been explored {

choose an unexplored join tree T in C
ApplyTransformation2(T )
mark T as explored

}

• considers all alternatives within one class
• transformations themselves are done in ApplyTransformation2
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Memoizing Algorithm (3)
ApplyTransformations2(T )
Input: a join tree of a class C
Output: none, but has side-effect on MEMO-structure
ExploreClass(left-child(T ))
ExploreClass(right-child(T ));
for each transformation T and class member of child classes {

for each T ′ resulting from applying T to T {
if T ′ not in MEMO structure {

add T ′ to class C of MEMO structure
}

}
}

• first explores subtrees
• then applies all known transformations to the tree
• stores new trees in the memo structure
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Remarks

• Applying ExhaustiveTransformation2 with a rule set consisting of Commutativity and
Left and Right Associativity generates 4n − 3n+1 + 2n+2 − n − 2 duplicates

• Contrast this with the number of join trees contained in a completely filled MEMO
structure: 3n − 2n+1 + n + 1

• Solve the problem of duplicate generation by disabling applied rules.
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Rule Set RS-1

T1: Commutativity C1⋈0C2  C2⋈1C1

Disable all transformations T1, T2, and T3 for ⋈1.
T2: Right Associativity (C1⋈0C2)⋈1C3  C1⋈2(C2⋈3C3)

Disable transformations T2 and T3 for ⋈2 and enable all rules for ⋈3.
T3: Left associativity C1⋈0(C2⋈1C3)  (C1⋈2C2)⋈3C3

Disable transformations T2 and T3 for ⋈3 and enable all rules for ⋈2.
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Example for chain R1 − R2 − R3 − R4
Class Initialization Transformation Step

{R1,R2,R3,R4} {R1,R2}⋈111{R3,R4} {R3,R4}⋈000{R1,R2} 3
R1⋈100{R2,R3,R4} 4
{R1,R2,R3}⋈100R4 5
{R2,R3,R4}⋈000R1 8
R4⋈000{R1,R2,R3} 10

{R2,R3,R4} R2⋈111{R3,R4} 4
{R3,R4}⋈000R2 6
{R2,R3}⋈100R4 6
R4⋈000{R2,R3} 7

{R1,R3,R4}
{R1,R2,R4}
{R1,R2,R3} {R1,R2}⋈111R3 5

R3⋈000{R1,R2} 9
R1⋈100{R2,R3} 9
{R2,R3}⋈000R1 9

{R3,R4} R3⋈111R4 R4⋈000R3 2
{R2,R4}
{R2,R3}
{R1,R4}
{R1,R3}
{R1,R2} R1⋈111R2 R2⋈000R1 1
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Rule Set RS-2

Bushy Trees: Rule set for clique queries and if cross products are allowed:
T1: Commutativity C1⋈0C2  C2⋈1C1

Disable all transformations T1, T2, T3, and T4 for ⋈1.
T2: Right Associativity (C1⋈0C2)⋈1C3  C1⋈2(C2⋈3C3)

Disable transformations T2, T3, and T4 for ⋈2.
T3: Left Associativity C1⋈0(C2⋈1C3)  (C1⋈2C2)⋈3C3

Disable transformations T2, T3 and T4 for ⋈3.
T4: Exchange (C1⋈0C2)⋈1(C3⋈2C4)  (C1⋈3C3)⋈4(C2⋈5C4)

Disable all transformations T1, T2, T3, and T4 for ⋈4.
If we initialize the MEMO structure with left-deep trees, we can strip down the above rule set
to Commutativity and Left Associativity. Reason: from a left-deep join tree we can generate
all bushy trees with only these two rules



229 / 638

Join Ordering Transformative Approaches

Rule Set RS-3

Left-deep trees:
T1 Commutativity R1⋈0R2  R2⋈1R1

Here, the Ri are restricted to classes with exactly one relation. T1 is disabled for
⋈1.

T2 Right Join Exchange (C1⋈0C2)⋈1C3  (C1⋈2C3)⋈3C2

Disable T2 for ⋈3.
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Generating Random Join Trees

Generating a random join tree is quite useful:
• allows for cost sampling
• randomized optimization procedures
• basis for Simulated Annealing, Iterative Improvement etc.
• easy with cross products, difficult without
• we consider with cross products first

Main problems:
• generating all join trees (potentially)
• creating all with the same probability
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Ranking/Unranking

Let S be a set with n elements.
• a bijective mapping f : S → [0, n[ is called ranking
• a bijective mapping f : [0, n[→ S is called unranking

Given an unranking function, we can generate random elements in S by generating a random
number in [0, n[ and unranking this number.
Challenge: making unranking fast.
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Random Permutations

Every permutation corresponds to a left-deep join tree possibly with cross products.
Standard algorithm to generate random permutations is the starting point for the algorithm:

for each k ∈ [0, n[ descending
swap(π[k], π[random(k)])

Array π initialized with elements [0, n[.
random(k) generates a random number in [0, k].
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Random Permutations

• Assume the random elements produced by the algorithm are rn−1, . . . , r0 where 0 ≤ ri ≤ i .
• Thus, there are exactly n(n − 1)(n − 2) . . . 1 = n! such sequences and there is a one to

one correspondance between these sequences and the set of all permutations.
• Unrank r ∈ [0, n![ by turning it into a unique sequence of values rn−1, . . . , r0.

Note that after executing the swap with rn−1 every value in [0, n[ is possible at position
π[n − 1].
Further, π[n − 1] is never touched again.

• Hence, we can unrank r as follows. We first set rn−1 = r mod n and perform the swap.
Then, we define r ′ = br/nc and iteratively unrank r ′ to construct a permutation of n − 1
elements.
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Generating Random Permutations

Unrank(n, r)
Input: the number n of elements to be permuted

and the rank r of the permutation to be constructed
Output:a permutation π
for each 0 ≤ i < n
π[i ] = i

for each n ≥ i > 0 descending {
swap(π[i − 1], π[r mod i ])
r = br/ic

}
return π;
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Generating Random Bushy Trees with Cross Products

Steps of the algorithm:
1. Generate a random number b in [0,C(n)[.
2. Unrank b to obtain a bushy tree with n − 1 inner nodes.
3. Generate a random number p in [0, n![.
4. Unrank p to obtain a permutation.
5. Attach the relations in order p from left to right as leaf nodes to the binary tree obtained

in Step 2.
The only step that we have still to discuss is Step 2.
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Tree Encoding

• Preordertraversal:
I Inner node: ’(’
I Leaf Node: ’)’

Skip last leaf node.
• Replace ’(’ by 1 and ’)’ by 0
• Just take positions of 1s.

Example: all trees with four inner nodes:
• The ranks are in [0, 14[
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Tree Ranking Example

( ( ( ( ) ) ) )

11110000

1, 2, 3, 4

0

( ( ) ( ( ) ) )

11011000

1, 2, 4, 5

43 

( ( ( ) ) ) ( )

11100010

1, 2, 3, 7

2

( ( ( ) ) ( ) )

11100100

1, 2, 3, 6

( ( ) ( ) ( ) )

11010100

1, 2, 4, 6

5 6

( ( ) ( ) ) ( )

11010010

1, 2, 4, 7

7

( ( ) ) ( ( ) )

11001100

1, 2, 5, 6

8

( ( ) ) ( ) ( )

11001010

1, 2, 5, 7

( ) ( ( ( ) ) )

10111000

1, 3, 4, 5

9

( ) ( ( ) ( ) )

10110100

1, 3, 4, 6

10 11

( ) ( ( ) ) ( )

10110010

1, 3, 4, 7

( ) ( ) ( ( ) )

10101100

1, 3, 5, 6

12

( ) ( ) ( ) ( )

10101010

1, 3, 5, 7

13

1

11101000

1, 2, 3, 5

( ( ( )( ) ) )
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Unranking Binary Trees
We establish a bijection between Dyck words and paths in a grid:

1

2

3

4

87654321

1

14

9

4

1

13

5 2

[0,0]

[1,4[

[9,14[

[4,9[

Every path from (0, 0) to (2n, 0) uniquely corresponds to a Dyck word.
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Counting Paths

The number of different paths from (0, 0) to (i , j) can be computed by

p(i , j) = j + 1

i + 1

(
i + 1

1
2(i + j) + 1

)
These numbers are the Ballot numbers.
The number of paths from (i , j) to (2n, 0) can thus be computed as:

q(i , j) = p(2n − i , j)

Note the special case q(0, 0) = p(2n, 0) = C(n).
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Unranking Outline

• We open a parenthesis (go from (i , j) to (i + 1, j + 1)) as long as the number of paths
from that point does no longer exceed our rank r .

• If it does, we close a parenthesis (go from (i , j) to (i + 1, j − 1)).
• Assume, that we went upwards to (i , j) and then had to go down to (i + 1, j − 1).

We subtract the number of paths from (i + 1, j + 1) from our rank r and proceed
iteratively from (i + 1, j − 1) by going up as long as possible and going down again.

• Remembering the number of parenthesis opened and closed along our way results in the
required encoding.
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Generating Bushy Trees
UnrankTree(n, r)
Input: a number of inner nodes n and a rank r ∈ [0,C(n)[
Output:encoding of the inner leafes of a tree
open = 1, close = 0
pos = 2, encoding = < 1 >
while |encoding| < n {
k = q(open+close+1,open-close+1)
if k ≤ r {
r = r − k, close=close+1

} else {
encoding=encoding◦ < pos >, open=open+1

}
pos=pos+1

}
return encoding
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Generating Random Trees Without Cross Products

Tree queries only!
• query graph: G = (V ,E), |V | = n, G must be a tree.
• level: root has level 0, children thereof 1, etc.
• TG : join trees for G

[8]
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Partitioning TG

T v(k)
G ⊆ TG : subset of join trees where the leaf node (i.e. relation) v occurs at level k.

Observations:
• n = 1: |TG | = |T

v(0)
G | = 1

• n > 1: |T v(0)
G | = 0 (top is a join and no relation)

• The maximum level that can occur in any join tree is n − 1.
Hence: |T v(k)

G | = 0 if k ≥ n.
• TG = ∪n

k=0T
v(k)

G

• T v(i)
G ∩ T v(j)

G = ∅ for i 6= j
• Thus: |TG | =

∑n
k=0 |T

v(k)
G |
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The Specification

• The algorithm will generate an unordered tree with n leaf nodes.
• If we wish to have a random ordered tree, we have to pick one of the 2n−1 possibilities to

order the (n − 1) joins within the tree.
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The Procedure

1. List merges (notation, specification, counting, unranking)
2. Join tree construction: leaf-insertion and tree-merging
3. Standard Decomposition Graph (SDG): describes all valid join trees
4. Counting
5. Unranking algorithm
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List Merge

• Lists: Prolog-Notation: < a|t >
• Property P on elements
• A list l ′ is the projection of a list L on P , if L′ contains all elements of L satisfying the

property P .
Thereby, the order is retained.

• A list L is a merge of two disjoint lists L1 and L2, if L contains all elements from L1 and
L2 and both are projections of L.
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Example

(R, S, [1, 1, 0])

R2

R1

v

S1

S2

(R, S, [2, 0, 0])

v

S2

R2

S1

R1

S2

S1

(R, S, [0, 2, 0])

R2

R1

v

R S

v

S1

v

R1

R2 S2
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List Merge: Specification

A merge of a list L1 with a list L2 whose respective lengths are l1 and l2 can be described by an
array α = [α0, . . . , αl2 ] of non-negative integers whose sum is equal to l1, i.e.

∑l2
i=0 αi = |l1|.

• We obtain the merged list L by first taking α0 elements from L1.
• Then, an element from L2 follows. Then follow α1 elements from L1 and the next

element of L2 and so on.
• Finally follow the last αl2 elements of L1.
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List Merge: Counting

Non-negative integer decomposition:
• What is the number of decompositions of a non-negative integer n into k non-negative

integers αi with
∑k

i=1 αk = n.
Answer:

(n+k−1
k−1

)
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List Merge: Counting (2)

Since we have to decompose l1 into l2 + 1 non-negative integers, the number of possible
merges is M(l1, l2) =

(l1+l2
l2

)
.

The observation M(l1, l2) = M(l1 − 1, l2) +M(l1, l2 − 1) allows us to construct an array of size
n ∗ n in O(n2) that materializes the values for M.
This array will allow us to rank list merges in O(l1 + l2).
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List Merge: Unranking: General Idea

The idea for establishing a bijection between [1,M(l1, l2)] and the possible αs is a general one
and used for all subsequent algorithms of this section.
Assume we want to rank the elements of some set S and S = ∪n

i=0Si is partitioned into
disjoint Si .
1. If we want to rank x ∈ Sk , we first find the local rank of x ∈ Sk .
2. The rank of x is then

∑k−1
i=0 |Si |+ local-rank(x ,Sk).

3. To unrank some number r ∈ [1,N], we first find k such that k = minj r ≤
∑j

i=0 |Si |.
4. We proceed by unranking with the new local rank r ′ = r −

∑k−1
i=0 |Si | within Sk .
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List Merge: Unranking

We partition the set of all possible merges into subsets.
• Each subset is determined by α0.

For example, the set of possible merges of two lists L1 and L2 with length l1 = l2 = 4 is
partitioned into subsets with α0 = j for 0 ≤ j ≤ 4.

• In each partition, we have M(l1 − j, l2 − 1) elements.
• To unrank a number r ∈ [1,M(l1, l2)] we first determine the partition by computing

k = minj r ≤
∑j

i=0M(j, l2 − 1).
Then, α0 = l1 − k.

• With the new rank r ′ = r −
∑k

i=0M(j, l2 − 1), we start iterating all over.
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Example

k α0 (k, l2 − 1) M(k, l2 − 1) rank intervals
0 4 (0, 3) 1 [1, 1]
1 3 (1, 3) 4 [2, 5]
2 2 (2, 3) 10 [6, 15]
3 1 (3, 3) 20 [16, 35]
4 0 (4, 3) 35 [36, 70]
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Decomposition

UnrankDecomposition(r , l1, l2)
Input: a rank r , two list sizes l1 and l2
Output:encoding of the inner leafes of a tree
alpha = <>, k = 0
while l1 > 0 ∧ l2 > 0 {
m = M(k, l2 − 1)
if r ≤ m {
alpha = alpha ◦ < l1 − k >
l1 = k, k = 0, l2 = l2 − 1

} else {
r = r −m, k = k + 1

}
}
return alpha◦ < l1 > ◦©1≤i≤l2 < 0 >
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Anchored List Representation of Join Trees

Definition Let T be a join tree and v be a leaf of T . The anchored list representation L of T
is constructed as follows:
• If T consists of the single leaf node v , then L =<>.
• If T = (Tl⋈T2) and without loss of generality v occurs in T2, then L =< T1|L2 > where

L2 is the anchored list representation of T2.
We then write T = (L, v).
Observation If T = (L, v) ∈ TG then T ∈ T v(k)

G ≺� |L| = k
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Leaf-Insertion: Example

w w

(T, 2)

T1

T2

v

T1

T2

v

(T, 1)

T1

T2

w

T

w

v

T1

T2

(T, 3)
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Leaf-Insertion

Definition Let G = (V ,E) be a query graph, T a join tree of G. v ∈ V be such that
G ′ = G|V\{v} is connected, (v ,w) ∈ E , 1 ≤ k < n, and

T = (< T1, . . . ,Tk−1, v ,Tk+1, . . . ,Tn >,w)

T ′ = (< T1, . . . ,Tk−1,Tk+1, . . . ,Tn >,w).

Then we call (T ′, k) an insertion pair on v and say that T is decomposed into (or constructed
from) the pair (T ′, k) on v .
Observation: Leaf-insertion defines a bijective mapping between T v(k)

G and insertion pairs
(T ′, k) on v , where T ′ is an element of the disjoint union ∪n−2

i=k−1T
w(i)

G′ .
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Tree-Merging: Example

(R, S, [1, 1, 0])

R2

R1

v

S1

S2

(R, S, [2, 0, 0])

v

S2

R2

S1

R1

S2

S1

(R, S, [0, 2, 0])

R2

R1

v

R S

v

S1

v

R1

R2 S2
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Tree-Merging

Two trees R = (LR ,w) and S = (LS ,w) on a common leaf w are merged by merging their
anchored list representations.
Definition. Let G = (V ,E) be a query graph, w ∈ V , T = (L,w) a join tree of G,
V1,V2 ⊆ V such that G1 = G|V1 and G2 = G|V2 are connected, V1 ∪ V2 = V , and
V1 ∩ V2 = {w}. For i = 1, 2:
• Define the property Pi to be “every leaf of the subtree is in Vi”,
• Let Li be the projection of L on Pi .
• Ti = (Li ,w).

Let α be the integer decomposition such that L is the result of merging L1 and L2 on α. Then,
we call (T1,T2, α) a merge triplet. We say that T is decomposed into (constructed from)
(T1,T2, α) on V1 and V2.
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Observation

Tree-Merging defines a bijective mapping between T w(k)
G and merge triplets (T1,T2, α), where

T1 ∈ T w(i)
G1

, T2 ∈ T w(k−i)
G2

, and α specifies a merge of two lists of sizes i and k − i . Further,
the number of these merges (i.e. the number of possibilities for α) is

(i+(k−i)
k−i

)
=

(k
i
)
.
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Standard Decomposition Graph (SDG)

A standard decomposition graph of a query graph describes the possible constructions of join
trees.
It is not unique (for n > 1) but anyone can be used to construct all possible unordered join
trees.
For each of our two operations it has one kind of inner nodes:
• A unary node labeled +v stands for leaf-insertion of v .
• A binary node labeled ∗w stands for tree-merging its subtrees whose only common leaf is

w .
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Constructing a Standard Decomposition Graph

The standard decomposition graph of a query graph G = (V ,E) is constructed in three steps:
1. pick an arbitrary node r ∈ V as its root node
2. transform G into a tree G ′ by directing all edges away from r ;
3. call QG2SDG(G ′, r)
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Constructing a Standard Decomposition Graph (2)
QG2SDG(G ′, v)
Input: a query tree G ′ = (V ,E) and its root v
Output:a standard query decomposition tree of G ′

Let {w1, . . . ,wn} be the children of v
switch n {

case 0: label v with ”v”
case 1:

label v as ”+v”
QG2SDG(G ′,w1)

otherwise:
label v as ”∗v”
create new nodes l , r with label +v
E = E \ {(v ,wi)|1 ≤ i ≤ n}
E = E ∪ {(v , l), (v , r), (l ,w1)} ∪ {(r ,wi)|2 ≤ i ≤ n}
QG2SDG(G ′, l), QG2SDG(G ′, r)

} return G ′
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Constructing a Standard Decomposition Graph (3)

a b c d

e

e

c

b d

a

a

d

[0, 1]

+b

+c

+e

*c

+c

[1]

[0, 1, 1]

[0, 1]

[1]

[0, 5, 5, 5, 3]

[0, 0, 2, 3]
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Counting

For efficient access to the number of join trees in some partition T v(k)
G in the unranking

algorithm, we materialize these numbers.
This is done in the count array.
The semantics of a count array [c0, c1, . . . , cn] of a node u with label ◦v (◦ ∈ {+, ∗}) of the
SDG is that
• u can construct ci different trees in which leaf v is at level i .

Then, the total number of trees for a query can be computed by summing up all the ci in the
count array of the root node of the decomposition tree.
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Counting (2)

To compute the count and an additional summand adornment of a node labeled +v , we use
the following lemma:
Lemma. Let G = (V ,E) be a query graph with n nodes, v ∈ V such that G ′ = G|V\v is
connected, (v ,w) ∈ E , and 1 ≤ k < n. Then

|T v(k)
G | =

∑
i≥k−1

|T w(i)
G′ |
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Counting (3)

The sets T w(i)
G′ used in the summands of the former Lemma directly correspond to subsets

T v(k),i
G (k − 1 ≤ i ≤ n − 2) defined such that T ∈ T v(k),i

G if

1. T ∈ T v(k)
G ,

2. the insertion pair on v of T is (T ′, k), and
3. T ′ ∈ T w(i)

G′ .

Further, |T v(k),i
G | = |T w(i)

G′ |. For efficiency, we materialize the summands in an array of arrays
summands.
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Counting (4)

To compute the count and summand adornment of a node labeled ∗v , we use the following
lemma.
Lemma. Let G = (V ,E) be a query graph, w ∈ V , T = (L,w) a join tree of G, V1,V2 ⊆ V
such that G1 = G|V1 and G2 = G|V2 are connected, V1 ∪ V2 = V , and V1 ∩ V2 = {v}. Then

|T v(k)
G | =

∑
i

(
k
i

)
|T v(i)

G1
| |T v(k−i)

G2
|
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Counting (5)

The sets T w(i)
G′ used in the summands of the previous Lemma directly correspond to subsets

T v(k),i
G (0 ≤ i ≤ k) defined such that T ∈ T v(k),i

G if

1. T ∈ T v(k)
G ,

2. the merge triplet on V1 and V2 of T is (T1,T2, α), and
3. T1 ∈ T v(i)

G1
.

Further, |T v(k),i
G | =

(k
i
)
|T v(i)

G1
| |T v(k−i)

G2
|.
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Counting (6)

Observation: Assume a node v whose count array is [c1, . . . , cm] and whose summands is
s = [s0, . . . , sn] with si = [s i

0, . . . , s i
m], then

ci =
m∑

j=0

s i
j

holds.
The following algorithm has worst-case complexity O(n3).
Looking at the count array of the root node of the following SDG, we see that the total
number of join trees for our example query graph is 18.
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SDG example

a b c d

e

e

c

b d

a

a

d

[0, 1]

+b

+c

+e

*c

+c

[1]

[0, 1, 1]

[0, 1]

[1]

[0, 5, 5, 5, 3]

[0, 0, 2, 3]
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Annotating the SDG

Adorn(v)
Input: a node v of the SDG
Output:v and nodes below are adorned by count and summands
Let {w1, . . . ,wn} be the children of v
switch (n) {

case 0: count(v) = [1] // no summands for v
case 1:

Adorn(w1)
assume count(w1) = [c10 , . . . , c1m1

];
count(v) = [0, c1, . . . , cm1+1] where ck =

∑m1
i=k−1 c1i

summands(v) = [s0, . . . , sm1+1] where sk = [sk
0 , . . . , sk

m1+1] and

sk
i =

{
c1i if 0 < k and k − 1 ≤ i
0 else
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Annotating the SDG (2)

case 2:
Adorn(w1)
Adorn(w2)
assume count(w1) = [c10 , . . . , c1m1

]
assume count(w2) = [c20 , . . . , c2m2

]
count(v) = [c0, . . . , cm1+m2 ] where

ck =
∑m1

i=0

(k
i
)
c1i c2k−i ; // c2i = 0 for i 6∈ {0, . . . ,m2}

summands(v) = [s0, . . . , sm1+m2 ] where sk = [sk
0 , . . . , sk

m1
] and

sk
i =

{ (k
i
)
c1i c2k−i if 0 ≤ k − i ≤ m2

0 else
}
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Unranking: top-level procedure

The algorithm UnrankLocalTreeNoCross called by UnrankTreeNoCross adorns the standard
decomposition graph with insert-at and merge-using annotations. These can then be used
to extract the join tree.

UnrankTreeNoCross(r,v)
Input: a rank r and the root v of the SDG
Output:adorned SDG
let count(v) = [x0, . . . , xm]

k = minj r ≤
∑j

i=0 xi
r ′ = r −

∑k−1
i=0 xi

UnrankLocalTreeNoCross(v , r ′, k)
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Unranking: Example

The following table shows the intervals associated with the partitions T e(k)
G for our standard

decomposition graph:
Partition Interval
T e(1)

G [1, 5]

T e(2)
G [6, 10]

T e(3)
G [11, 15]

T e(4)
G [16, 18]
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Unranking: the last utility function

The unranking procedure makes use of unranking decompositions and unranking triples. For
the latter and a given X ,Y ,Z , we need to assign each member in

{(x , y , z)|1 ≤ x ≤ X , 1 ≤ y ≤ Y , 1 ≤ z ≤ Z}

a unique number in [1,XYZ ] and base an unranking algorithm on this assignment. We call the
function UnrankTriplet(r ,X ,Y ,Z). r is a rank and X , Y , and Z are the upper bounds for
the numbers in the triplets.
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Unranking Without Cross Products

UnrankingTreeNoCrossLocal(v , r , k)
Input: an SDG node v , a rank r , a number k identifying a partition
Output:adornments of the SDG as a side-effect
Let {w1, . . . ,wn} be the children of v
switch n {

case 0:
// no additional adornment for v
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Unranking Without Cross Products (2)

case 1:
let count(v) = [c0, . . . , cn]
let summands(v) = [s0, . . . , sn]

k1 = minj r ≤
∑j

i=0 sk
i

r1 = r −
∑k1−1

i=0 sk
i

insert-at(v) = k
UnrankingTreeNoCrossLocal(w1, r1, k1)
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Unranking Without Cross Products (3)
case 2:
let count(v) = [c0, . . . , cn]
let summands(v) = [s0, . . . , sn]
let count(w1) = [c10 , . . . , c1n1

]
let count(w2) = [c20 , . . . , c2n2

]

k1 = minj r ≤
∑j

i=0 sk
i

q = r −
∑k1−1

i=0 sk
i

k2 = k − k1
(r1, r2, a) = UnrankTriplet(q, c1k1 , c

2
k2 ,

(k
i
)
)

α = UnrankDecomposition(a)
merge-using(v) = α
UnrankingTreeNoCrossLocal(w1, r1, k1)
UnrankingTreeNoCrossLocal(w2, r2, k2)

}
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Quick Pick

• problem: build (pseudo-)random join trees fast
• unranking without cross products is quite involved
• idea: randomly select an edge in the query graph
• extend join tree by selected edge

No longer uniformly distributed, but very fast
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Quick Pick (2)

QuickPick(Query Graph G)
Input: a query graph G = ({R1, . . . ,Rn},E)
Output:a bushy join tree
E ′ = E ;
Trees = {R1, . . . ,Rn};
while |Trees| > 1 {
choose a random e ∈ E ′

E ′ = E ′ \ {e}
if e connects two relations in different subtrees T1,T2 ∈ Trees
Trees = Trees\{T1,T2}∪CreateJoinTree(T1,T2)

}
return T ∈Trees

• repeated multiple times to find a good tree
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Metaheuristics

• provide a very general optimization strategy
• applicable for many different problems
• work well even for very large problems
• but are often considered a ”brute-force” method

We consider the metaheuristics formulated for the join ordering problem.
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Iterative Improvement

• Start with random join tree
• Select rule that improves join tree
• Stop when no further improvement possible
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Iterative Improvement (2)

IterativeImprovementBase(Query Graph G)
Input: a query graph G = ({R1, . . . ,Rn},E)
Output:a join tree
do {
JoinTree = random tree
JoinTree = IterativeImprovement(JoinTree)
if cost(JoinTree) < cost(BestTree) {
BestTree = JoinTree

}
} while (time limit not exceeded)
return BestTree
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Iterative Improvement (3)

IterativeImprovement(JoinTree)
Input: a join tree
Output: improved join tree
do {
JoinTree’ = randomly apply a transformation from the rule set to the JoinTree
if (cost(JoinTree’) < cost(JoinTree)) {
JoinTree = JoinTree’

}
} while local minimum not reached
return JoinTree

• problem: local minimum detection
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Simulated Annealing

• II: stuck in local minimum
• SA: allow moves that result in more expensive join trees
• lower the threshold for worsening
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Simulated Annealing (2)

SimulatedAnnealing(Query Graph G)
Input: a query graph G = ({R1, . . . ,Rn},E)
Output:a join tree
BestTreeSoFar = random tree
Tree = BestTreeSoFar
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Simulated Annealing (3)
do {

do {
Tree’ = apply random transformation to Tree
if (cost(Tree’) < cost(Tree)) {
Tree = Tree’

} else {
with probability e−(cost(Tree′)−cost(Tree))/temperature

Tree = Tree’
}
if (cost(Tree) < cost(BestTreeSoFar)) {
BestTreeSoFar = Tree’

}
} while equilibrium not reached
reduce temperature

} while not frozen
return BestTreeSoFar
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Simulated Annealing (4)

Advantages:
• can escape from local minimum
• produces better results than II

Problems:
• parameter tuning
• initial temperature
• when and how to decrease the temperature
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Tabu Search

• Select cheapest reachable neighbor (even if it is more expensive)
• Maintain tabu set to avoid running into circles
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Tabu Search (2)
TabuSearch(Query Graph)
Input: a query graph G = ({R1, . . . ,Rn},E)
Output:a join tree
Tree = random join tree
BestTreeSoFar = Tree
TabuSet = ∅
do {
Neighbors = all trees generated by applying a transformation to Tree
Tree = cheapest in Neighbors \ TabuSet
if cost(Tree) < cost(BestTreeSoFar)
BestTreeSoFar = Tree

if (|TabuSet| > limit) remove oldest tree from TabuSet
TabuSet = TabuSet∪{Tree}

}
return BestTreeSoFar
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Genetic Algorithms

• Join trees seen as population
• Successor generations generated by crossover and mutation
• Only the fittest survive

Problem: Encoding
• Chromosome ←→ string
• Gene ←→ character
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Encoding

We distinguish ordered list and ordinal number encodings.
Both encodings are used for left-deep and bushy trees.
In all cases we assume that the relations R1, . . . ,Rn are to be joined and use the index i to
denote Ri .
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Ordered List Encoding

1. left-deep trees
A left-deep join tree is encoded by a permutation of 1, . . . , n. For instance,
(((R1⋈R4)⋈R2)⋈R3) is encoded as “1423”.

2. bushy trees
A bushy join-tree without cartesian products is encoded as an ordered list of the edges in
the join graph. Therefore, we number the edges in the join graph. Then, the join tree is
encoded in a bottom-up, left-to-right manner.

R2R1

R3 R5R4

R21

2

4
R4R5

R1

3

R3
1243
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Ordinal Number Encoding

In both cases, we start with the list L =< R1, . . . ,Rn >.
• left-deep trees

Within L we find the index of first relation to be joined. If this relation be Ri then the
first character in the chromosome string is i . We eliminate Ri from L. For every
subsequent relation joined, we again determine its index in L, remove it from L and
append the index to the chromosome string.
For instance, starting with < R1,R2,R3,R4 >, the left-deep join tree (((R1⋈R4)⋈R2)⋈R3)
is encoded as “1311”.
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Ordinal Number Encoding (2)

• bushy trees
We encode a bushy join tree in a bottom-up, left-to-right manner. Let Ri⋈Rj be the first
join in the join tree under this ordering. Then we look up their positions in L and add
them to the encoding. Then we eliminate Ri and Rj from L and push Ri,j to the front of
it. We then proceed for the other joins by again selecting the next join which now can be
between relations and or subtrees. We determine their position within L, add these
positions to the encoding, remove them from L, and insert a composite relation into L
such that the new composite relation directly follows those already present.
For instance, starting with the list < R1,R2,R3,R4 >, the bushy join tree
((R1⋈R2)⋈(R3⋈R4)) is encoded as “12 23 12”.
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Crossover

1. Subsequence exchange
2. Subset exchange
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Crossover: Subsequence exchange

The subsequence exchange for the ordered list encoding:
• Assume two individuals with chromosomes u1v1w1 and u2v2w2.
• From these we generate u1v ′1w1 and u2v ′2w2 where v ′i is a permutation of the relations in

vi such that the order of their appearence is the same as in u3−iv3−iw3−i .
Subsequence exchange for ordinal number encoding:
• We require that the vi are of equal length (|v1| = |v2|) and occur at the same offset

(|u1| = |u2|).
• We then simply swap the vi .
• That is, we generate u1v2w1 and u2v1w2.
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Crossover: Subset exchange

The subset exchange is defined only for the ordered list encoding.
Within the two chromosomes, we find two subsequences of equal length comprising the same
set of relations. These sequences are then simply exchanged.
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Mutation

A mutation randomly alters a character in the encoding.
If duplicates may not occur— as in the ordered list encoding—swapping two characters is a
perfect mutation.
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Selection

• The probability of survival is determined by its rank in the population.
• We calculate the costs of the join trees encoded for each member in the population.
• Then, we sort the population according to their associated costs and assign probabilities

to each individual such that the best solution in the population has the highest probability
to survive and so on.

• After probabilities have been assigned, we randomly select members of the population
taking into account these probabilities.

• That is, the higher the probability of a member the higher its chance to survive.



302 / 638

Join Ordering Metaheuristics

The Algorithm

1. Create a random population of a given size (say 128).
2. Apply crossover and mutation with a given rate.

For example such that 65% of all members of a population participate in crossover, and
5% of all members of a population are subject to random mutation.

3. Apply selection until we again have a population of the given size.
4. Stop after no improvement within the population was seen for a fixed number of

iterations (say 30).
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Combinations

• metaheuristics are often not used in isolation
• they can be used to improve existing heurstics
• or heuristics can be used to speed up metaheuristics
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Two Phase Optimization

1. For a number of randomly generated initial trees, Iterative Improvement is used to find a
local minima.

2. Then Simulated Annealing is started to find a better plan in the neighborhood of the
local minima.
The initial temperature of Simulated Annealing can be lower as is its original variants.
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AB Algorithm

1. If the query graph is cyclic, a spanning tree is selected.
2. Assign join methods randomly
3. Apply IKKBZ
4. Apply iterative improvement
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Toured Simulated Annealing

The basic idea is that simulated annealing is called n times with different initial join trees, if n
is the number of relations to be joined.
• Each join sequence in the set S produced by GreedyJoinOrdering-3 is used to start an

independent run of simulated annealing.
As a result, the starting temperature can be descreased to 0.1 times the cost of the initial plan.
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GOO-II

Append an iterative improvement step to GOO
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Iterative Dynamic Programming

• Two variants: IDP-1, IDP-2 [9]
• Here: Only IDP-1 base version

Idea:
• create join trees with up to k relations
• replace cheapest one by a compound relation
• start all over again
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Iterative Dynamic Programming (2)

IDP-1({R1, . . . ,Rn}, k)
Input: a set of relations to be joined, maximum block size k
Output:a join tree
for each 1 ≤ i ≤ n {
BestTree({Ri}) = Ri ;

}
ToDo = {R1, . . . ,Rn}
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Iterative Dynamic Programming (3)
while |ToDo| > 1 {
k = min(k, |ToDo|)
for each 2 ≤ i < k ascending

for all S ⊆ ToDo, |S| = i do
for all O ⊂ S do
BestTree(S) = CreateJoinTree(BestTree(S \ O), BestTree(O));

find V ⊂ ToDo, |V | = k with
cost(BestTree(V )) = min{cost(BestTree(W )) | W ⊂ ToDo, |W | = k}

generate new symbol T
BestTree({T}) = BestTree(V )
ToDo = (ToDo \ V ) ∪ {T}
for each O ⊂ V do delete(BestTree(O))

}
return BestTree({R1, . . . ,Rn})
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Iterative Dynamic Programming (4)

• compromise between runtime and optimality
• combines greedy heuristics with dynamic programming
• scales well to large problems
• finds the optimal solution for smaller problems
• approach can be used for different DP strategies
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Order Preserving Joins

• some query languages operatore on lists instead of sets/bags
• order of tuples matters
• examples: XPath/XQuery
• alternatives: either add sort operators or use order preserving operators

Here, we define order preserving operators, list → list
• let L be a list
• L[1] is the first entry in L
• L[2 : |L|] are the remaining entries
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Order Preserving Selection

We define the order preserving selection σL as follows:

σL
p(e) :=


ε if e = ε
< e[1] > ◦σL

p(e[2 : |e|]) if p(e[1])
σL

p(e[2 : |e|]) otherwise

• filters like a normal selection
• preserves the relative ordering (guaranteed)
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Order Preserving Cross Product

We define the order preserving cross product ×L as follows:

e1 ×L e2 :=
{

ε if e1 = ε

(e[1]×̂Le2) ◦ (e1[2 : |e1]×L e2) otherwise

using the tuple/list product defined as:

t×̂Le :=

{
ε if e = ε

< t ◦ e[1] > ◦(t×̂Le[2 : |e|]) otherwise

• preserves the order of e1
• order of e2 is preserved for each e1 group
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Order Preserving Join

The definition of the order preserving join is analogous to the non-order preserving case:

e1⋈L
pe2 := σL

p(e1 ×L e2)

• preserves order of e1, order of e2 relative to e1



316 / 638

Join Ordering Order Preserving Joins

Equivalences

σL
p1
(σL

p2
(e)) ≡ σL

p2
(σL

p1
(e))

σL
p1
(e1⋈L

p2
e2) ≡ σL

p1
(e1)⋈L

p2
e2) if F(p1) ⊆ A(e1)

σL
p2
(e1⋈L

p2
e2) ≡ e1⋈L

p2
σL

p1
(e2) if F(p1) ⊆ A(e2)

e1⋈L
p1
(e2⋈L

p2
e3) ≡ (e1⋈L

p1
e2)⋈L

p2
e3) if F(pi) ⊆ A(ei) ∪ A(ei+1)

• swap selections
• push selections down
• associativity
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Commutativity

Consider the relations R1 =< [a : 1], [a : 2] > and R2 =< [b : 1], [b : 2] >. Then

R1⋈
L
trueR2 = < [a : 1, b : 1], [a : 1, b : 2], [a : 2, b : 1], [a : 2, b : 2] >

R2⋈
L
trueR1 = < [a : 1, b : 1], [a : 2, b : 1], [a : 1, b : 2], [a : 2, b : 2] >

• the order preserving join is not commutative
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Algorithm

• similar to matrix multiplication
• in addition: selection push down
• DP table is a n × n array (or rather 4 arrays)
• algorithm fills arrays p, s, c, t:

I p: applicable predicates
I s: statistics (cardinality, perhaps more)
I c: costs
I t: split position for larger plans

• plan is extracted from the arrays afterwards
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Algorithm (2)

OrderPreservingJoins(R = {R1, . . . ,Rn},P)
Input: a set of relations to be joined and a set of predicates
Output:fills p, s, c, t
for each 1 ≤ i ≤ n {
p[i , i ] =predicates from P applicable to Ri
P = P \ p[i , i ]
s[i , i ] =statistics for σp[i,i](Ri)
c[i , i ] =costs for σp[i,i](Ri)

}
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Algorithm (3)
for each 2 ≤ l ≤ n ascending {

for each 1 ≤ i ≤ n − l + 1 {
j = i + l − 1
p[i , j]=predicates from P applicable to Ri , . . . ,Rj
P = P \ p[i , j]
s[i , j]=statistics derived from s[i , j − 1] and s[j, j] including p[i , j]
c[i , j]=∞
for each i ≤ k < j {
q = c[i , k] + c[k + 1, j]+costs for s[i , k] and s[k + 1, j] and p[i , j]
if q < c[i , j] {
c[i,j]=q
t[i,j]=k

}
}

}
}
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Algorithm (4)

ExtractPlan(R = {R1, . . . ,Rn},t,p)
Input: a set of relations, arrays t and p
Output:a bushy join tree
return ExtractPlanRec(R ,t,p,1,n)

ExtractPlanRec(R = {R1, . . . ,Rn},t,p,i ,j)
if i < j {
T1 =ExtractPlanRec(R ,t,p,i ,t[i , j])
T2 =ExtractPlanRec(R ,t,p,t[i , j] + 1, j)
return T1⋈

L
p[i,j]T2

} else {
return σp[i,j]Ri

}
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Complexity of Join Processing

• We have focused on how to optimize join queries
• But what is the complexity of actually computing a join query?
• Can we do better than a sequence of hash joins for > 2 relations?
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Complexity of Join Processing

Within this section
• We assume set semantics and only inner-joins with equality predicates
• For simplicity, we also assume relations contain no attributes other than join attributes.

R1 R2
b

R3
a c

is shorthand for
R1 R2

R1.b = R2.b

R3
R1.a = R3.a R2.c = R3.c
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Complexity of Join Processing

• What is the runtime complexity of a join query?
• The best we can do is Ω(|Input|+ |Output|) = Ω(

∑
i |Ri |+ |R1⋈R2⋈ . . . |)

• For acyclic queries there is an algorithm that achieves O(k(|Input|+ |Output|)), with k as
the size of the query graph

• For the general case, the best known algorithm is O(k(|Input|+ |Worst Case Output|))
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Complexity of Join Processing

⋈

⋈

R1 R2

R3

R1

a b
1 1
1 2
2 2
3 2

R2

b c
1 1
2 2
2 3

R3

c
1

R1⋈R2

a b c
1 1 1
1 2 2
1 2 3
2 2 2

...

R1⋈R2⋈R3

a b c
1 1 1



326 / 638

Join Ordering Complexity of Join Processing

Goal

• Eliminate dangling tuples, i.e. tuples that won’t appear in the join result
• R ′

i := ΠA(Ri )(R1⋈...⋈Rk)

=⇒ Intermediate join result sizes are O(|Input|+ |Output|) for acyclic queries
=⇒ O(k(|Input|+ |Output|)) runtime

• How do we compute R ′
i efficiently without evaluating the full join for acyclic queries?
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Semi-Join Reduction & The Yannakakis Algorithm

• Semi join reduction: R⋈S ≡ (R⋉S)⋈S
• Goal: Compute R ′

i := ΠA(Ri )(R1⋈...⋈Rk) for acyclic QG
• Full Semi-Join Reduction [10]:

I Root the query graph at any node
I Apply semi-join reductions from leaf to root
I Apply semi-join reductions from root to leaf

• The relations are now fully reduced
• Joining the fully reduced relations allows us to compute the acyclic query in polynomial

time in the input and output (result due to Yannakakis [11])
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Semi-Join Reduction & The Yannakakis Algorithm

R1 R2 R3

R1

a b
1 1
1 2
2 2
3 2

R2

b c
1 1
2 2
2 3

R3

c
1
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Semi-Join Reduction & The Yannakakis Algorithm

R1 R2 R3

R1

a b
1 1
1 2
2 2
3 2

R2

b c
1 1
2 2
2 3

R3

c
1

R2

R1 R3
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Semi-Join Reduction & The Yannakakis Algorithm

R1 R2 R3

R1

a b
1 1
1 2
2 2
3 2

R2

b c
1 1
2 2
2 3

R3

c
1

R2

R1 R3

Bottom Up
• R2 := R2⋉R1

• R2 := R2⋉R3
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Semi-Join Reduction & The Yannakakis Algorithm

R1 R2 R3

R1

a b
1 1
1 2
2 2
3 2

R2

b c
1 1
2 2
2 3

R3

c
1

R2

R1 R3

Bottom Up
• R2 := R2⋉R1

• R2 := R2⋉R3

Top Down
• R1 := R1⋉R2

• R3 := R3⋉R2
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Semi-Join Reduction & The Yannakakis Algorithm

R1 R2 R3

R1

a b
1 1
1 2
2 2
3 2

R2

b c
1 1
2 2
2 3

R3

c
1

R2

R1 R3

Bottom Up
• R2 := R2⋉R1

• R2 := R2⋉R3

Top Down
• R1 := R1⋉R2

• R3 := R3⋉R2

Join
• (R1⋈R2)⋈R3
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Semi-Join Reduction & The Yannakakis Algorithm

• The Yannakakis Algorithm computes the result of an acyclic join query in polynomial time
in the input and output size.

• The resulting plan may be better than the best pure inner-join plan.
• However, the resulting plan may be suboptimal as the semi-joins have additional costs.
• The optimizer should decide when to apply semi-join reduction.
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Generalization of Acyclic Queries

• A query is acyclic iff. there is an equivalent query with an acyclic query graph.
• Is the following query cyclic or acyclic?

R1 R2
a

R3
a a

• We can find an equivalent query that has an acyclic query graph:

R1 R2
a R3

a
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Generalization of Acyclic Queries

• A query is acyclic iff. there is an equivalent query with an acyclic query graph.
• Is the following query cyclic or acyclic?

R1 R2
a

R3
a a

• We can find an equivalent query that has an acyclic query graph:

R1 R2
a R3

a
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GYO (Graham-Yu-Özsoyoğlu) reduction

• Idea: Remove “ear” relations as they do not change whether the query is cyclic.
• A relation Ri is an ear if:

I Ri has no outgoing edges, or
I ∃Rj : JoinAttributes(Ri) ⊆ JoinAttributes(Rj)

assuming, w.l.o.g., all equal attributes have the same name
• If no relations remain in the end, the query is acyclic.

GYOReduction(R)
Input: a set of relations R
Output:a reduced set of relations R ′

while There is an ear Ri
R := R \ {Ri}

return R
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GYO (Graham-Yu-Özsoyoğlu) reduction

• If no relations remain, the query is acyclic.
I GYO reduction order =⇒ Semi join order for full reduction

• If relations remain which cannot be removed, the query is cyclic
I No known output optimal algorithms for cyclic queries.
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Output Size of Join Queries

R1 R2
a

≤ n1 · n2
≤ n1
≤ n2

R1 R2
a R3

b ≤ n1 · n2 · n3
≤ n1 · n3
≤ n2

R1 R2
a

R3
a a

≤ n1 · n2 · n3
≤ min{n1, n2, n3}
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R1 R2
a ≤ n1 · n2

≤ n1
≤ n2

R1 R2
a R3

b

≤ n1 · n2 · n3
≤ n1 · n3
≤ n2

R1 R2
a

R3
a a

≤ n1 · n2 · n3
≤ min{n1, n2, n3}
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R1 R2
a ≤ n1 · n2

≤ n1
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Output Size of Join Queries

R1 R2
a ≤ n1 · n2

≤ n1
≤ n2

R1 R2
a R3

b ≤ n1 · n2 · n3
≤ n1 · n3
≤ n2

R1 R2
a

R3
a a

≤ n1 · n2 · n3
≤ min{n1, n2, n3}
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Output Size of Join Queries

R1 R2
b

R3
a c

≤ n1 · n2 · n3
≤ n1 · n2
≤ n2 · n3
≤ n1 · n3
Can we do even better?
≤ √n1 · n2 · n3 = n1.5
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R1 R2
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R3
a c

≤ n1 · n2 · n3
≤ n1 · n2
≤ n2 · n3
≤ n1 · n3
Can we do even better?

≤ √n1 · n2 · n3 = n1.5
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Output Size of Join Queries

R1 R2
b

R3
a c

≤ n1 · n2 · n3
≤ n1 · n2
≤ n2 · n3
≤ n1 · n3
Can we do even better?
≤ √n1 · n2 · n3 = n1.5
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Output Size of Join Queries

Suboptimality of hash joins:
• R1(a, b) = R2(b, c) = R3(c, a) = ([1]⨉ [n]) ∪ ([n]⨉ [1])

• |R1| = 2n − 1 = O(n)
• R1⋈R2 = ([n]⨉ [1]⨉ [n]) ∪ ([1]⨉ [n]⨉ [1])

• |R1⋈R2| = n2 + n − 1 = O(n2)
• R1⋈R2⋈R3 = ([n]⨉ [1]⨉ [1]) ∪ ([1]⨉ [n]⨉ [1]) ∪ ([1]⨉ [1]⨉ [n])
• |R1⋈R2⋈R3| = 3n − 2 = O(n)
• No hash join plan is output optimal!
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Output Size of Join Queries

Suboptimality of hash joins (visualized for n = 3):

R1

a b

3 + 3− 1

R1⋈R2

a b c

32 + 3− 1

R1⋈R2⋈R3

a b c ac

3 + 3 + 3− 2
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Output Size of Join Queries

Constructing the worst case:
• m :=

√
n

• R1(a, b) = R2(b, c) = R3(c, a) = [m]⨉ [m]

• |R1| = m2 = n
• |R1⋈R2| = m3

• |R1⋈R2⋈R3| = m3 = n1.5
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Output Size of Join Queries

Constructing the worst case (example for n = 4):
• m =

√
n = 2

• a = b = c = [m] = {1, 2}
• R1(a, b) = R2(b, c) = R3(c, a) = [m]⨉ [m] = {(1, 1), (1, 2), (2, 1), (2, 2)}
• R1(a, b)⋈R2(b, c) = {(1, 1, 1), (1, 1, 2), (1, 2, 1), . . . (2, 2, 2)}
• R1(a, b)⋈R2(b, c)⋈R3(c, a) = {(1, 1, 1), (1, 1, 2), (1, 2, 1), . . . (2, 2, 2)}
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Lower Bounds on Worst Case Join Size
Goal: Maximize join result size given query graph and base relation sizes ni :

• Idea: Maximize join size by optimizing the domain sizes vj of the attributes.
• Let R be a set of relations {R1,R2, . . .} and A a set of attributes {a1, a2, . . .}.
• Each attribute aj ∈ A is defined to be aj := [vj ] with variables vj .
• Each relation is defined to be a cross product of its attributes

Ri = ⨉aj∈A(Ri )(aj) |Ri | =
∏

aj∈A(Ri )
(vj)

• The result of the join is thus a cross product of all the attributes
Q = ⨉aj∈A(aj) |Q| =

∏
aj∈A(vj)

maximize
v

∏
aj∈A

vj

subject to ni ≥
∏

aj∈A(Ri )

vj ∀Ri ∈ R
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Lower Bounds on Worst Case Join Size

Our linear program gives us lower bounds on the worst possible join result size.
Example:

R

Sa

Ta

c

V

b

U
b

c

• Given |R | = |S| = |T | = |U| = |V | = 100

• Candidate solution: |a| = |b| = |c| = 10 with
|Q| = 103 = 1000

• We know that the worst possible join result size is at least
1000.

• Can there be an even worse case?



341 / 638

Join Ordering Complexity of Join Processing

Upper Bounds on Worst Case Join Size (AGM Bound)

maximize
v

∏
aj∈A

vj

subject to ni ≥
∏

aj∈A(Ri )

vj ∀Ri ∈ R

= minimize
w

∏
Ri∈R

nwi
i

subject to 1 ≤
∑

i:aj∈A(Ri )

wi ∀aj ∈ A
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Upper Bounds on Worst Case Join Size (AGM Bound)

minimize
w

∏
Ri∈R

nwi
i

subject to 1 ≤
∑

i:aj∈A(Ri )

wi ∀aj ∈ A

• Assign values wi in range [0, 1] to every relation.
• Make sure that every attribute’s connected relations sum up to 1.
• The minimum is equivalent to the maximum of the dual problem.
• Turns out, every correct assignment of values gives a proper upper bound to the worst

case join result size (proven by Atserias, Grohe, and Marx [12]).
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Bounds on Worst Case Join Size

Lower Bounds
• |a| = |b| = |c| = 1

• |Q| ≥ |a||b||c| = 1

• |a| = |b| = |c| = 10

• |Q| ≥ |a||b||c| = 1000

Rel. size 100

R S
b

T
a c

Upper Bounds
• R : 1,S : 1,T : 0

• |Q| ≤ |R |1|S|1|T |0 = 10000

• R : 0.5,S : 0.5,T : 0.5

• |Q| ≤ |R |0.5|S|0.5|T |0.5 = 1000
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Bounds on Worst Case Join Size

Lower Bounds
• |a| = |b| = |c| = 1

• |Q| ≥ |a||b||c| = 1

• |a| = |b| = |c| = 10

• |Q| ≥ |a||b||c| = 1000

Rel. size 100

R

Sa

Ta

c

V

b

U
b

c

Upper Bounds
• R : 1,T : 1,U : 1,S : 0,V : 0

• |Q| ≤ |R ||T ||U| = 1000000

• R : 0.5,T : 0.5,U : 0.5,S : 0,V : 0

• |Q| ≤ |R |0.5|T |0.5|U|0.5 = 1000
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Worst Case Optimal Join Algorithms

• All join queries can be computed in time O(k(Worst Case Join Result Size))
• Not output optimal, but potentially faster than pure hash joins
• Only supports inner-joins with simple equality predicates
• Idea: Compute the result attribute by attribute rather than relation by relation
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Worst Case Optimal Join Algorithms

GenericJoin(Q)
Input: a query graph Q with some attributes fixed
Output:the join result
if all attributes of Q are fixed
return the fixed attributes as a result tuple

J := ∅
Pick arbitrary attribute a
Assume a occurs in relations Ri1 , . . . ,Rik
Compute A := Πa(Ri1) ∩ . . . ∩Πa(Rik ) in time O(min(|Ri1 |, . . . , |Rik |))
for v ∈ A
Q ′ := Q with attribute a fixed to constant v
J := J ∪ GenericJoin(Q ′)

return J
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Worst Case Optimal Join Algorithms

Example execution for the triangle join:

GenericJoin(R(a, b)⋈S(b, c)⋈T (c, a))
Input: a query graph
Output:the join result
J := ∅
Pick attribute a
Compute A := Πa(R) ∩Πa(T )
for va ∈ A
Fix attribute a to va
R ′ := σa=va(R)
T ′ := σa=va(T )
J := J ∪ GenericJoin(R ′(b)⋈S(b, c)⋈T ′(c))

return J

R S
b

T
a c
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Worst Case Optimal Join Algorithms

Example execution for the triangle join (2):

GenericJoin(R ′(b)⋈S(b, c)⋈T ′(c))
Input: a query graph
Output:the join result
J := ∅
Pick attribute b
Compute B := Πb(R ′) ∩Πb(S)
for vb ∈ B
Fix attribute b to vb
S ′ := σb=vb (S)
J := J ∪ GenericJoin(S ′(c)⋈T ′(c))

return J

R S
b

T
a c
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Worst Case Optimal Join Algorithms

Example execution for the triangle join (3):

GenericJoin(S ′(c)⋈T ′(c))
Input: a query graph
Output:the join result
J := ∅
Pick attribute c
Compute C := Πc(S ′) ∩Πc(T ′)
for vc ∈ C
Fix attribute c to vc
J := J ∪ {(va, vb , vc)}

return J

R S
b

T
a c
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Worst Case Optimal Join Algorithms

Generic Join:
• Order in which attributes are processed greatly influences execution time.
• Runtime is O(k(Worst Case Join Result Size)), regardless of attribute order.
• Requires lots of precomputation to ensure intersection and fixing operations are fast.
• Multiple practical implementations exist [13, 14, 15].
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Worst Case Optimal Join Algorithms

• WCOJs are, in general, significantly slower than binary hash joins.
• The optimizer must decide when to apply WCOJs. They are most useful if intermediate

results are larger than the worst case result.
• WCOJs and the Yannakakis Algorithm can be combined to improve runtime for complex

query graphs [16].
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4. Accessing the Data

In this chapter we go into some details:
• deep into the (runtime) system
• close to the hardware

Goal:
• estimation and optimization of disk access costs
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Accessing the Data

4. Accessing the Data (2)

• disk drives
• database buffer
• physical database organization
• physical algebra
• temporal relations and table functions
• indices
• counting the number of accesses
• disk drive costs
• selectivity estimations
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Accessing the Data Disk Drive

Assembly

arm
pivot

arm

assembly

top viewb.

platter

arm head spindle

cylinder

sector track

head

arm

side viewa. 
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Accessing the Data Disk Drive

Zones

• outer tracks/sectors longer than inner ones
• highest density is fixed
• results in waste in outer sectors
• thus: cylinders organized into zones
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Accessing the Data Disk Drive

Zones (2)

• every zone contains a fixed number of consecutive cylinders
• every cylinder in a zone has the same number of sectors per track
• outer zones have more sectors per track than inner zones
• since rotation speed is fixed: higher throughput on outer cylinders
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Accessing the Data Disk Drive

Track Skew

Read all sectors of all tracks of some consecutive cylinders:
• read all sectors of one track
• switch to next track: small adjustment of head necessary

called: head switch
• this causes tiny delay
• thus, if all tracks start at the same angular position then we miss the start of the first

sector of the next track
• remedy: track skew
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Accessing the Data Disk Drive

Cylinder Skew

Read all sectors of all tracks of some consecutive cylinders:
• read all sectors of all tracks of some cylinder
• switching to the next cylinder causes some delay
• again, we miss the start of the first sector, if the tracks start all start at the same angular

position
• remedy: cylinder skew
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Addressing Sectors

• physical Address: cylinder number, head (surface) number, sector number
• logical Address: LBN (logical block number)
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Accessing the Data Disk Drive

LBN to Physical Address

Mapping:

Cylinder Track LBN number of sectors per track
0 0 0 573

1 573 573
… … … …

5 2865 573
1 0 3438 573
… … … …

15041 0 35841845 253
… … … …
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LBN to Physical Address (2)

This ideal view of the mapping is disturbed by bad blocks
• due to the high density, no perfect manufacturing is possible
• as a consequence bad blocks occur (sectors that cannot be used)
• reserve some blocks, tracks, cylinders for remapping bad blocks

Bad blocks may cause hickups during sequential reads
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Reading/Writing a Block

Host sends

command

Controller

decodes it

Rotational

latency
Data transfer off mechanism

Status message to host

Read service time for disk 1

Read service time for disk 2

Disk 3

Disk 2

Disk 1

SCSI bus

Seek

Data transfer to host

Time
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Reading/Writing a Block (2)
1. the host sends the SCSI command.
2. the disk controller decodes the command and calculates the physical address.
3. during the seek the disk drive’s arm is positioned such that the according head is correctly

placed over the cylinder where the requested block resides. This step consists of several
phases.
3.1 the disk controler accelerates the arm.
3.2 for long seeks, the arm moves with maximum velocity (coast).
3.3 the disk controler slows down the arm.
3.4 the disk arm settles for the desired location. The settle times differ for read and write

requests. For reads, an aggressive strategy is used. If, after all, it turns out that the block
could not be read correctly, we can just discard it. For writing, a more conservative strategy
is in order.

4. the disk has to wait until the sector where the requested block resides comes under the
head (rotation latency).

5. the disk reads the sector and transfers data to the host.
6. finally, it sends a status message.



364 / 638

Accessing the Data Disk Drive

Optimizing Round Trip Time

• caching
• read-ahead
• command queuing



365 / 638

Accessing the Data Disk Drive

Seek Time

A good approximation of the seek time where d cylinders have to be travelled is given by

seektime(d) =
{

c1 + c2
√
d d ≤ c0

c3 + c4d d > c0

where the constants ci are disk specific. The constant c0 indicates the maximum number
cylinders where no coast takes place: seeking over a distance of more than c0 cylinders results
in a phase where the disk arm moves with maximum velocity.
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Cost model: initial thoughts

Disk access costs depend on
• the current position of the disk arm and
• the angular position of the platters

Both are not known at query compilation time
Consequence:
• estimating the costs of a single disk access at query compilation time may result in large

estimation error
Better: costs of many accesses
Nonetheless: First Simplistic Cost Model to give a feeling for disk drive access costs
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Simplistic Cost Model

We introduce some disk drive parameters for out simplistic cost model:
• average latency time: average time for positioning (seek+rotational delay)

I use average access time for a single request
I Estimation error can (on the average) be as “low” as 35%

• sustained read/write rate:
I after positioning, rate at which data can be delivered using sequential read
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Model 2004

A hypothetical disk (inspired by disks available in 2004) then has the following parameters:

Model 2004
Parameter Value Abbreviated Name

capacity 180 GB Dcap
average latency time 5 ms Dlat
sustained read rate 100 MB/s Dsrr
sustained write rate 100 MB/s Dswr

The time a disk needs to read and transfer n bytes is then approximated by Dlat + n/Dsrr.
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Sequential vs. Random I/O

Database management system developers distinguish between
• sequential I/O and
• random I/O.

In our simplistic cost model:
• for sequential I/O, there is only one positioning at the beginning and then, we can assume

that data is read with the sustained read rate.
• for random I/O, one positioning for every unit of transfer—typically a page of say

8 KB—is assumed.
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Simplistic Cost Model

Read 100 MB
• Sequential read: 5 ms + 1 s
• Random read (8K pages): 65 s
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Accessing the Data Disk Drive

Simplistic Cost Model (2)

Problems:
• other applications
• other transactions
• other read operations in the same QEP

may request blocks from the same disk and move away the head(s) from the current position
Further: 100 MB sequential search poses problem to buffer manager
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Time to Read 100 MB (x: number of 8 KB chunks)
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Accessing the Data Disk Drive

Time to Read n Random Pages
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Accessing the Data Disk Drive

Simplistic Cost Model (3)

100 MB can be stored on 12800 8 KB pages.
In our simplistic cost model, reading 200 pages randomly costs about the same as reading
100 MB sequentially.
That is, reading 1/64th of 100 MB randomly takes as long as reading the 100 MB sequentially.
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Simplistic Cost Model (4)

Let us denote by a the positioning time, s the sustained read rate, p the page size, and d
some amount of consecutively stored bytes. Let us calculate the break even point

n ∗ (a + p/s) = a + d/s
n = (a + d/s)/(a + p/s)

= (as + d)/(as + p)

a and s are disk parameters and, hence, fixed. For a fixed d , the break even point depends on
the page size.
Next Figure: x-axis: is the page size p in multiples of 1 K; y-axis: (d/p)/n for d = 100 MB.
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Accessing the Data Disk Drive

Break Even Point (depending on page size)
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Two Lessons Learned

• sequential read is much faster than random read
• the runtime system should secure sequential read

The latter point can be generalized:
• the runtime system of a database management system has, as far as query execution is

concerned, two equally important tasks:
I allow for efficient query evaluation plans and
I allow for smooth, simple, and robust cost functions.
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Measures to Achieve the Above

Typical measures on the database side are
• carefully chosen physical layout on disk

(e.g. cylinder or track-aligned extents, clustering)
• disk scheduling, multi-page requests
• (asynchronous) prefetching,
• piggy-back scans,
• buffering (e.g. multiple buffers, replacement strategy) and last but not least
• efficient and robust algorithms for algebraic operators
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Disk Drive: Parameters

Dcyl total number of cylinders
Dtrack total number of tracks
Dsec total number of sectors
Dtpc number of tracks per cylinder (= number of surfaces)

Dcmd command interpretation time
Drot time for a full rotation
Drdsettle time for settle for read
Dwrsettle time for settle for write
Dhdswitch time for head switch
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Disk Drive: Parameters (2)

Dzone total number of zones
Dzcyl(i) number of cylinders in zone i
Dzspt(i) number of sectors per track in zone i
Dzspc(i) number of sectors per cylinder in zone i (= DtpcDzspt(i))
Dzscan(i) time to scan a sector in zone i (= Drot/Dzspti)
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Disk Drive: Parameters (3)

Dseekavg average seek costs
Dclim parameter for seek cost function
Dca parameter for seek cost function
Dcb parameter for seek cost function
Dcc parameter for seek cost function
Dcd parameter for seek cost function

Dfseek(d) cost of a seek of d cylinders

Dfseek(d) =
{

Dca + Dcb
√
d if d ≤ Dclim

Dcc + Dcdd if d > Dclim
Dfrot(s, i) rotation cost for s sectors of zone i (= sDzscan(i))
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Extraction of Disk Drive Parameters

• documentation: often not sufficient
• mapping: interrogation via SCSI-Mapping command (disk drives lie)
• use benchmarking tools, e.g.:

I Diskbench
I Skippy (Microbenchmark)
I Zoned
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Seek Curve Measured with Diskbench
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Skippy Benchmark Example
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Interpretation of Skippy Results

• x-axis: distance (sectors)
• y-axis: time
• difference topmost/bottommost line: rotational latency
• difference two lowest ‘lines’: head switch time
• difference lowest ‘line’ topmost spots: cylinder switch time
• start lowest ‘line’: minimal time to media
• plus other parameters
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Upper bound on Seek Time

Theorem (Qyang)
If the disk arm has to travel over a region of C cylinders, it is positioned on the first of the C
cylinders, and has to stop at s − 1 of them, then sDfseek(C/s) is an upper bound for the seek
time.
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Database Buffer

The database buffer
1. is a finite piece of memory,
2. typically supports a limited number of different page sizes (mostly one or two),
3. is often fragmented into several buffer pools,
4. each having a replacement strategy (typically enhanced by hints).

Given the page identifier, the buffer frame is found by a hashtable lookup.
Accesses to the hash table and the buffer frame need to be synchronized.
Before accessing a page in the buffer, it must be fixed.
These points account for the fact that the costs of accessing a page in the buffer are therefore
greater than zero.
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Buffer Accesses

Consider page acceses in a buffer with 2 pages:
page no action

0 read page 0, place it in buffer
1 read page 1, place it in buffer
0 fix page 0 in buffer
2 swap out a page (e.g. 1), read 2, place it in buffer
0 fix page 0 in buffer
3 swap out a page, read 3, place it in buffer
…

• replacement strategy is imporant
• unfixes omitted
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Replacement Strategies

Some popular replacement strategies:
• random
• fifo
• lru
• Q2

lru is very popular
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Replacement Strategies - random

• when a new page slot is needed, remove a random other page from the buffer
• easy to implements, needs no additional memory
• but does not take the access patterns into account
• primarily used as base line
• suitable for analytic results
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Replacement Strategies - fifo

• first in - first out
• remove the page that was place in the buffer first
• easy to implement, needs no/few additional memory
• but does not adapt very well do access patterns
• increasing buffer size may hurt it

Fifo Anomaly:
• access pattern: 3 2 1 0 3 2 4 3 2 1 0 4
• buffer sizes: 3 vs. 4
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Replacement Strategies - lru

• least recently used
• remove the page that has not been accessed for longest time
• requires a priority queue/linked list
• adapt to access patterns, popular pages stay in memory
• but slow to remove pages

very popular replacement strategy
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Replacement Strategies - 2Q

• two queues
• a fifo queue and a lru queue
• place pages first in fifo, if they are accessed again place them in lru
• gets rid of pages that are accessed only once fast
• superior to lru, example of a ”real” replacement strategy
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Replacement Strategies - Effect on the Cost Model

• replacement affects the costs
• cost model needs predictions, though
• very hard to do in general

Typical approaches:
• ignore buffer effects
• assume random replacement
• make use of known access characteristics
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Physical Database Organization

The database organizes the physical storage in multiple layers:
1. partition: sequence of pages (consecutive on disk)
2. extent: subsequence of a partition
3. segment (file): logical sequence of pages (implemented e.g. as set of extents)
4. record: sequence of bytes stored on a page

Note:
• partition/extent/page/record are physical structures
• a segment is a logical structure
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Physical Storage of Relations
Mapping of a relation’s tuples onto records stored on pages in segments:
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Access to Database Items

• database item: something stored in DB
• database item can be set (bag, sequence) of items
• access to a database item then produces stream of smaller database items
• the operation that does so is called scan
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Scan Example

Using a relation scan rscan, the query

select *
from Student

can be answered by rscan(Student)
(segments? extents?): Assumption:
• segment scans and each relation stored in one segment
• segment and relation name identical

Then fscan(Student) and Student denote scans of all tuples in a relation
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Model of a Segment

• for our cost model, we need a model of segments.
• we assume an extent-based segment implementation.
• every segment then is a sequence of extents.
• every extent can be described by a pair (Fj , Lj) containing its first and last cylinder.

(For simplicity, we assume that extents span whole cylinders.)
• an extent may cross a zone boundary.
• hence: split extents to align them with zone boundaries.
• segment can be described by a sequence of triples (Fi , Li , zi) ordered on Fi where zi is the

zone number in which the extent lies.
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Model of a Segment

Sext number of extents in the segment
Scfirst(i) first cylinder in extent i (Fi)
Sclast(i) last cylinder in extent i (Li)
Szone(i) zone of extent i (zi)
Scpe(i) number of cylinders in extent i (= Sclast(i)− Scfirst(i) + 1)
Ssec total number of sectors in the segment

(=
∑Sext

i=1 Scpe(i)Dzspc(Szone(i)))
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Slotted Page

827

273 827

1

273 2

• page is organized into areas (slots)
• slots point to data chunks
• slots may point to other pages
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Tuple Identifier (TID)

TID is conjunction of
• page identifier (e.g. partition/segment no, page no)
• slot number

TID sometimes called Row Identifier (RID)
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Record Layout
Different layouts possible:

size size size

offset offsetoffset

fixed-length variable-length variable-length variable-length

fixed-length variable-lengthvariable-length

strings

codes data

fixed-length variable-length

encoding for dictionary-based compression

length and offset encoding
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Record Layout (2)

Record layout is a compromise:
• space consumption vs. CPU
• data model specific properties: e.g. generalization
• versioning / easy schema migration
• record layout typically not trivial
• accessing an attribute value has non-zero cost
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Physical Algebra

• building blocks for query execution
• implements the algorithms for query execution
• very generic, reusable components
• describes the general execution approach
• annotated with predicates etc. for query specific parts
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Iterator Concept

The general interface of each operator is:
• open
• next
• close

All physical algebraic operators are implemented as iterators.
• produce a stream of data items (tuples)

Implementations vary slightly for performance tuning (concept the same):
• first/next instead of next
• blocks of tuples instead of single tuples
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Iterator Example

scanscan

Note: all details (subscripts, implementations etc.) are omitted here
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Pipelining

Pipelining is fundamental for the physical algebra:
• physical operators are iterators over the data
• they produce a stream of single tuples
• tuple stream if passed through other operators
• pipelining operators just pass the data through, they only filter or augment
• data is not copied or materialized
• very efficient processing

pipeline breakers disrupt this pipeline and materialize data:
• very expensive, can cause superfluous work
• sometimes cannot be avoided, though
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Simple Scan

• a rscan operation is rarely supported.
• instead: scans on segments (files).
• since a (data) segment is sometimes called file, the correct plan for the above query is

often denoted by fscan(Student).
Several assumptions must hold:
• the Student relation is not fragmented, it is stored in a single segment,
• the name of this segment is the same as the relation name, and
• no tuples from other relations are stored in this segment.

Until otherwise stated, we assume that these assumptions hold.
Instead of fscan(Student), we could then simply use Student to denote leaf nodes in a
query execution plan.
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Attributes/Variables and their Binding

select *
from Student

can be expressed as Student[s] instead of Student.
Result type: set of tuples with a single attribute s.
s is assumed to bind a pointer
• to the physical record in the buffer holding the current tuple or
• a pointer to the slot pointing to the record holding the current tuple
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Building Block

• scan
• a leaf of a query execution plan

Leaf can be complex.
But: Plan generator does not try to reorder within building blocks
Nonetheless:
• building block organized around a single database item

If more than a single database item is involved: access path
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Scan and Attribute Access

Strictly speaking, the plan
σage>30(Student[s])

is incorrect (age is not bound!)
We have a choice:
• implicit attribute access
• make attribute accesses explicit
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Scan and Attribute Access (2)

Explicit attribute access:
σs.age>30(Student[s])

Advantage: makes attribute access costs explicit
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Scan and Attribute Access (3)

Consider:
σs.age>30∧s.age<40(Student[s])

Problem: accesses age twice
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Scan and Attribute Access (4)

Map operator:

χa1:e1,...,an:en(e) := {t ◦ [a1 : c1, . . . , an : cn]|t ∈ e, ci = ei(t) ∀ (1 ≤ i ≤ n)}
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Loading Attributes

The above problem can now be solved by

σage>30∧age<40(χage:s.age(Student[s])).

In general, it is beneficial to load attributes as late as possible. The latest point at which all
attributes must be read from the page is typically just before a pipeline breaker.
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Loading Attributes (2)

select name
from Student
where age > 30

The plan
Πn(χn:s.name(σa>30(χa:s.age(Student[s]))))

is better than
Πn(σa > 30(χn:s.name,a:s.age(Student[s])))
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Loading Attributes (3)

Alternative to this selective successive attribute access:
• scan has list of attributes to be projected (accessed, copied)
• predicate is applied before processing the projection list
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Loading Attributes (4)

predicate evaluable on disk representation is called SARGable (search argument)
• boolean expression in simple predicates of the form Aθc

If a predicate can be used for an index lookup: index SARGable
Other predicates: residual predicates
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Loading Attributes (5)

R [v ; p] equivalent to σp(R [v ]) but cheaper to evaluate
Remark
• if p is conjunct, order by (fi − 1)/ci

Example:
Student[s; age > 30, name like `%m%′]
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Loading Attributes and Pipeline Breakers

• attribute access not only for scans
• likewise all operators that materialize to disk
• most pipeline breakers
• projection and selection should always be integrated into pipeline breakers
• not that important for pipelining operators
• attribute access must happen before breaking the pipeline

Exception:
• RID join/semijoin techniques
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Physical Operator - Selection

• consumes a tuple stream
• checks predicate on each tuple
• produces matching tuples

Characteristics:
• pipelining operator
• consumes no memory, causes no IO
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Physical Operator - Nested Loop Join

• consumes two tuple streams
• for each tuple from one stream (trad: the left) consumes the whole other stream
• checks predicate on each pair
• produces matching tuples

Characteristics:
• pipelining operator
• consumes no memory, causes no IO (at least not directly)



424 / 638

Accessing the Data Physical Algebra

Physical Operator - Blockwise Nested Loop Join

• consumes two tuple streams
• reads one stream (left) blockwise into memory, consumes the whole other stream for each

block
• checks predicate on each pair of tuples
• produces matching tuples

Characteristics:
• pipeline breaker on the left stream
• consumes memory for the blocks, causes no IO (unusual for a pipeline breaker)

Variants (with hashing etc.) behave basically the same
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Physical Operator - Sort Merge Join

We only consider the case that the input is already sorted (see Sort) and 1 : n or 1 : 1.
• consumes two tuple streams
• skips uniformly through both streams
• checks predicate on each pair (implicitly)
• produces matching tuples

Characteristics:
• pipelining operator
• consumes no memory, causes no IO
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Physical Operator - Grace Hash Join

• consumes two tuple streams
• reads one stream and splits it into partitions on disk
• the same of the other stream
• joins the partitions, produces matching tuples

Characteristics:
• full pipeline breaker
• consumes memory for one partition, writes/reads whole data at least once

IO behavior can be predicted relatively easily
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Physical Operator - Hybrid Hash Join

• consumes two tuple streams
• reads one stream and splits it into partitions on disk. Tries to keep some partitions in

memory
• reads the other stream, also splits it into partitions on disk, but already joins with

partitions still in memory
• joins partitions on disk, produces matching tuples

Characteristics:
• (typically) full pipeline breaker. Might keep the pipeline for the second stream
• consumes memory for partitioning (size variable), might write/reads whole data

Behavior difficult to predict, might cause no IO, might write everything
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Physical Operator - Sort

• consumes one input stream
• creates sorted runs, spools runs to disk, merges the runs
• produces sorted output stream

Characteristics:
• pipeline breaker
• consumes memory for one run, reads/write data log n times

Exact behavior depends on implementation, e.g. HeapSort might produce one run, while
QuickSort produces fixed number of runs
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Physical Operator - Sort Based Group By

We assume that the input is already sorted
• consumes one input stream
• aggregates the input directly
• produces an output tuple whenever the group by attribute changes

Characteristics:
• pipeline breaker (nearly pipelining, though)
• consumes memory for one tuple, causes no IO

Sometimes interleaved with sort (early aggregation)
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Physical Operator - Hash Bases Group By

• consumes one input stream
• reads the stream, splits into partitions, writes partitions to disk (if needed)
• aggregates partitions, produces output tuples

Characteristics:
• pipeline breaker
• consumes memory for buffering (variable), might read/write the whole data
• two possibilities, similar to Grace Hash vs. Hybrid Hash

Variants with early aggregation etc.



431 / 638

Accessing the Data Physical Algebra

Physical Operators - Others

Only mainstream operators included, some are missing:
• projection usually implicit
• duplicate elimination is a special kind of aggregation
• dependent join (nested loop, can be done somewhat differently)
• outer join/semi join/anti join etc. roughly similar to normal joins
• specialized operators for query languages: staircase join, twig join etc.
• their characteristics have to be known to the query optimizer
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Temporal Relations

The query optimizer might introduce temporal relations:
• a ”relations” just for the query
• allows for reusing intermediate results
• related: temporary views
• more efficient nested loop join
• materializes a subquery

Creating a temporary relation is an expensive operation therefore
• should be decided by the query optimizer
• but often done as rewrite
• typically breaks optimization in parts
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Temporal Relations (2)

select e.name, d.name
from Emp e, Dept d
where e.age > 30 and e.age < 40 and e.dno = d.dno

can be evaluated by

Dept[d ]⋈nl
e.dno=d.dnoσe.age>30∧e.age<40(Emp[d ]).

Better:
Dept[d ]⋈nl

e.dno=d.dnotemp(σe.age>30∧e.age<40(Emp[d ])).

Or:
1. Rtmp = σe.age>30∧e.age<40(Emp[d ]);
2. Dept[d ]⋈nl

e.dno=d.dnoRtmp [e]
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Table Functions

A table function is a function that returns a relation.
Example query:

select *
from TABLE(Primes(1,100)) as p

Translation:
Primes(1, 100)[p]

Looks the same as regular scan, but is of course computed differently.
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Table Functions (2)

Special birthdays of Anton:

select *
from Friends f,

TABLE(Primes(
CURRENT_YEAR, EXTRACT(YEAR FROM f.birthday) + 100)) as p

where f.name = ‘Anton’

Note: The result of the table function depends on our friend Anton.
Translation: uses d-join
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Table Functions (3)

Definition d-join:

R⧑S = {r ◦ s|r ∈ R , s ∈ S(t)}.

Translation of the above query:

χb:XTRY (f .birthday)+100(σf .name=′′Anton′′(Friends[f ]))⧑Primes(c, b)[p]

where we assume that some global entity c holds the value of CURRENT_YEAR.
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Table Functions (4)
The same for all friends:

select *
from Friends f,

TABLE(Primes(
CURRENT_YEAR, EXTRACT(YEAR FROM f.birthday) + 100)) as p

Better:

select *
from Friends f,

TABLE(Primes(
CURRENT_YEAR, (select max(birthday) from Friends) + 100)) as p

where p.prime ≤ EXTRACT(YEAR FROM f.birthday) + 100

At the algebraic level: this optimization requires some knowledge
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Indices

We consider B-Trees only
• key attributes: a1, . . . , an

• data attributes: d1, . . . , dm

• Often: one special data attribute holding the TID of a tuple
Some notions:
• simple/complex key
• unique/non-unique index
• index-only relation (no TIDs available!)
• clustered/non-clustered index
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Clustered vs. Non-Clustered B-Tree

• clustering is not always possible (or even desireable)
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Single Index Access Path - Point Query

Exact match query:

select name
from Emp
where eno = 1077

Translation:
Πname(χe:∗x .tid,name:e.name(Empeno [x ; eno = 1077]))

Alternative translation using d-join:

Πname(Empeno [x ; eno = 1077]⧑χe:∗.tid,name:e.name(�))

(x: holds ptr to index entry; *: dereference TID, � is a singleton scan)
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Single Index Access Path - Range Query

Range query:

select name
from Emp
where age ≥ 25 and age ≤ 35

Translation:
Πname(χe:∗x .tid,name:e.name(Empage [x ; 25 ≤ age; age ≤ 35]))

(Start and Stop condition)
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Single Index Access Path - Sequential I/O

Turning random I/O into sequential I/O:

Πname(χe:∗tid,name:e.name(sortx .tid(Empage [x ; 25 ≤ age; age ≤ 35; tid ])))

Note: explicit projection the TID attribute of the index within the index scan.
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Single Index Access Path - Sorted Output

Query demanding ordered output:

select name, age
from Emp
where age ≥ 25 and age ≤ 35
order by age

Translation:

Πname,age(χe:∗x .tid,name:e.name(Empage [x ; 25 ≤ age; age ≤ 35]))

Note: output of index scan ordered on its key attributes
This order can be exploited in many ways: e.g.: subsequent merge join
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Single Index Access Path - Sorted Output (2)

Turning random I/O into sequential I/O requires resort:

Πname,age(sortage(χe:∗tid,name:e.name(sorttid(Empage [x ; 25 ≤ age; age ≤ 35; tid ]))))

Possible speedup of sort by dense numbering:

Πname,age(
sortrank(
χe:∗tid,name:e.name(
sorttid(
χrank:counter++(
Empage [x ; 25 ≤ age; age ≤ 35; tid ])))))
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Single Index Access Path - Other Predicates

Some predicates not index sargable but still useful as residual predicates:

select name
from Emp
where age ≥ 25 and age ≤ 35 and age 6= 30

Translation:

Πname(χe:∗x .tid,name:e.name(Empage [x ; 25 ≤ age; age ≤ 35; age 6= 30]))
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Single Index Access Path - Other Predicates (2)
Non-inclusive bounds:

select name
from Emp
where age > 25 and age < 35

If supported by index:

Πname(χe:∗x .tid,name:e.name(Empage [x ; 25 < age; age < 35]))

If unsupported:

Πname(χe:∗x .tid,name:e.name(Empage [x ; 25 ≤ age; age ≤ 35; age 6= 25, age 6= 35]))

Especially for predicates on strings this might be expensive.
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Single Index Access Path - Ranges

Start and stop conditions are optional:

select name
from Emp
where age ≥ 60

or

select name
from Emp
where age ≤ 20
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Single Index Access Path - No Range

Full index scan also useful:

select count(*)
from Emp

Also works for sum/avg.
(notion: index only query)
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Single Index Access Path - No Range (2)

Min/max even more efficient:

select min/max(salary)
from Emp
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Single Index Access Path - No Range (3)

select name
from Emp
where salary = (select max(salary)

from Emp)

Alternatives: one or two descents into the index.
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Single Index Access Path - No Range (4)

Full index scan:

select salary
from Emp
order by salary

Translation:
Empsalary
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Single Index Access Path - String Ranges

Predicate on string attribute:

select name, salary
from Emp
where name ≥ ’Maaa’

Start condition: ′Maaa′ ≤ name

select name, salary
from Emp
where name like ’M%’

Start condition: ′M ′ ≤ name
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Single Index Access Path

• an access path is a plan fragment with building blocks concerning a single database items.
• hence, every building block is an access path.
• above plans mostly touch two database items: a relation and an index on some attribute

of that relation.
• if we say that an index concerns the relation that it indexes, such a fragment is an access

path.
• for relational systems, the most general case of an access path uses several indices to

retrieve the tuples of a single relation.
• we will see examples of these more complex access paths in the following section.
• a query that can be answered solely by accessing indexes is called an index only query .
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Single Index Access Path - Complex Predicates

Query with IN:

select name
from Emp
where age in {28, 29, 31, 32}

Take min/max value for start/stop key plus one of the following as the residual predicate:
• age = 28 ∨ age = 29 ∨ age = 31 ∨ age = 32

• age 6= 30
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Single Index Access Path - Complex Predicates (2)

A case for the d-join:

select name
from Emp
where salary in {1111, 11111, 111111}

With Sal = {[s : 1111], [s : 11111], [s : 111111]}:

Sal [S]⧑χe:∗tid,name:e.name(Empsalary [x ; salary = S.s; tid ])

• gap skipping/zig-zag skipping
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Single Index Access Path - Compound Keys

In general an index can have a complex key comprising of key attributes k1, . . . , kn and data
attributes d1, . . . , dm.
Besides a full index scan, the index can be descended to directly search for the desired tuple(s):
If the search predicate is of the form

k1 = c1 ∧ k2 = c2 ∧ . . . ∧ kj = cj

for some constants ci and some j <= n, we can generate the start and stop condition

k1 = c1 ∧ . . . ∧ kj = cj .
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Single Index Access Path - Compound Keys

With ranges things become more complex and highly dependent on the implementation of the
facilities of the B-Tree:

k1 = c1 ∧ k2 ≥ c2 ∧ k3 = c3
Obviously, we can generate the start condition k1 = c1 ∧ k2 ≥ c2 and the stop condition
k1 = c1.
Here, we neglected the condition on k3 which becomes a residual predicate.
However, with some care we can extend the start condition to k1 = c1 ∧ k2 ≥ c2 ∧ k3 = c3:
we only have to keep k3 = c3 as a residual predicate since for k2 values larger than c2 values
different from c3 can occur for k3.
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Single Index Access Path - Compound Keys (2)

If closed ranges are specified for a prefix of the key attributes as in

a1 ≤ k1 ≤ b1 ∧ . . . ∧ aj ≤ kj ≤ bj

we can generate the start key k1 = a1 ∧ . . . ∧ kj = aj , the stop key k1 = b1 ∧ . . . ∧ kj = bj , and

a2 ≤ k2 ≤ b2 ∧ . . . ∧ aj ≤ kj ≤ bj

as the residual predicate.
If for some search key attribute kj the lower bound aj is not specified, the start condition can
not contain kj and any kj+i .
If for some search key attribute kj the upper bound bj is not specified, the stop condition can
not contain kj and any kj+i .
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Accessing the Data Indices

Single Index Access Path - Improvements

Two further enhancements of the B-Tree functionality possibly allow for alternative start/stop
conditions:
• The B-Tree implemenation allows to specify the order (ascending or descending) for each

key attribute individually.
• The B-Tree implementation implements forward and backward scans
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Accessing the Data Indices

Single Index Access Path - Improvements (2)

Consider search predicate:
haircolor = 'blond' and height between 180 and 190

and index on
sex, haircolor, height

There are only the two values male and female available for sex.
Rewrite:

(sex = 'm' and haircolor = 'blond' and height between 180 and 190)
or (sex = 'f' and haircolor = 'blond' and height between 180 and
190)

Improvement: determine rewrite at query execution time in conjunction with gap skipping.
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Accessing the Data Indices

Multi Index Access Path - Example

Query:

select *
from Camera
where megapixel > 5 and distortion < 0.05

and noise < 0.01
zoomMin < 35 and zoomMax > 105

Indexes on all attributes
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Accessing the Data Indices

Multi Index Access Path - Example (2)
Translation:

((((
Cameramegapixel [c;megapixel > 5; tid ]
∩
Cameradistortion[c; distortion < 0.05; tid ])
∩
Cameranoise [c; noise < 0.01; tid ])
∩
CamerazoomMin[c; zoomMin < 35; tid ])
∩
CamerazoomMax [c; zoomMax > 105; tid ])

Then dereference
• Notion: index and-ing/and merge (bitmap index)
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Accessing the Data Indices

Multi Index Access Path - Combining

Questions:
• In which order do we intersect the TID sets resulting from the index scans?
• Do we really apply all indexes before dereferencing the TIDs?

The answer to the latter question is clearly “no”, if the next index scan is more expensive than
accessing the records in the current TID list.
It can be shown that the indexes in the cascade of intersections are ordered on increasing
(fi − 1)/ci terms where fi is the selectivity of the index and ci its access cost.
Further, we can stop as soon as accessing the original tuples in the base relation becomes
cheaper than intersecting with another index and subsequently accessing the base relation.
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Accessing the Data Indices

Multi Index Access Path - Combining (2)

Index-oring (or merge):

select *
from Emp
where yearsOfEmployment ≥ 30

or age ≥ 65

Translation:

EmpyearsOfEmployment [c; yearsOfEmployment ≥ 30; tid ] ∪ Empage [c; age ≥ 65; tid ]

Attention: duplicates
Optimal translation of complex boolean expressions? Factorization?
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Accessing the Data Indices

Multi Index Access Path - Combining (3)

Index differencing:

select *
from Emp
where yearsOfEmployment 6= 10

and age ≥ 65

Translation:

Empage [c; age ≥ 65; tid ] \ EmpyearsOfEmployment [c; yearsOfEmployment = 10; tid ]
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Accessing the Data Indices

Multi Index Access Path - Combining (3)

Non-restrictive index sargable predicates (more than half of the index has to be read):

select *
from Emp
where yearsOfEmployment ≤ 5

and age ≤ 60

Then

EmpyearsOfEmployment [c; yearsOfEmployment ≤ 5; tid ] \ Empage [c; age > 60; tid ]

could be more efficient than

EmpyearsOfEmployment [c; yearsOfEmployment ≤ 5; tid ] ∩ Empage [c; age ≤ 60; tid ]
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Indices and Join

1. speed up joins by index exploitation
2. make join a general index processing operation

(intersection is similar to join (for sets))
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Accessing the Data Indices

Indices and Join (2)

Turn map
χe:∗tid,name:e.name(Empsalary [x ; 25 ≤ age ≤ 35; tid ])

into d-join
Empsalary [x ; 25 ≤ age ≤ 35; tid ]⧑χe:∗tid,name:e.name(�)

or even join
Empsalary [x ; 25 ≤ age ≤ 35]⋈x .tid=e.tidEmp[e]

Variants: sorting at different places (by plan generator)
• pro: flexibility
• contra: large search space
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Accessing the Data Indices

Indices and Join (3)

Query:

select name,age
from Person
where name like ’R%’ and age between 40 and 50

Translation:

Πname,age(
Empage [a; 40 ≤ age ≤ 50;TIDa, age]
⋈TIDa=TIDn
Empname [n; name ≥′ R ′; name <′ S ′;TIDn, name])
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Accessing the Data Indices

Indices and Join (4)

The query
select *
from Emp e, Dept d
where e.name = ‘Maier’ and e.dno = d.dno

can be directly translated to

σe.name=′′Maier ′′(Emp[e])⋈e.dno=d.dnoDept[d ]
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Accessing the Data Indices

Indices and Join (5)

If there are indexes on Emp.name and Dept.dno, we can replace σe.name=′′Maier ′′(Emp[e]) by
an index scan as we have seen previously:

χe:∗x .tid(Empname [x ; name =′′ Maier ′′])
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Indices and Join (6)

With a d-join:
Empname [x ; name =′′ Maier ′′]⧑χe:∗x .tid(�)

Abbreviate Empname [x ; name =′′ Maier ′′] by Ei
Abbreviate χe:∗x .tid(�) by Ea.
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Indices and Join (7)

Use index on Dept.dno:
Ei⧑Ea⧑Deptdno [y ; y .dno = dno]

Dereference TIDs (index nested loop join):

Ei⧑Ea⧑Deptdno [y ; y .dno = dno; dtid : y .tid ]⧑χu:∗dtid(�)

Abbreviate Deptdno [y ; y .dno = dno; dtid : y .tid ] by Di
Abbreviate χu:∗dtid(�) by Da
Fully abbreviated, the expression then becomes

Ei⧑Ea⧑Di⧑Da
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Accessing the Data Indices

Indices and Join - Performance Improvements

Optimizations: sorting the outer of a d-join is useful under several circumstances since it may
• turn random I/O into sequential I/O and/or
• avoid reading the same page twice.

In our example expression:
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Indices and Join - Performance Improvements (2)

• We can sort the result of expression Ei on TID in order to turn random I/O into
sequential I/O, if there are many employees named ”Maier”.

• We can sort the result of the expression Ei⧑Ea on dno for two reasons:
I If there are duplicates for dno, i.e. there are many employees named ”Maier” in each

department, then this guarantees that no index page (of the index Dept.dno) has to be read
more than once.

I If additionally Dept.dno is a clustered index or Dept is an index-only table contained in
Dept.dno then large parts of the random I/O can be turned into sequential I/O.

I If the result of the inner is materialized (see below), then only one result needs to be stored.
Note that sorting is not necessary but grouping would suffice to avoid duplicate work.

• We can sort the result of the expression Ei⧑Ea⧑Di on dtid for the same reasons as
mentioned above for sorting the result of Ei on TID.
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Indices and Join - Temping the Inner

Typically, many employees will work in a single department and possibly several of them are
called ”Maier”.
For everyone of them, we can be sure that there exists at most one department.
Let us assume that referential intregrity has been specified.
Then there exists exactly one department for every employee.
We have to find a way to rewrite the expression

Ei⧑Ea⧑Deptdno [y ; y .dno = dno; dtid : y .rid ]

such that the mapping dno −→ dtid is explicitly materialized (or, as one could also say,
cached).
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Indices and Join - Temping the Inner (2)

Use χmat :

Ei⧑Ea⧑χ
mat
tid:(Deptdno [y ;y .dno=dno]).tid(�)
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Accessing the Data Indices

Indices and Join - Temping the Inner (3)

If we further assume that the outer (Ei⧑Ea) is sorted on dno, then it suffices to remember only
the TID for the latest dno.
We define the map operator χmat,1 to do exactly this.
A more efficient plan could thus be

sortdno(Ei⧑Ea)⧑χ
mat,1
dtid:(Deptdno [y ;y .dno=dno]).tid(�)

where, strictly speaking, sorting is not necessary: grouping would suffice.
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Indices and Join - Temping the Inner (4)

Consider: e1⧑e2
The free variables used in e2 must be a subset of the variables (attributes) produced by e1, i.e.
F(e2) ⊆ A(e1).
Even if e1 does not contain duplicates, the projection of e1 on F(e2) may contain duplicates.
If so, materialization could pay off.
However, in general, for every binding of the variables F(e2), the expression e2 may produce
several tuples.
This means that using χmat is not sufficient.
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Indices and Join - Temping the Inner (5)

The query

select *
from Emp e, Wine w
where e.yearOfBirth = w.year

has the usual suspects as plans.
Assume we have only wines from a few years.
Then, it might make sense to consider the following alternative:

Wine[w ]⧑σe.yearOfBirth=w .year (Emp[e])

Problem: scan Emp once for each Wine tuple
Duplicates in Wine.year: scan Emp only once per Wine.year value
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Accessing the Data Indices

Indices and Join - Temping the Inner (6)

The memox operator performs caching:

Wine[w ]⧑memox(σe.yearOfBirth=w .year (Emp[e]))

Sorting still beneficial:

sortw .year (Wine[w ])⧑memox1(σe.yearOfBirth=w .year (Emp[e]))
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Indices and Join - Temping the Inner (7)

Things can become even more efficient if there is an index on Emp.yearOfBirth:

sortw .year (Wine[w ])
⧑memox1(EmpyearOfBirth[x ; x .yearOfBirth = w .year ]⧑χe:∗(x .tid)(�))
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Indices and Join - Temping the Inner (8)

Indexes on Emp.yearOfBirth and Wine.year.
Join result of index scans.
Since the index scan produces its output ordered on the key attributes, a simple merge join
suffices (and we are back at the latter):

EmpyearOfBirth[x ]⋈merge
x .yearOfBirth=y .yearWineyear [y ]
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Accessing the Data Indices

Remarks on Access Path Generation

Side-ways information passing
Consider R⋈R .a=S.bS
• min/max for restriction on other join argument
• full projection on join attributes (leads to semi-join)
• bitmap representation of the projection
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Accessing the Data Counting the Number of Accesses

From Cardinalities to Costs

Given: number of TIDs to dereference
Question: disk access costs?
Two step solution:
1. estimate number of pages to be accessed
2. estimate costs for accessing these pages
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Parameters

Given a set of k TIDs after an index access:
How many pages do we have to access to dereference them?

Let R be the relation for which we have to retrieve the tuples. Then we use the following
abbreviations

N |R | number of tuples in the relation R
m ||R || number of pages on which tuples of R are stored
B N/m number of tuples per page
k number of (distinct) TIDs for which tuples have to be retrieved

We assume that the tuples are uniformely distributed among the m pages. Then, each page
stores B = N/m tuples. B is called blocking factor .
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Accessing the Data Counting the Number of Accesses

Special Cases

Let us consider some border cases.
If k > N − N/m or m = 1, then all pages are accessed.
If k = 1 then exactly one page is accessed.
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Accessing the Data Counting the Number of Accesses

General Case

The answer to the general question will be expressed in terms of
• buckets (pages in the above case) and
• items contained therein (tuples in the above case).

Later on, we will also use extents, cylinders, or tracks as buckets and tracks or sectors/blocks
as items.
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Different Settings

Outline:
1. random/direct access

1.1 items uniformly distributed among the buckets
1.1.1 request k distinct items
1.1.2 request k non-distinct items

1.2 non-uniform distribution of items among buckets
2. sequential access

Always: uniform access probability
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct

Additional assumption:
The probability that we request a set with k items is

1(N
k
)

for all of the (
N
k

)
possibilities to select a k-set.
[Every k-set is accessed with the same probability.]
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (2)

Theorem (Waters/Yao)
Consider m buckets with n items each. Then there is a total of N = nm items. If we randomly
select k distinct items from all items then the number of qualifying buckets is

YN,m
n (k) = m ∗ YN

n (k) (17)

where YN
n (k) is the probability that a bucket contains at least one item.
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (3)
Theorem (Waters/Yao (cont.))
The probability is

YN
n (k) =

{
[1− p] k ≤ N − n
1 k > N − n

where p is the probability that a bucket contains none of the k items. The following
alternative expressions can be used to calculate p:

p =

(N−n
k

)(N
k
) (18)

=

k−1∏
i=0

N − n − i
N − i (19)

=

n−1∏
i=0

N − k − i
N − i (20)
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (4)

Proof (1): The total number of possibilities to pick the k items from all N items is(
N
k

)
The number of possibilities to pick k items from all items not contained in a fixed single
bucket is (

N − n
k

)
Hence, the probability p that a bucket does not qualify is

p =

(
N − n
k

)
/

(
N
k

)
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (5)

Proof (2):

p =

(N−n
k

)(N
k
)

=
(N − n)! k!(N − k)!
k!((N − n)− k)! N!

=

k−1∏
i=0

N − n − i
N − i
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (6)

Proof(3):

p =

(N−n
k

)(N
k
)

=
(N − n)! k!(N − k)!
k!((N − n)− k)! N!

=
(N − n)! (N − k)!
N! ((N − k)− n)!

=

n−1∏
i=0

N − k − i
N − i
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (7)

Implementation remark:
The fraction m = N/n may not be an integer.
For these cases, it is advisable to have a Gamma-function based implementation of
binomial coeffcients at hand

Evaluation of Yao’s formula is expensive. Approximations are more efficient to calculate.
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (8)

Special cases:

If then YN
m(k) =

n = 1 k/N
n = N 1
k = 0 0
k = 1 B/N
k = N 1
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (9)

Let N items be distributed over N buckets such that every bucket contains exactly one item.
Further let us be interested in a subset of m buckets (1 ≤ m ≤ N).
If we pick k items then the number of buckets within the subset of size m that qualify is

mYN
1 (k) = m k

N (21)

qualify.
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (10)
Proof:

YN
1 (k) = (1−

(N−1
k

)(N
k
) )

= (1−
(N−1)!

k!((N−1)−k)!
N!

k!(N−k)!
)

= (1− (N − 1)!k!(N − k)!
N!k!((N − 1)− k)! )

= (1− N − k
N )

= (
N
N −

N − k
N )

=
N − N + k

N

=
k
N
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (11)

Approximation of Yao’s formula (1):

p ≈ (1− k/N)n

[Waters]
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (12)

Approximation of Yao’s formula (2):
YN,m

n (k) can be approximated by:

m ∗ [ (1− (1− 1/m)k)+
(1/(m2b) ∗ k(k − 1)/2 ∗ (1− 1/m)k−1)+
(1.5/(m3b4) ∗ k(k − 1)(2k − 1)/6 ∗ (1− 1/m)k−1) ]

[Whang, Wiederhold, Sagalowicz]
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (13)

Approximation of Yao’s formula (3):

YN,m
n (k) ≈


k if k < m

2
k+m
3 if m

2 ≤ k < 2m
m if 2m ≤ k

[Bernstein, Goodman, Wong, Reeve, Rothnie]
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (14)

Upper and lower bounds for p:

plower = (1− k
N − n−1

2

)n

pupper = ((1− k
N ) ∗ (1− k

N − n + 1
))n/2

for n = N/m.
Dihr and Saharia claim that the maximal difference resulting from the use of the lower and the
upper bound to compute the number of page accesses is 0.224—far less than a single page
access.
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct
Lemma
Let S be a set with |S| = N elements. Then, the number of multisets with cardinality k
containing only elements from S is (

N + k − 1

k

)
Proof: For a prove we just note that there is a bijection between the k-multisets and the
k-subsets of a N + k − 1-set.
We can go from a multiset to a set by f with

f ({x1 ≤ . . . ≤ xk}) = {x1 + 0 < x2 + 1 < . . . < xk + (k − 1)}

and from a set to a multiset via g with

g({x1 < . . . < xk}) = {x1 − 0 ≤ x2 − 1 ≤ . . . ≤ xk − (k − 1)}



505 / 638

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct (2)

Theorem (Cheung)
Consider m buckets with n items each. Then there is a total of N = nm items. If we randomly
select k not necessarily distinct items from all items, then the number of qualifying buckets is

CheungN,m
n (k) = m ∗ CheungN

n (k) (22)

where
CheungN

n (k) = [1− p̃] (23)
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct (3)

Theorem (Cheung (cont.))
with the following equivalent expressions for p̃:

p̃ =

(N−n+k−1
k

)(N+k−1
k

) (24)

=
k−1∏
i=0

N − n + i
N + i (25)

=

n−1∏
i=0

N − 1− i
N − 1 + k − i (26)
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct (4)

Proof(1):
Eq. 24 follows from the observation that the probability that some bucket does not contain
any of the k possibly duplicate items is (N−n+k−1

k )
(N+k−1

k )
.
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct (5)

Proof(2):
Eq. 25 follows from

p̃ =

(N−n+k−1
k

)(N+k−1
k

)
=

(N − n + k − 1)! k!((N + k − 1)− k)!
k!((N − n + k − 1)− k)! (N + k − 1)!

=
(N − n − 1 + k)! (N − 1)!

(N − n − 1)! (N − 1 + k)!

=

k−1∏
i=0

N − n + i
N + i
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct (6)
Proof(3):
Eq. 26 follows from

p̃ =

(N−n+k−1
k

)(N+k−1
k

)
=

(N − n + k − 1)! k!((N + k − 1)− k)!
k!((N − n + k − 1)− k)! (N + k − 1)!

=
(N + k − 1− n)! (N − 1)!

(N + k − 1)! (N − 1− n)!

=

n−1∏
i=0

N − n + i
N + k − n + i

=

n−1∏
i=0

N − 1− i
N − 1 + k − i



510 / 638

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct (7)

Approximation for p̃:

(1− n/N)k

[Cardenas]
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct (8)

Estimate for the number of distinct values in a bag:

Corollary
Let S be a k-multiset containing elements from an N-set T . Then the number of distinct
items contained in S is

D(N, k) = Nk
N + k − 1

(27)

if the elements in T occur with the same probability in S.
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Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct (9)

Model switching:
YN,m

n (Distinct(N, k)) ≈ CheungN,m
n (k)

[for n ≥ 5]
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Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct

So far:
1. every page contains the same number of records, and
2. every record is accessed with the same probability.

Now:
Model the distribution of items to buckets by m numbers ni (for 1 ≤ i ≤ m) if there
are m buckets.
Each ni equals the number of records in some bucket i.
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Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (2)

The following theorem is a simple application of Yao’s formula:

Theorem (Yao/Waters/Christodoulakis)
Assume a set of m buckets. Each bucket contains nj > 0 items (1 ≤ j ≤ m). The total
number of items is N =

∑m
j=1 nj . If we lookup k distinct items, then the probability that

bucket j qualifies is

WN
nj (k, j) = [1−

(N−nj
k

)(N
k
) ] (= YN

nj (k)) (28)

and the expected number of qualifying buckets is

WN,m
nj (k) :=

m∑
j=1

WN
nj (k, j) (29)
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Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (3)

The product formulation in Eq. 20 of Theorem 2 results in a more efficient computation:

Corollary
If we lookup k distinct items, then the expected number of qualifying buckets is

WN,m
nj (k) =

m∑
j=1

(1− pj) (30)

with

pj =

{ ∏nj−1
i=0

N−k−i
N−i k ≤ nj

0 N − nj < k ≤ N
(31)
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Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (4)

If we compute the pj after we have sorted the nj in ascending order, we can use the fact that

pj+1 = pj ∗
nj+1−1∏

i=nj

N − k − i
N − i .
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Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (5)

Many buckets: statistics too big. Better: Histograms

Corollary
For 1 ≤ i ≤ L let there be li buckets containing ni items. Then, the total number of buckets is
m =

∑L
i=1 li and the total number of items in all buckets is N =

∑L
i=1 lini . For k randomly

selected items the number of qualifying buckets is

WN,m
nj (k) =

L∑
i=1

liYN
nj (k) (32)
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Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (6)
Distribution function. The probability that x ≤ nj items in a bucket j qualify, can be
calculated as follows:
• The number of possibilities to select x items in bucket nj is(

nj
x

)
• The number of possibilites to draw the remaining k − x items from the other buckets is(

N − nj
k − x

)
• The total number of possibilities to distributed k items over the buckets is(

N
k

)
This shows the following:
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Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (7)

Theorem
Assume a set of m buckets. Each bucket contains nj > 0 items (1 ≤ j ≤ m). The total
number of items is N =

∑m
j=1 nj . If we lookup k distinct items, then the probability that x

items in bucket j qualify is

XN
nj (k, x) =

(nj
x
) (N−nj

k−x
)(N

k
) (33)

Further, the expected number of qualifying items in bucket j is

XN,m
nj (k) =

min(k,nj)∑
x=0

xXN
nj (k, x) (34)

In standard statistics books the probability distribution XN
nj (k, x) is called hypergeometric

distribution.
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Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (8)

Let us consider the case where all nj are equal to n. Then, we can calculate the average
number of qualifying items in a bucket. With y := min(k, n) we have

XN,m
nj (k) =

min(k,n)∑
x=0

xXN
n (k, x)

=

min(k,n)∑
x=1

xXN
n (k, x)

=
1(N
k
) y∑

x=1

x
(
n
x

)(
N − n
k − x

)



521 / 638

Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (9)

XN,m
nj (k) =

1(N
k
) y∑

x=1

x
(
n
x

)(
N − n
k − x

)

=
1(N
k
) y∑

x=1

(
x
1

)(
n
x

)(
N − n
k − x

)

=
1(N
k
) y∑

x=1

(
n
1

)(
n − 1

x − 1

)(
N − n
k − x

)

=

(n
1

)(N
k
) y−1∑

x=0

(
n − 1

0 + x

)(
N − n

(k − 1)− x

)
= . . .

(cont.)
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Direct, Non-Uniform, Distinct (10)

XN,m
nj (k) = . . .

=

(n
1

)(N
k
)(n − 1 + N − n

0 + k − 1

)
=

(n
1

)(N
k
)(N − 1

k − 1

)
= n k

N =
k
m
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Direct, Non-Uniform, Distinct (11)

Let us consider the even more special case where every bucket contains a single item. That is,
N = m and ni = 1. The probability that a bucket contains a qualifying item reduces to

XN
1 (k, x) =

(
1
x
) (N−1

k−1

)(N
k
)

=

(N−1
k−1

)(N
k
)

=
k
N (=

k
m )

Since x can then only be zero or one, the average number of qualifying items a bucket
contains is also k

N .
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Sequential: Vector of Bits

When estimating seek costs, we need to calculate the probability distribution for the distance
between two subsequent qualifying cylinders.
We model the situation as a bitvector of length B with b bits set to one.
Then, B corresponds to the number of cylinders and a one indicates that a cylinder qualifies.
[Later: Vector of Buckets]
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Sequential: Vector of Bits (2)

Theorem
Assume a bitvector of length B. Within it b ones are uniformly distributed. The remaining
B − b bits are zero. Then, the probability distribution of the number j of zeros
1. between two consecutive ones,
2. before the first one, and
3. after the last one

is given by

BB
b (j) =

(B−j−1
b−1

)(B
b
) (35)
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Sequential: Vector of Bits (3)

Proof:
To see why the formula holds, consider the total number of bitvectors having a one in position
i followed by j zeros followed by a one.
This number is (

B − j − 2

b − 2

)
We can chose B − j − 1 positions for i .
The total number of bitvectors is (

B
b

)
and each bitvector has b − 1 sequences of the form that a one is followed by a sequence of
zeros is followed by a one.
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Sequential: Vector of Bits (4)

Hence,

BB
b (j) =

(B − j − 1)
(B−j−2

b−2

)
(b − 1)

(B
b
)

=

(B−j−1
b−1

)(B
b
)

Part (1) follows.
To prove (2), we count the number of bitvectors that start with j zeros before the first one.
There are B − j − 1 positions left for the remaining b − 1 ones.
Hence, the number of these bitvectors is

(B−j−1
b−1

)
and part (2) follows.

Part (3) follows by symmetry.
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Sequential: Vector of Bits (5)

We can derive a less expensive way to calculate formula for BB
b (j) as follows.

For j = 0, we have BB
b (0) =

b
B .

If j > 0, then

BB
b (j) =

(B−j−1
b−1

)(B
b
)

=

(B−j−1)!
(b−1)!((B−j−1)−(b−1))!

B!
b!(B−b)!

=
(B − j − 1)! b!(B − b)!

(b − 1)!((B − j − 1)− (b − 1))! B!
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Sequential: Vector of Bits (6)

BB
b (j) =

(B − j − 1)! b!(B − b)!
(b − 1)!((B − j − 1)− (b − 1))! B!

= b (B − j − 1)! (B − b)!
((B − j − 1)− (b − 1))! B!

= b (B − j − 1)! (B − b)!
(B − j − b)! B!

=
b

B − j
(B − j)! (B − b)!
(B − b − j)! B!

=
b

B − j

j−1∏
i=0

(1− b
B − i )

This formula is useful when BB
b (j) occurs in sums over j.
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Sequential: Vector of Bits (7)

Corollary
Using the terminology of Theorem 8, the expected value for the number of zeros
1. before the first bit that is set to one,
2. between two successive ones, and
3. after the last bit that is set to one

is

BB
b =

B−b∑
j=0

jBB
b (j) =

B − b
b + 1

(36)
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Sequential: Vector of Bits (8)
Proof:

B−b∑
j=0

j
(
B − j − 1

b − 1

)
=

B−b∑
j=0

(B − (B − j))
(
B − j − 1

b − 1

)

= B
B−b∑
j=0

(
B − j − 1

b − 1

)
−

B−b∑
j=0

(B − j)
(
B − j − 1

b − 1

)

= B
B−b∑
j=0

(
b − 1 + j
b − 1

)
− b

B−b∑
j=0

(
B − j
b

)

= B
B−b∑
j=0

(
b − 1 + j

j

)
− b

B−b∑
j=0

(
b + j
b

)
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Sequential: Vector of Bits (9)

B−b∑
j=0

j
(
B − j − 1

b − 1

)
= B

B−b∑
j=0

(
b − 1 + j

j

)
− b

B−b∑
j=0

(
b + j
b

)

= B
(
(b − 1) + (B − b) + 1

(b − 1) + 1

)
− b

(
b + (B − b) + 1

b + 1

)
= B

(
B
b

)
− b

(
B + 1

b + 1

)
= (B − bB + 1

b + 1
)

(
B
b

)
With

B − bB + 1

b + 1
=

B(b + 1)− (Bb + b)
b + 1

=
B − b
b + 1

the claim follows.
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Sequential: Vector of Bits (10)

Corollary
Using the terminology of Theorem 8, the expected total number of bits from the first bit to
the last bit that is set to one, both included, is

Btot(B, b) =
Bb + b
b + 1

(37)
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Sequential: Vector of Bits (11)

Proof:
We subtract from B the average expected number of zeros between the last one and the last
bit:

B − B − b
b + 1

=
B(b + 1)

b + 1
− B − b

b + 1

=
Bb + B − B + b

b + 1

=
Bb + b
b + 1
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Sequential: Vector of Bits (12)

Corollary
Using the terminology of Theorem 8, the number of bits from the first one and the last one,
both included, is

B1-span(B, b) =
Bb − B + 2b

b + 1
(38)
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Sequential: Vector of Bits (13)

Proof (alternative 1):
Subtract from B the number of zeros at the beginning and the end:

B1-span(B, b) = B − 2
B − b
b + 1

=
Bb + B − 2B + 2b

b + 1

=
Bb − B + 2b

b + 1
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Sequential: Vector of Bits (14)

Proof (alternative 2):
Add the number of zeros between the first and the last one and the number of ones:

B1-span(B, b) = (b − 1)BB
b + b

= (b − 1)
B − b
b + 1

+
b(b + 1

b + 1

=
Bb − b2 − B + b + b2 + b

b + 1

=
Bb − B + 2b

b + 1
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Sequential: Applications for Bitvector Model

• If we look up one record in an array of B records and we search sequentially, how many
array entries do we have to examine on average if the search is successful?

• Let a file consist of B consecutive cylinders. We search for k different keys all of which
occur in the file. These k keys are distributed over b different cylinders. Of course, we
can stop as soon as we have found the last key. What is the expected total distance the
disk head has to travel if it is placed on the first cylinder of the file at the beginning of
the search?

• Assume we have an array consisting of B different entries. We sequentially go through all
entries of the array until we have found all the records for b different keys. We assume
that the B entries in the array and the b keys are sorted. Further all b keys occur in the
array. On the average, how many comparisons do we need to find all keys?
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Sequential: Vector of Buckets

Theorem (Yao)
Consider a sequence of m buckets. For 1 ≤ i ≤ m, let ni be the number of items in a bucket i.
Then there is a total of N =

∑m
i=1 ni items. Let ti =

∑i
l=0 ni be the number of items in the

first i buckets. If the buckets are searched sequentially, then the probability that j buckets that
have to be examined until k distinct items have been found is

CN,m
ni (k, j) =

(tj
k
)
−
(tj−1

k
)(N

k
) (39)

Thus, the expected number of buckets that need to be examined in order to retrieve k distinct
items is

CN,m
ni (k) =

m∑
j=1

jCN,m
ni (k, j) = m −

∑m
j=1

(tj−1

k
)(N

k
) (40)
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Sequential: Vector of Buckets (2)

The following theorem is very useful for deriving estimates for average sequential accesses
under different models [Especially: the above theorem follows].

Theorem (Lang/Driscoll/Jou)
Consider a sequence of N items. For a batched search of k items, the expected number of
accessed items is

A(N, k) = N −
N−1∑
i=1

Prob[Y ≤ i ] (41)

where Y is a random variable for the last item in the sequence that occurs among the k items
searched.
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Disk Drive Costs for N Uniform Accesses

The goal of this section is to derive estimates for the costs (time) for retrieving N
cache-missed sectors of a segment S from disk.
We assume that the N sectors are read in their physical order on disk.
This can be enforced by the DBMS, by the operating system’s disk scheduling policy (SCAN
policy), or by the disk drive controler.
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Disk Drive Costs for N Uniform Accesses (2)

Remembering the description of disk drives, the total costs can be described as

Cdisk = Ccmd + Cseek + Csettle + Crot + Cheadswitch (42)

For brevity, we omitted the parameter N and the parameters describing the segment and the
disk drive on which the segment resides.
Subsequently, we devote a (sometimes tiny) section to each summand.
Before that, we have to calculate the number of qualifying cylinders, tracks, and sectors.
These numbers will be used later on.
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Number of Qualifying Cylinder

• N sectors are to be retrieved.
• We want to find the number of cylinders qualifying in extent i .
• Ssec denotes the total number of sectors our segment contains.
• Assume: The N sectors we want to retrieve are uniformly distributed among the Ssec

sectors of the segment.
• Scpe(i) = Li − Fi + 1 denotes the number of cylinders of extent i .
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Disk Costs: Number of Qualifying Cylinder

The number of qualifying cylinders in exent i is:
Scpe(i) * (1 - Prob(a cylinder does not qualify))

The probability that a cylinder does not qualify can be computed by deviding the total number
of possibilities to chose the N sectors from sectors outside the cylinder by the total number of
possibilities to chose N sectors from all Ssec sectors of the segment.
Hence, the number of qualifying cylinders in the considered extent is:

Qc(i) = Scpe(i)YSsec
Dzspc(i)(N) = Scpe(i)(1−

(Ssec−Dzspc(i)
N

)(Ssec
N
) ) (43)
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Number of Qualifying Tracks

Let us also calculate the number of qualifying tracks in a partion i .
It can be calculated by

Scpe(i)Dtpc(1− Prob(a track does not qualify))

The probability that a track does not qualify can be computed by dividing the number of ways
to pick N sectors from sectors not belonging to a track divided by the number of possible ways
to pick N sectors from all sectors:

Qt(i) = Scpe(i)DtpcYSsec
Dzspt(i)(N) = Scpe(i)Dtpc(1−

(Ssec−Dzspt(i)
N

)(Ssec
N
) ) (44)
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Number of Qualifying Tracks (2)

Just for fun, we calculate the number of qualifying sectors of an extent in zone i . It can be
approximated by

Qs(i) = Scpe(i)Dzspc(i)
N
Ssec

(45)

Since all Scpe(i) cylinders are in the same zone, they have the same number of sectors per
track and we could also use Waters/Yao to approximate the number of qualifying cylinders by

Qc(i) = Y
Scpe(i)Dzspc(Szone(i)),Scpe(i)
Dzspc(Szone(i)) (Qs(i)) (46)

If Qs(i) is not too small (e.g. > 4).
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Command Costs

The command costs Ccmd are easy to compute. Every read of a sector requires the execution
of a command. Hence

Ccmd = NDcmd

estimates the total command costs.



548 / 638

Accessing the Data Disk Drive Costs

Seek Costs

• often the dominant part of the costs
• we look at several alternatives from less to more precise models
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Seek Costs - Upper Bound

The first cylinder we have to visit requires a random seek with cost Dseekavg. (Truely upper
bound: Dfseek(Dcyl − 1))
After that, we have to visit the remaining Qc(i)− 1 qualifying cylinders.
The segment spans a total of Sclast(Sext)− Scfirst(1) + 1 cylinders.
Let us assume that the first qualifying cylinder is the first cylinder and the last qualifying
cylinder is the last cylinder of the segment.
Then, applying Qyang’s Theorem 1 gives us the upper bound

Cseek(i) ≤ (Qc(i)− 1)Dfseek(
Sclast(Sext)− Scfirst(1) + 1

Qc(i)− 1
)

after we have found the first qualifying cylinder.
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Seek Costs - Illustration

Scpe Scpe Scpe

...

...
seek Δgap

...
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Seek Costs - Steps

Steps:
1. Estimate for Cseekgap

2. Estimates for Cseekext(i)
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Seek Costs - Interextent Costs
The average seek cost for reaching the first qualifying cylinder is Dseekavg. How far within the
first extent are we now? We use Corollary 4 to derive that the number of non-qualifying
cylinders preceding the first qualifying one in some extent i is

BScpe(i)
Qc(i) =

Scpe(i)− Qc(i)
Qc(i) + 1

.

The same is found for the number of non-qualifying cylinders following the last qualifying
cylinder. Hence, for every gap between the last and the first qualifying cylinder of two extents
i and i + 1, the disk arm has to travel the distance

∆gap(i) := B
Scpe(i)
Qc(i) + Scfirst(i + 1)− Sclast(i)− 1 + BScpe(i+1)

Qc(i+1)

Using this, we get

Cseekgap = Dseekavg +
Sext−1∑

i=1

Dfseek(∆gap(i))
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Seek Costs - Intraextent Costs (2)

Let us turn to Cseekext(i). We first need the number of cylinders between the first and the last
qualifying cylinder, both included, in extent i . It can be calculated using Corollary 6:

Ξext(i) = B1-span(Scpe(i),Qc(i))

Hence, Ξ(i) is the minimal span of an extent that contains all qualifying cylinders.
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Seek Costs - Intraextent Costs

Using Ξ(i) and Qyang’s Theorem 1, we can derive an upper bound for Cseekext(i):

Cseekext(i) ≤ (Qc(i)− 1)Dfseek(
Ξ(i)

Qc(i)− 1
) (47)

Alternatively, we could formulate this as

Cseekext(i) ≤ (Qc(i)− 1)Dfseek(B
Scpe(i)
Qc(i) ) (48)

by applying Corollary 4.
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Seek Costs - Intraextent Costs (2)

A seemingly more precise estimate for the expected seek cost within the qualifying cylinders of
an extent is derived by using Theorem 8:

Cseekext(i) = Qc(i)
Scpe(i)−Qc(i)∑

j=0

Dfseek(j + 1)BScpe(i)
Qc(i) (j) (49)
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Settle Costs

The average settle cost is easy to calculate. For every qualifying cylinder, one head settlement
takes place:

Csettle(i) = Qc(i)Drdsettle (50)
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Rotational Delay

Let us turn to the rotational delay.
For some given track in zone i ,
we want to read the Qt(i) qualifying sectors contained in it.
On average, we would expect that the read head is ready to start reading in the middle of
some sector of a track.
If so, we have to wait for 1

2Dzscan(Szone(i)) before the first whole sector ocurs under the read
head.
However, due to track and cylinder skew, this event does not occur after a head switch or a
cylinder switch.
Instead of being overly precise here, we igore this half sector pass by time and assume we are
always at the beginning of a sector.
This is also justified by the fact that we model the head switch time explicitly.
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Rotational Delay (2)

Assume that the head is ready to read at the beginning of some sector of some track.
Then, in front of us is a — cyclic, which does not matter — bitvector of qualifying and
non-qualifying sectors.
We can use Corollary 5 to estimate the total number of qualifying and non-qualifying sectors
that have to pass under the head until all qualifying sectors have been seen.
The total rotational delay for the tracks of zone i is

Crot(i) = Qt(i) Dzscan(Szone(i)) Btot(Dzspt(Szone(i)),Qspt(i))

where Qspt(i) =W
Ssec,Dzspt(Szone(i))
1 (N) = Dzspt(Szone(i)) N

Ssec
is the expected number of

qualifying sectors per track in extent i . In case Qspt(i) < 1, we set Qspt(i) := 1.
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Rotational Delay (3)

A more precise model is derived as follows.
We sum up for all j the product of (1) the probability that j sectors in a track qualify and (2)
the average number of sectors that have to be read if j sectors qualify.
This gives us the number of sectors that have to pass the head in order to read all qualifying
sectors.
We only need to multiply this number by the time to scan a single sector and the number of
qualifying tracks.
We can estimate (1) using Theorem 7. For (2) we again use Corollary 5.

Crot(i) = Scpe(i) Dtpc Dzscan(Szone(i))

∗
min(N,Dzspt(Szone(i)))∑

j=1

X Ssec
Dzspt(Szone(i))(N, j) Btot(Dzspt(Szone(i)), j)
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Rotational Delay (4)

Yet another approach:
Split the total rotational delay into two components:
1. Crotpass(i) measures the time needed to skip unqualifying sectors
2. Crotread(i) that for scanning the qualifying sectors

Then

Crot =
Sext∑
i=1

Crotpass(i) + Crotread(i)

where the total transfer cost of the qualifying sectors can be estimated as

Crotread(i) = Qs(i) Dzscan(Szone(i))
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Rotational Delay (5)

Let us treat the first component (Crotpass(i)).
Assume that j sectors of a track in extent i qualify.
The expected position on a track where the head is ready to read is the middle between two
qualifying sectors.
Since the expected number of sectors between two qualifying sectors is Dzspt(Szone(i))/j, the
expected number of sectors scanned before the first qualifying sector comes under the head is

Dzspt(Szone(i))
2j
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Rotational Delay (6)

The expected positions of j qualifying sectors on the same track is such that the number
non-qualifying sectors between two successively qualifying sectors is the same.
Hence, after having read a qualifying sector Dzspt(Szone(i))

j unqualifying sectors must be passed
until the next qualifying sector shows up.
The total number of unqualifying sectors to be passed if j sectors qualify in a track of zone i is

Ns(j, i) =
Dzspt(Szone(i))

2j + (j − 1)
Dzspt(Szone(i))− j

j
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Rotational Delay (7)

Using again Theorem 7, the expected rotational delay for the unqualifying sectors then is

Crotpass(i) = Scpe(i) Dtpc Dzscan(Szone(i))

∗
min(N,Dzspt(Szone(i)))∑

j=1

X Ssec
Dzspt(Szone(i))(N, j)Ns(j, i)
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Head Switch Costs

The average head switch cost is equal to the average number of head switches that occur
times the average head switch cost.
The average number of head switch is equal to the number of tracks that qualify minus the
number of cylinders that qualify since a head switch does not occur for the first track of each
cylinder.
Summarizing

Cheadswitch =

Sext∑
i=1

(Qt(i)− Qc(i)) Dhdswitch (51)

where Qt is the average number of tracks qualifying in an extent.
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Discussion

We neglected many problems in our disk access model:
• partially filled cylinders,
• pages larger than a block,
• disk drive’s cache,
• remapping of bad blocks,
• non-uniformly distributed accesses,
• clusteredness,
• and so on.

Whereas the first two items are easy to fix, the rest is not so easy.
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Selectivity Estimations

• previous slides assume that we ”know” how many tuples qualify
• but this has to be estimated somehow
• similar for join ordering algorithms etc.
• cardinalities (and thus selectivities) are fundamental for query optimization
• we will now look at deriving some estimations
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Examples

SQL examples for typical selectivity problems:
• select *

from rel r
where r.a=10

• select *
from rel r
where r.b>2

• select *
from rel1 r1,rel2 r2
where r1.a=r2.b

The different problems require different approaches.
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Heuristic Estimations

Some commonly used selectivity estimations:
predicate selectivity requirement
A = c 1/|D(A)| if index on A

1/10 otherwise
A > c (max(A)− c)/(max(A)−min(A)) if index on A, interpol.

1/3 otherwise
A1 = A2 1/max(|D(A1)|, |(D(A2)|) if index on A1 and A2

1/|D(A1)| if index on A1 only
1/|D(A2)| if index on A2 only
1/10 otherwise

Note: Without further statistics, |D(A)| is typically only known (easily estimated) if A is a key
or there is an index on A.
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Using Histograms

• selectivity can be calculated easily by looking at the real data
• not feasible, therefore look at aggregated data
• histograms partition the data values into buckets

A histogram HA : B → N over a relation R partitions the domain of the aggregated attribute
A into disjoint buckets B, such that

HA(b) = |{r |r ∈ R ∧ R .A ∈ b}|

and thus
∑

b∈B HA(b) = |R |.

Choosing B is very important, as we will see on the next slides.
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Using Histograms (2)
A rough histogram might look like this:
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Using Histograms (3)

Given a histogram, we can approximate the selectivities as follows:

A = c
∑

b∈B:c∈b HA(b)∑
b∈B HA(b)

A > c
∑

b∈B:c∈b
max(b)−c

max(b)−min(b)HA(b)+
∑

b∈B:min(b)>c HA(b)∑
b∈B HA(b)

A1 = A2

∑
b1∈B1,b2∈B2,b′=b1∩b2:b′ 6=∅

max(b′)−min(b′)
max(b1)−min(b1)

HA1
(b1)

max(b′)−min(b′)
max(b2)−min(b2)

HA2
(b2)∑

b1∈B1
HA1

(b1)
∑

b2∈B2
HA2

(b2)
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Using Histograms - Remarks

• estimations on previous slide can be improved
• in particular, the A = c case is only a rough approximation
• requires more information
• if we interpret the histogram as a density function, P(A = c) = 0!
• a reasonable upper bound, though
• the A > c case is more sound
• A1 = A2 assumes independence etc.



573 / 638

Accessing the Data Selectivity Estimations

Building Histograms

• the buckets chosen greatly affect the overall quality
• histogram does not discern items within one bucket
• therefore: try to put items into different buckets
• how to choose the buckets?
• typical constraint: histogram size. n buckets (fixed)
• for a given set of data items, find a good histogram with n buckets
• additional constraint: data distribution is unknown (real data)
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Accessing the Data Selectivity Estimations

Building Histograms - Equiwidth
Partitions the domain into buckets with a fixed width
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Accessing the Data Selectivity Estimations

Building Histograms - Equiwidth (2)

Advantages:
• easy to compute
• bucket boundaries can be computed (require no space)

Disadvantages:
• samples the domain uniformly
• does not handle skewed data well
• skew can lead to very uneven buckets
• greater estimation error in large buckets
• particular bad for zipf-like distributions
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Accessing the Data Selectivity Estimations

Building Histograms - Equidepth
Chooses the buckets to contain the same number of items
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Accessing the Data Selectivity Estimations

Building Histograms - Equidepth (2)

Advantages:
• adopts to data distribution
• reduces maximum error

Disadvantages:
• more involved (sort or similar)
• both boundaries and depth have to be stored (ties)

Very common histogram building technique
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Accessing the Data Selectivity Estimations

Building Histograms - Interpolation

• data is usually not completely random
• can we increase accuracy by interpolation?
• either within buckets (common) or instead of buckets (uncommon)
• histogram is a density function, not continuous, hard to interpolate
• use the equivalent distribution function instead
• very good for estimating A > c
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Accessing the Data Selectivity Estimations

Discussion

• estimations more complex in practice
• potentially different goals: maximum vs. average error
• histograms for derived values
• histogram convolution
• handling correlations
• multi-dimensional histograms
• cardinality estimators (sketches, MIPS etc.)



580 / 638
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5. Physical Properties

• Why Properties
• Distributed Queries
• Ordering
• Grouping
• DAGs
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Physical Properties Why Properties

Why Properties

• query optimizer chooses the cheapest equivalent plan
• join ordering: the cheapest plan with the same set of relations
• but: plans might produce the same result but behave differently
• for example sort-merge vs. hash join
• hash join could be cheaper, but sort-merge still pay of later
• not directly comparable
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Physical Properties Why Properties

Why Properties (2)

How to handle logical equivalent but un-comparable plans?
• one alternative: encode differences into search space
• for example, different plans for sorting vs. hashing
• but: search space explodes
• some aspects like ”sorting” consist of many alternatives
• further: if sorting is cheaper than hashing, we usually prefer sorting
• direct encoding into search space too wasteful
• use (physical) properties instead
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Physical Properties Why Properties

Using Properties

A physical property P defines a partial relation ≤P with the following characteristics among
plans:

If two plans p1 and p2 are logically equivalent,
• p1 ≤P p2 if p2 dominates p1 concerning P
• p1 =P p2 is p1 and p2 are comparable concerning P (p1 ≤P p2 ∧ p2 ≤P p1)

A plan can only be pruned if it is dominated or comparable
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Physical Properties Why Properties

Using Properties (2)

With properties, the query optimizer does not maintain a single solution but a set of solutions
for each subproblem:

storeSolution(S,p)
P = dpTable[S]
P ′ = ∅
for ∀p′ ∈ P {

if p ≤ p′ ∧ C(p) ≥ C(p′)
return

if ¬(p′ ≤ p ∧ C(p′) ≥ C(p))
P ′ = P ′ ∪ {p′}

}
dpTable[S] = P ′ ∪ {p}



585 / 638

Physical Properties Why Properties

Using Properties (3)

• algorithm too simple
• properties can be enforced
• Enforcers make plans comparable
• allows for more pruning
• will see examples for this
• combination of multiple properties needs some care
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Physical Properties Distributed Queries

Distributed Queries

• distributed query processing keeps track of the site
• intermediate results can be computed at different sites
• a physical property is therefore the site of the intermediate result
• very simple property, site is either the same or different
• more plans comparable with enforcers
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Physical Properties Distributed Queries

Distributed Queries - Comparing Plans

Two plans are comparable, if they produce their result on the same site or the difference is
larger than the shipment costs:

prune(p1,p2)
if p1.site = p2.site

return (C(p1) ≤ C(P2))?p1 : p2
if C(p1) + C(transfer p1) ≤ C(P2)

return p1
if C(p2) + C(transfer p2) ≤ C(P1)

return p2
return {p1, p2}
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Physical Properties Distributed Queries

Distributed Queries - Effect on Search organization

• previous slide described how to compare plans, but not how to generate them
• plans must be generated for desired sites
• one possibility: generate plans for all sites
• can be quite wasteful
• alternative: generate plans (for sites) on demand
• difficult to do bottom-up
• usual technique: determine relevant sites beforehand and generate plans for them
• this sites would be called interesting
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Physical Properties Ordering

Ordering

• physical tuple order is the classical physical property
• equivalent plans produce the same tuples, but (potentially) in different order
• tuple ordering is very important for many operators
• sort-merge, group by etc.
• explicit order by
• access optimization



590 / 638

Physical Properties Ordering

Ordering (2)

An ordering O is a list of attributes (A1, . . . ,An)

A tuple stream satisfied an ordering O, if the tuples are sorted according to A1 and for each
1 < i ≤ n the tuples are sorted on Ai for identical values of A1, . . . ,Ai−1.
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Physical Properties Ordering

Interesting Orderings

• optimizer uses existing orderings, or creates new ones (enforcers)
• set of potential orderings very large
• too many orderings increase the search space
• concentrate on relevant orderings: interesting orderings

ordering is interesting, if
• requested by the user
• physically available
• useful for a planed operator
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Physical Properties Ordering

Interesting Orderings (2)

• ordering is characterized by a list of attributes
• if a tuple stream is ordered on a1, . . . , an, an+1, it is also ordered on a1, . . . , an

• orderings are affected by operators, in particular they can grow
• therefore, each prefix of an interesting ordering is also interesting
• (somewhat implementation dependent)
• non-interesting orderings are ”forgotten” by the optimizer to reduce the search space
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Physical Properties Ordering

Physical vs. Logical Ordering

• the physical ordering is the actual order of tuples on disk/in a tuple stream
• the logical ordering is the ordering satisfied by the tuples
• the query optimizer can usually only reason about the logical ordering
• a tuple stream may satisfy multiple logical orderings
• the logical ordering can change, although the physical ordering did not!



594 / 638

Physical Properties Ordering

Functional Dependencies

Logical Ordering is affected by functional dependencies:
• induces by operators
• σa=cos(b) ⇒ {b → a}
• σa=b ⇒ {a → b, b → a} (even stronger)
• σa=10 ⇒ {∅ → a}
• complex operators can induce multiple FDs
• FDs allow for deriving new logical orderings
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Physical Properties Ordering

Example

select a,b,c
from s a,

(select b:b,c:count(*),d:max(d)
from tablefunc(a) group by b)

order by a,b,c

Interesting ordering: (a), (b), (a, b) and (a, b, c)
Interesting groupings: {b}
Functional dependencies: b → c, b → d

• Note: for {b} grouping is sufficient (next section)
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Physical Properties Ordering

Materializing Orderings

• the query optimizer might just maintain a set of all orderings satisfied by a plan
• but FDs increase the set
• sort(a)→select(a = b)
• is compatible with (a), (a, b), (b), (b, a)
• set can grow exponentially
• maintaining set of orderings not feasible
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Physical Properties Ordering

Reducing Orderings

Simmen et al. [17] proposed the following scheme:
• remember the base ordering
• remember all functional dependencies
• whenever testing for an ordering, reduce by base ordering and functional dependency
• apply prefix test after this
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Physical Properties Ordering

Reducing Orderings - Example

Ordering (b, d , e), test for (a, b, c, e), FDs {a → c, ∅ → a, b → d}

1. reduce ordering to (b, e)
2. reduce test to (a, b, e)
3. reduce test to (b, e)
4. test for prefix

but:
• what would happen if we applied ∅ → a first?
• reductions must be applied back to front
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Physical Properties Ordering

Reducing Orderings - Discussion

• back-to-front rule is not enough ((a),(a, b, c),{a → b, a, b → c})
• avoiding this requires normalizing the FDs, which is very expensive
• reduction has to be done for each test
• tests happen very frequently (nearly each operator tests)
• memory management is a problem
• better than materializing orderings, but not optimal
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Physical Properties Ordering

Required Interface for Orderings

Query optimizer just requires few operations:
• initialization
• test for an ordering
• apply function dependency

Concrete ordering not required
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Physical Properties Ordering

Encoding Orderings as FSMs

Use an FSM (ordering (a, b, c), FD {b → d})

ϵ

a

b→d

ab

abd

b→d

ϵ
abdc

abcd

b→d

ϵ
abc

ϵ

ϵ
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Physical Properties Ordering

Encoding Orderings as FSMs (2)

• FSM described physical orderings
• pretends that FD changes physical ordering
• might be non-deterministic
• has to become deterministic
• conversion in DFSM (via NFA→DFA)
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Physical Properties Ordering

Encoding Orderings as FSMs (3)

DFSM

a,ab,abc

b→d a,ab,abc

abd,abcd,

abdc

• node contains all possible physical orderings =⇒ logical orderings
• operating on the DFSM is very efficient
• only problem: how to construct it (efficiently)
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Ordering FSM Construction - Overview

1. Determine the input
1.1 Determine interesting orders
1.2 Determine sets of functional dependencies

2. Construct the NFSM
2.1 Construct nodes of the NFSM
2.2 Filter functional dependencies
2.3 Add edges to the NFSM
2.4 Prune the NFSM
2.5 Add artificial start node and edges

3. Construct the DFSM - convert the NFSM into a DFSM

4. Precompute values
4.1 Precompute the compatibility matrix
4.2 Precompute the transition table
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Physical Properties Ordering

Ordering FSM Construction - Determining the Input

• interesting orders (requested, required, index)
• OI = OP ∪ OT (produced vs. tested, allows pruning)
• functional dependencies (operators, keys)
• handles for O(1) comparisons

E.g.
F = {{b → c}, {b → d}}

OI = {(b), (a, b)} ∪ {(a, b, c)}
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Physical Properties Ordering

Ordering FSM Construction - Constructing the NFSM

Initial nodes for OI

a,b,c

a,b

b
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Physical Properties Ordering

Ordering FSM Construction - Constructing the NFSM (2)

Edges for F . Creates artificial node (can be pruned)

ϵ

b

a,b

a,b,c

b,c

a

b→c

ϵ

b→c ϵ
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Physical Properties Ordering

Ordering FSM Construction - Constructing the NFSM (3)

Edges for initialization. (b, c) was pruned.

ϵ

b

a,b

a,b,c

a

b→c ϵ

*

1

2
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Physical Properties Ordering

Ordering FSM Construction - Constructing the DFSM
Standard conversion algorithm

b→c

2

1

*

(a),(a,b),(a,b,c)

(a),(a,b)

(b)

• tests for OT are precomputed (materialized)
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Physical Properties Ordering

Pruning Techniques

• reducing the NFSM reduces conversion time
• reducing the DFSM reduces search space
• FDs can be removed if no interesting orderings reachable
• artificial nodes can be merged if the behave identical
• artificial nodes can be removed it they only have ε edges

Note: search space reduction is a major benefit!
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Physical Properties Ordering

Discussion

• orderings essential for query optimizations
• but orderings increase the search space
• management involved
• FSM representation needs O(1) time and space during optimization
• queried very often, but also very fast
• help reduce the search space
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Physical Properties Grouping

Grouping

• sometimes ordering is a too strong requirement
• some operators do not need an order, they just want continuous blocks for values
• group by operators are a typical example
• therefore: grouping property
• exploiting groupings is similar to exploiting orderings
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Physical Properties Grouping

Grouping (2)
A grouping G is a set of attributes {A1, . . . ,An}

A tuple stream satisfies a grouping G, if tuples with the same values for A1, . . . ,An are placed
next to each other.

Note that the attributes within a grouping are unordered
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Ordering vs. Grouping

• ordering is a much stronger requirement than grouping
• every tuple stream that satisfies an ordering O = (A1, . . . ,An) also satisfies the grouping

G = {A1, . . . ,An}
• but there is not prefix deduction for groupings
• a tuple stream satisfying {A1,A2} does not necessarily satisfy {A1}
• could be derived from ordering information
• both types should be handled simultaneously
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Physical Properties Grouping

Integrating Grouping into Ordering Processing

• groupings are similar to orderings
• can be modelled as FSMs, too (less edges, though)
• idea: build one big integrated FSM
• edges from orderings to corresponding groupings
• unifies these properties, makes pruning etc. much easier
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Physical Properties Grouping

Constructing a Unified FSM

b,c

b

a,b,c

a,b

b

• create states for interesting orderings/groupings
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Physical Properties Grouping

Constructing a Unified FSM (2)

b

a,b

a,b,c

b

b,c

b,c

a

{b→c} ϵ

ϵ

ϵ

{b→c}

{b→c}

q0

• consider functional dependencies
• note: no ε edge between groupings
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Physical Properties Grouping

Constructing a Unified FSM (3)

b

a,b

a,b,c

b

b,ca

{b→c} ϵ

ϵ

{b→c}

q0

• prune artificial nodes
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Physical Properties Grouping

Constructing a Unified FSM (4)

qo

{b→c}

ϵ

ϵ{b→c}

a b,c

b

a,b,c

a,b

b

ϵ

(a,b)

(b)

{b}

• add additional edges for initialization
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Physical Properties Grouping

Constructing a Unified FSM (4)

{b→c}

{b→c}

{b→c}

{b}

(b)

(a,b)

6:(a),(a,b),(a,b,c)

5:(b),{b},{b,c}

4:{b},{b,c}

3:(a),(a,b)

2:(b),{b}

1:{b}

qo

• construct final DFSM
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Physical Properties Grouping

Discussion

• algorithm for groupings similar to orderings
• include pruning etc.
• unified handling very nice
• easy integration of both into the query optimizer
• FSM representation very fast
• only constant space per plan
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DAGs

• execution plans until now were trees
• each operator has one consumer (except the root)
• no overlap
• very easy data flow
• but too limited in expressiveness
• a generalized plan structure requires some care (in this case a new kind of properties)
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DAGs (2)

DAG - directed acyclic graph

More general than a tree, an operator can have more than one parent. Allows for more
efficient plans.
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Motivation for DAGs

common: views or shared expressions
• recognized e.g. by DB2
• uses buffering
• parts optimized independently
• not really a DAG then

σt≥m

⨝cnat=n

⨝cid=ocid

Γcid,cnat;s:sum(price)

Γn:cnat;m:max(s)

Customer Order
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Physical Properties DAGs

Motivation for DAGs (2)

magic sets
• propagate domain information
• nice optimization, but requires

DAGs

Γm:mkt;d:avg(tax)

⨝mkt=m

σnat='D'

Πmkt

⋉

OrderCustomer
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Physical Properties DAGs

Motivation for DAGs (3)

bypass plans
• handle tuples different

depending on predicates
• more efficient for disjunctive

queries
• more complex data flow

∪

⋊

⋊

T F

CBA
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Physical Properties DAGs

Motivation for DAGs (4)

• also XPath/XQuery evaluation, distributed queries, dependent join optimizations, ...
• optimizations not always beneficial, proper plan generation required
• buffering/temp reduces benefit, ”real” execution required

goal: generic DAG support
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Physical Properties DAGs

DAG Generation - Correctness Problems

⨝

⨝

⨝⨝

CBABA ≡

⨝

⨝

⨝

CBA 6≡

⨝

⨝

⨝

CBA

• equivalences difficult to check
• here joins (apparently) not freely reorderable
• known equivalences not directly applicable
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DAG Generation - Correctness Problems (2)
⨝a1.a=a2.a

⨝b2.c=c.c

A:a1 B:b1 C:c

⨝a1.b=b1.b

ρa2:a1,b2:b1

• idea: sharing through renaming =⇒ share equivalence
• formal criteria to detect equivalent subproblems
• create logical trees, allows for reusing known equivalences
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Physical Properties DAGs

Share Equivalence

A ≡S B iff ∃δA,B :A(A)→A(B) bijective ρδA,B (A) = B

• difficult to test in general
• but constructive definition simple
• can be computed easily
• will be the base of a property (next slides)
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DAG Generation - Optimal Substructure
⨝

⨝

⨝

⨝

⨝

DCBCBA

⨝

⨝⨝

⨝

DCBA

local optimal global optimal

• shared plans destroy optimal substructure
• idea: encode sharing into the search space
• share equivalence for operators
• creates equivalence classes, describes possibilities to share
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DAG Generation - Optimal Substructure (2)

• generalize share equivalence from plans to operators
• would create share equivalent plans if the input were share equivalent
• classifies operators into equivalence classes
• only one operator from an equivalence class is relevant (representative)
• annotate each plan with the equivalence class (property)
• keep plans if they offer more classes (more sharing)
• note: only whole trees can be shared



633 / 638

Physical Properties DAGs

DAG Generation - Search

Search component has to be adjusted:
• incorporate share equivalence
• try to rewrite problems as representatives
• if completely possible (whole tree) only use representatives
• creates implicit renames
• allows for reusing results
• adjust pruning, too
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Discussion

• DAGs allow for much better plans
• generation somewhat involved
• share equivalence as property guarantees optimal solution
• many details omitted here
• cost model
• execution
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End of Slides (for now)



636 / 638

Physical Properties DAGs
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Query Rewriting
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Self Tuning
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