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Abstract

Traditional flash-based SSDs have long suffered from significant overheads introduced
by the flash translation layer (FTL), leading to unstable performance, higher complexity,
and faster wearout. Zoned namespaces (ZNS) SSDs have recently emerged as a solution
to this problem. By eliminating garbage collection and shifting the responsibility of
data placement to the host, ZNS SSDs promise quicker and cheaper storage than
conventional SSDs. Hosts are then free to either adhere to ZNS constraints or to build
their own host-side FTL for smarter data placement that minimizes write amplification.

In this thesis, we extend vroom, a user-space driver written in Rust, with zoned
namespace support. Additionally, we provide our own host-side FTL implementation
to support non-sequential writes through a new interface. We found that vroom’s
performance benefits still hold up when using zoned storage. We also evaluate the
decisions we made when building a host-side FTL and share some insights that would
prove beneficial to anyone attempting the same. Overall, we found our interface’s
overheads to be acceptable and that it has the potential to outperform conventional
SSDs with the right garbage collection strategy.
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1 Introduction

As the demand for high-performance, low-latency storage solutions continues to grow,
particularly by data centers and cloud service providers, solid-state drives (SSDs)
have become increasingly critical to meeting these needs, as they provide much better
performance than hard disk drives (HDDs) and are increasingly more affordable.

Most SSDs expose a block interface like HDDs, which exposes a flat address space
where all logical blocks can be written to or read from. However, this differs quite
significantly from flash-based SSD internals, which have several write constraints. In
order to expose a conventional interface, flash media rely on the Flash Translation Layer
(FTL) and Garbage Collection (GC), which have a significant performance overhead.

Zoned Namespaces (ZNS) [15, 1] is a new specification that allows flash-based SSDs
to circumvent the overhead of exposing a block-interface by shifting the burden of
adhering to flash media constraints to the host. They achieve this by dividing the
address space into zones, which represent the erase unit and in which only sequential
writes are allowed. Hosts can then either adhere to ZNS constraints or build their own
host-side FTL, which they can tailor to their specific needs.

Zoned storage comes with several advantages [21]. Unlike conventional SSDs, ZNS
SSDs no longer need garbage collection due to the interface they expose, and the
FTL is significantly less complex (only zone-to-flash block mappings are needed) and
requires less on-board memory. ZNS SSDs also don’t have to dedicate as much space
for overprovisioning, which is used in conventional SSDs to mitigate the effects of
garbage collection. This means that ZNS SSDs effectively expose most of their space
to the user (some is still needed to replace bad flash blocks). Thanks to this, ZNS
SSDs are typically cheaper and faster than conventional drives. There are also more
subtle advantages to zoned storage. The block interface abstracts too many of the write
constraints that are imposed by the nature of flash media, making it harder to optimize
according to application-level information that the SSD can’t normally know about
or use. By shifting the burden of garbage collection to the host, ZNS SSDs permit
fine-tuned data placement that minimizes write amplification.

ZNS drives are increasingly seeing more support. Several file systems, such as
btrfs [18] and f2fs [20], were easily made to support ZNS drives, thanks to their
log-structured approach that is well suited for the ZNS sequential write constraint.
RocksDB, a key-value store, also offers native support for zoned storage and even saw
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1 Introduction

major performance gains with ZNS drives [1].
In this thesis, we extend vroom, a user-space NVMe driver written in Rust [17], with

zoned namespaces support. We also build our own host-side FTL implementation to
support non-sequential writes. As vroom was particularly built to make use of Rust’s
memory safety guarantees, we stay faithful to this purpose, as we rely on Rust’s thread
safety guarantees in our random write interface implementation in section 4.2.
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2 Background

In this section, we first introduce the NVMe driver that we’re extending. We then
discuss flash media internals and zoned storage. This is particularly important because
we later use ZNS SSDs in section 4.2 to mimic the way flash-based SSDs work. In the
end, we introduce our programming language of choice, Rust, and what we gain from
it.

2.1 vroom

vroom is a userspace NVMe driver written in Rust. Its goal is to achieve SPDK-like
performance with simpler code and with the memory safety guaranteed by Rust, and
it largely succeeds [17]. However, vroom currently only supports a subset of the NVM
I/O command set and fails to identify other supported I/O command sets during
initialization.

Like all NVMe drivers, vroom uses submission and completion queues that are
implemented as ring buffers [14]. Commands are submitted to the submission queue,
and after processing them, the controller submits a completion entry in the completion
queue, which contains error codes if any occurred and any values that were potentially
returned by the command (e.g., the zone append command returns the first LBA that
was written to). Concurrency is then achieved by assigning each thread its own queue
pair.

2.2 Flash Media

Conventional flash-based SSDs are organized into pages (typically 4-16KiB) that rep-
resent the read/write unit. Due to the physical nature of flash storage, pages must
be erased before they can be overwritten. However, erases can only occur for blocks,
which are composed of several pages. Despite this, flash SSDs usually adhere to the
conventional block interface that was made with HDDs in mind. This interface exposes
to the host a flat address space that doesn’t have any of the previously mentioned
restrictions. This is realized through the Flash Translation Layer (FTL).
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2 Background

Logical block addresses (LBAs) are mapped to pages. When the host attempts to
overwrite a page, it will be marked as invalid, and the new data will be added to a new
page. The SSD then updates its internal mapping to make the written LBA point to the
new page. Once blocks fill up, a victim block is picked, and its valid pages are copied to
a new empty block. Afterwards, the victim block is erased. This process is known as
Garbage Collection (GC), and it unfortunately causes write amplification, where a single
write to the logical address space actually results in multiple writes due to copying
valid pages. Other than the obvious impact on performance, write amplification also
causes flash media to wear down faster since it has a limited lifetime. Furthermore, a
portion of free space, referred to as overprovisioning space, must be set aside for copying
so that garbage collection can function effectively. This typically requires reserving
10-28% of the device’s total capacity.

Victim selection algorithms for garbage collection have been studied extensively in
order to achieve minimal write amplification [19, 24, 13]. While picking the block with
the lowest amount of valid pages is the simplest and most intuitive strategy, it suffers
from high write amplification in real-world applications. Instead, research has shown
that careful thought must be put into data placement so that data that is invalidated at
the same time is grouped together.

2.3 Zoned Namespaces

Zoned Namespaces (ZNS) SSDs [4, 22] were introduced to overcome the drawbacks
that are commonly associated with flash storage by exposing an interface that is more
faithful to how the underlying media works. A ZNS SSD is partitioned into several
zones of fixed size. Within a zone, only sequential writes are allowed. This also
means that overwriting blocks is not allowed. Instead, zones can be erased with a reset
operation. This closely mimics the way flash media works, where blocks are the unit of
read/write, and zones are the unit of erasure. To ensure the sequential write constraint,
zones maintain a write pointer to the next free LBA that can be written to.
Figure 2.1 illustrates the layout of a ZNS SSD. Note that zones usually have unusable
logical blocks at the end that can’t be written to. Writable blocks are defined by the
zone capacity attribute. This is needed to align zone capacity with the size of flash
erase blocks while maintaining the same zone size for all zones.
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2 Background

Figure 2.1: Layout of a ZNS SSD. Adapted from [1]
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The ZNS command set [15] introduces several new commands and zone operations.
One particular shortcoming of ZNS is that writes result in high lock contention for
the zones they occur in, as concurrent requests are normally reordered to maximize
performance. This effectively means that the host cannot guarantee the sequential write
constraint introduced by ZNS when issuing concurrent writes, resulting in completion
errors. To avoid this, the ZNS command set introduces the zone append command.
Unlike the write command, zone append doesn’t specify an offset and only needs
to know the zone start LBA, which allows concurrent zone append commands. It’s
worth noting that append commands perform significantly worse than regular write
commands [6].

Each zone is associated with a state machine, which is shown in Figure 2.2. Due
to the need for ZNS SSDs to allocate resources, such as write buffers, for each open
zone, and considering the characteristics of flash media, such as program disturbs [3,
1], zoned storage drives typically specify limits on the number of zones that can be in
an open or active state. These limits are defined by the maximum open resources and
maximum active resources fields.
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2 Background

Figure 2.2: Zone State Machine. Adapted from [15]
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2.4 Rust

Rust is a low-level systems programming language that is steadily increasing in popu-
larity. It aims to deliver performance that is comparable to C while ensuring memory
and thread safety thanks to its unique ownership system.

One of the Rust slogans is Fearless Concurrency. Thanks to the borrow checker, it tries
to prevent data races by ensuring exclusive ownership of mutable data. This is especially
helpful for our host-side FTL implementation in subsection 4.2.3. As we attempt to
synchronize concurrent readers, writers, and garbage collection threads, we found it
helpful to have some guarantees about data races being prevented. Nevertheless, Rust
is not fully capable of ensuring a bug-free implementation, as it cannot fully prevent
deadlocks or race conditions from occurring [26].
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3 Related Work

3.1 SPDK

The Storage Performance Development Kit (SPDK) provides several tools and libraries
that are used in high-performance storage applications. This includes a poll-based
user-space NVMe driver that performs far better than other storage APIs [5], thanks to
the elimination of kernel context switches and interrupt handling [25]. As of version
20.101, SPDK’s NVMe driver also supports the ZNS command set.
Although it is the de facto standard for user-space NVMe drivers, it remains highly
complex and prone to memory safety vulnerabilities due to being written in C.

3.2 Host-Side FTLs

There have been several attempts at building host-side flash translation layers. dm-zoned
is a Linux device mapper that provides a conventional block interface for zoned storage
devices by supporting random writes, similar to what we try to achieve in section 4.2.
However, it is only ZBC and ZAC compliant, predecessors to the ZNS specification for
Shingled Magnetic Recording (SMR) HDDs [7, 8]. For example, it does not recognize
zone capacities and relies on the existence of special conventional zones that already
support non-sequential writes out of the box. These conventional zones are not defined
in the latest ZNS specification at the time of writing.

dm-zap is another device mapper that aims to fully support ZNS SSDs. However, it is
only a prototype and is not fully functional at the time of writing. Salkhordeh et al.
[19] implement a large variety of victim selection algorithms within dm-zap and analyze
their overhead and impact on write amplification.

It’s important to mention that the idea of delegating device management to the host
didn’t originate with zoned namespaces SSDs. Open-channel SSDs [2] are a predecessor
to ZNS SSDs that do not implement a flash translation layer and delegate it to the host.
pblk [2] is a host-side FTL that provides a random write interface for open-channel
SSDs.

1https://spdk.io/release/2020/10/30/20.10_release/

7

https://spdk.io/release/2020/10/30/20.10_release/


4 Implementation

4.1 Zoned Namespace Command Set

We first extend vroom to support the Zoned Namespace command set. This is concretely
achieved through:

1. Adding support for other command sets during initialization by correctly setting
the controller configuration register of the NVMe drive and then identifying the
namespaces that support the zoned namespace command set.

2. Implementing the commands that were added in the zoned namespace command
set. These are the zone management send, zone management receive, and zone
append commands.

Zone management send is used to transition zones to different states (Figure 2.2),
including resetting them. On the other hand, zone management receive is used to
retrieve information about zones, such as their size, capacity, current state, and current
write pointer. Zone append was introduced in section 2.3. Note that no changes to the
current write command implementation are needed, as the sequential write constraint
imposed by ZNS is solely the host’s responsibility.

We also add some utility functions. One that is particularly helpful is the zone report
function, which is inspired by a function of the same name from the nvme-cli utility
[16]. As shown in Listing 4.1, the output illustrates the current state of zones in the
NVMe drive and is simply a visualization of the zone descriptors returned by the zone
management receive command.

Listing 4.1: Excerpt from the zone report output
nr_zones: 1905
SLBA: 0x00000 WP: 0x43500 Cap: 0x43500 State: Full Type: Seq. Write Required Attrs: 0x0
SLBA: 0x80000 WP: 0x9f0b4 Cap: 0x43500 State: Imp. Open Type: Seq. Write Required Attrs: 0x0
SLBA: 0x100000 WP: 0x100000 Cap: 0x43500 State: Empty Type: Seq. Write Required Attrs: 0x0
SLBA: 0x180000 WP: 0x180000 Cap: 0x43500 State: Empty Type: Seq. Write Required Attrs: 0x0
SLBA: 0x200000 WP: 0x200000 Cap: 0x43500 State: Empty Type: Seq. Write Required Attrs: 0x0
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4 Implementation

4.2 Supporting non-sequential write patterns

One of our goals is to provide an interface for ZNS drives that supports non-sequential
write patterns, similar to the block interface that is provided by conventional (non-ZNS)
SSDs. Since conventional SSDs internally follow constraints that are largely similar to
those imposed by zoned storage, we can take inspiration from them as we build our
own host-side flash translation layer.

We achieve this through the ZNSTarget struct (Listing 4.3) that takes a backing
ZNS drive and maintains various data structures (Listings 4.2 and 4.3) to simulate an
FTL. The ZNSZones struct maintains information about the backing device’s zones and
classifies them into free zones that can still be written to, full zones that are marked to
be garbage collected, and overprovisioning (op) zones that are reserved exclusively for
the GC process, just like conventional SSDs. The total number of writeable blocks that
we expose is therefore zone_capacity ∗ (nr_zones − op_zones).

As shown in Table 4.1, ZNSTarget provides a similar interface to the one that vroom
offers for conventional SSDs. For concurrency, each thread in vroom can have its own
submission and completion queue pair. These are then used by read_concurrent and
write_concurrent to avoid lock contention on the NvmeDevice struct, just like vroom’s
submit_io function. A mutable reference to ZNSTarget is therefore not required.

Name Zero-Copy Concurrency

read() Yes No
write() Yes No
read_copied() No No
write_copied() No No
read_concurrent() Yes Yes
write_concurrent() Yes Yes

Table 4.1: I/O methods provided by ZNSTarget

In the upcoming subsections, we will delve into the specifics of our host-side FTL,
justify some of our design decisions, and outline some assumptions.

4.2.1 Mapping

One of the first decisions we were faced with was how to implement the mapping in
our host-side FTL. Conventional FTLs can have page-level or block-level mappings,
and each approach has its own advantages. In fact, most modern FTLs use a hybrid
approach that combines the best of both worlds [12, 9]. Unfortunately, unlike pages
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4 Implementation

Listing 4.2: Host-side FTL mappings

struct ZNSMap {
l2d: Vec<u64>, //Logical to device mapping
d2l: Vec<u64>, //Device to logical mapping, needed for GC
invalid_bitmap: Vec<bool>

}

within a flash block, logical blocks within a zone must be written sequentially. This is
an additional constraint that many SSDs do not have, and it forces us to reject zone-level
mapping, the ZNS equivalent to block-level mapping. The reason is that zone-level
mappings rely on having constant offset for the LBAs, which means that we must be
able to write to all logical blocks within a zone.

While a hybrid-level approach might still be possible, it is significantly more com-
plicated than an LBA-level approach, the ZNS equivalent to page-level mapping.
Furthermore, the significant memory overhead of page-level mapping is not as severe
for a host-side FTL as it is for a traditional FTL, as it is considerably cheaper for the
host to use more memory.

For these reasons, we decide to use an LBA-level mapping. We achieve this through
a ZNSMap struct that is shown in Listing 4.2. This struct maintains both logical-to-device
and device-to-logical mappings, as the latter is needed when copying valid blocks
during garbage collection. Additionally, a bitmap for invalid blocks is maintained.
Since logical and device block addresses start from 0, we can use them as indexes in
vectors instead of maintaining a hashmap.

4.2.2 Garbage Collection

ZNSTarget implements two methods for garbage collection: reclaim and its concurrent
counterpart reclaim_concurrent, which are used by the respective I/O methods from
Table 4.1. Both of them function similarly to the internal GC that can be found in
conventional SSDs:

1. Pick a victim zone and an overprovisioning (op) zone.

2. Copy all the valid blocks in the victim zone to the op zone while updating the
mapping.

3. Reset the victim zone, mark it as an op zone, and mark the op zone as a free zone.

4. Update the victim selection metadata of both zones accordingly.

10



4 Implementation

Picking a victim is implemented in a way that could support multiple victim selection
algorithms. However, only the greedy strategy, which picks the zone with the highest
amount of invalid blocks, is currently implemented. Other strategies, such as Cost-
Benefit (CB) [10], add a timing factor to victim selection by considering the time since
the last modification of a zone alongside the number of invalid blocks. It is important to
mention that some of these strategies have some significant performance and memory
overheads. For example, the FeGC policy [11] needs to maintain several variables per
page alongside several heaps, resulting in a large memory footprint. Careful analysis
of the drawbacks and the impact on write amplification is therefore needed.

Furthermore, the second copying step makes a couple of assumptions. First, all zones
must have the same zone capacity. Second, we assume that the zone variable capacity
flag is not set for the backing ZNS drive [15]. This flag means that zone capacity may
change after a reset operation. These proved to be fairly safe assumptions in our expe-
rience that we made for simplicity’s sake. Nonetheless, adapting the implementation
to support drives that violate these assumptions shouldn’t be difficult and most likely
won’t have any impact on performance.

The base NVMe specification recently introduced the simple copy command that
allows the host to issue device-managed data copy operations. The command was
made with the host-side garbage collection use case in mind and has the advantage of
not consuming any host resources or bandwidth, allowing for similar GC performance
to conventional SSDs [23]. Although we did implement the copy command, it was
unfortunately not supported by the drive we used, and we had to replace it with
read/write commands and reserve a DMA buffer for it. Nonetheless, we recommend
using the copy command for any drives that support it.

4.2.3 Concurrency

A variety of synchronization primitives are used to allow concurrent reads and/or
writes to our interface. In the following, we explain how some conflicts are prevented:

• Concurrent reads: Aside from concurrent access to mapping data, which is locked
behind a mutex, concurrent reads don’t interfere with each other.

• Concurrent writes: Writers take out a free zone from the ZNSZones struct. Since
they own the zone that they’re writing to, no other thread can write to the
same zone. Concurrency is therefore achieved in an inter-zone manner, as each
thread writes to a different zone. For this reason, we also separate zone metadata
(MapperZoneMetadata) and zones (MapperZone). Zone metadata can be modified
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4 Implementation

by everyone and should always be accessible, while ownership of MapperZone
implies that only one writer thread can write to that zone.
An intra-zone approach where all writer threads write to the same zone using
zone append would’ve also been possible. Benchmarks by Doekemeijer et al. [6]
show that zone append performance remains unaffected by whether inter-zone or
intra-zone operations are used. We therefore chose this approach for simplicity,
as intra-zone parallelism would require further synchronization for writes that
would end up filling up the zone, causing concurrent writes to fail (write or
append operations over multiple zones are not allowed in the ZNS specification).
One drawback of the inter-zone approach we chose is that the number of con-
current writer threads is limited by the Maximum Open Resources (MOR) field,
introduced in section 2.3. However, we generally expect that there will be a
performance drop from having too many concurrent threads before this limit is
reached.

• Concurrent reads and reclaim: Reclaiming zones during garbage collection can
interfere with reads, in case we’re reading from the victim zone that is being
copied while mapping information isn’t fully updated yet. For this reason,
we define reclaim_locks (Listing 4.3): a vector of Reader-Writer locks with
one lock for each zone. After picking the victim zone, reclaim would lock the
corresponding RWLock with exclusive write access, blocking reader threads until
it’s freed. We chose an RWLock instead of a mutex because readers don’t need
exclusive access.

• Concurrent writes and reclaim: If a writer thread fills up a zone, it adds it to the
list of full zones and notifies the reclaim thread through the reclaim_condition
condition variable, after which the latter starts garbage collection if certain condi-
tions are met. We arbitrarily chose that there must be more full zones than free
zones for GC to start, though more complicated conditions can be used instead,
depending on the use case.

4.2.4 Reads and Writes

Due to several constraints, reads and writes to the interface need to be internally split
into several commands to the drive. In the following, we distinguish between logical
blocks, which are exposed by our interface, and device blocks, which are the LBAs
exposed by the backing zoned device.

As mentioned in subsection 4.2.3, read and write commands are generally not
allowed to specify blocks that belong to more than one zone. Although some drives
do offer an exception for read commands, a split according to zone boundary is still
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4 Implementation

needed to properly synchronize concurrent reads with garbage collection. Furthermore,
sequential logical blocks are not necessarily mapped to sequential device blocks, for
example, if they were written at different times by different threads. This means that
we need to split commands to the interface so that we can issue the biggest possible
commands to the device. For reads, we also have to account for unmapped logical
blocks and split issued reads to the interface to handle these blocks separately. For
writes, overwriting previously written logical blocks requires invalidating them and
updating their corresponding zone’s metadata, requiring further splits.

13
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Listing 4.3: Host-Side FTL Data Structures

struct MapperZoneMetadata {
//Victim selections algorithms data should be here
invalid_blocks: u64,
zone_age: u64, //unused

}

struct MapperZone {
zslba: u64,
zone_cap: u64,
wp: u64

}

struct ZNSZones {
free_zones: Vec<MapperZone>,
full_zones: Vec<MapperZone>,
op_zones: Vec<MapperZone>

}

pub struct ZNSTarget {
pub backing: Mutex<NvmeDevice>, //Backing ZNS device
pub max_lba: u64,
exposed_zones: u64,
pub ns_id: u32,
pub block_size: u64,
pub zns_info: NvmeZNSInfo,
map: Mutex<ZNSMap>,
victim_selection_method: VictimSelectionMethod,
zones: Mutex<ZNSZones>,
zones_metadata: Vec<Mutex<MapperZoneMetadata>>,
reclaim_buffer: Dma<u8>,
reclaim_locks: Vec<RwLock<()>>,
reclaim_condition: Condvar,
pub end_reclaim: AtomicBool

}

14



5 Evaluation

We evaluate vroom’s performance when used directly with zoned namespaces SSDs
and then through the host-side flash translation layer interface that we built. In the
process, we attempt to characterize vroom’s zoned storage performance and compare it
to conventional SSDs and other I/O engines.

5.1 Setup

All benchmarks are run on a system with an AMD EPYC 7713 64-Core processor and 1
TiB of RAM running on Ubuntu 24.04 LTS using a 4TiB ZNS SSD.

For our benchmarks, we use a similar setup to the one that was first used to evaluate
vroom. For reads, we use a full ZNS drive, as NVMe controllers can be aware of
reads to unwritten blocks and process them faster, leading to much better performance.
Similarly, we only perform reads within the writable section of every zone (i.e. within
the zone capacity), since we found that reads to the unmapped LBAs section from
Figure 2.1 are also processed faster and would skew results. For consistency’s sake, we
also run write benchmarks on completely empty drives. However, unlike conventional
SSDs, we found ZNS write performance to be constant with time since the drive does
not have to perform garbage collection, and write amplification is kept minimal by
design. For this reason, we have decided to run 60s sequential write workloads, a
notable decrease from the 900s write workloads that were used to initially benchmark
vroom, as throughput was found to vary with time. Similarly, we also use 60s random
read workloads, as read performance is also constant with time. All benchmarks are
run with I/O unit sizes of 4KiB.

In section 5.2, we compare vroom’s performance against other I/O engines: SPDK as
another user-space NVMe driver and the linux storage engines: io_uring, libaio and
the file I/O API pread/pwrite (psync). We achieve this by using the flexible I/O tester
(fio). However, its support for ZNS drives is fairly limited. Although it is possible
to force sequential writes and cross-zone constraints, write workloads are limited by
default to the regular write command, making it difficult to compare zone append
performance. SPDK’s fio plugin, however, does offer more extensive ZNS support,
with which we could also benchmark zone append commands using the configuration
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5 Evaluation

Listing 5.1: Zone Append benchmark using fio and SPDK
[global]
ioengine=spdk
thread=1
group_reporting=1
direct=1
time_based=1
ramp_time=5
runtime=60
size=128z
bs=4k
rw=write
iodepth=1
zonemode=zbd
zone_append=1
max_open_zones=13
initial_zone_reset=1
filename=trtype=PCIe traddr=0000.c6.00.0 ns=2

in Listing 5.1. For vroom, we use our own workloads that are equivalent to fio’s jobs.
These can be found in our repository.

5.2 Zoned Namespaces

In this section, we evaluate the performance of ZNS drives with vroom and compare it
to other I/O engines. First, we attempt to characterize general ZNS performance as we
use our observations to justify some of the decisions we took with our host-side FTL
implementation in section 4.2. We then run similar performance benchmarks to the
ones that were first used to evaluate vroom’s performance on a conventional non-ZNS
SSD [17] to see whether vroom’s performance benefits still hold when using zoned
storage.

5.2.1 Throughput

We examine the throughput of both write and append commands under different queue
depths and thread counts. Because of zoned storage restrictions (section 2.3), write
commands are limited to queue depth 1, as they may be reordered by the controller
and cause completion errors. Furthermore, there are different ways to parallelize zone
append commands: an intra-zone approach where concurrent commands are issued to
the same zone and an inter-zone approach where concurrent commands are issued
to multiple zones. Due to the sequential write constraint, writes are limited by their
nature to inter-zone concurrency. Additionally, the Maximum Open Resources field limits
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Figure 5.1: Threads vs. IOPS; vroom direct writes to a ZNS drive

the number of zones that can be used concurrently, therefore limiting the number of
threads in an inter-zone scenario.
We visualize our findings in Figure 5.1 and observe the following:

• Write commands have around 25% higher throughput than zone append com-
mands: write commands have a maximum throughput of about 200k IOPS, while
zone append commands seem to peak around 150k IOPS. Despite being limited
to a queue depth of 1, write commands almost always perform better.

• The choice between an intra-zone or inter-zone approach does not affect the
performance of the zone append command.

• Zone append throughput seems to be limited to about 150K IOPS, and further
increases to queue depth or thread count after reaching that number seem to have
no effect.

• Throughput for write and zone append commands reaches its peak and stagnates
long before we’re limited by the maximum open resources field.

These observations seem to align with current research characterizing ZNS SSD perfor-
mance [6].
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5 Evaluation

Next, we examine the read command throughput of ZNS drives, focusing first on
how the number of threads affects performance at two different queue depths (1 and
32), as shown in Figure 5.2. For a queue depth of 1, throughput constantly increases,
reaching a maximum of around 400k IOPS at 64 reader threads. In contrast, at a
queue depth of 32, throughput steadily increases in the beginning until it peaks at
about 570k IOPS for 8 reader threads. Then, it gradually declines as the number of
threads increases. This suggests that higher queue depths have a greater impact on
read performance than increasing the number of concurrent readers. We further verify
this by plotting throughput for various queue depths with a single reader thread in
Figure 5.3. As expected, throughput rises with increasing queue depth, peaking at
approximately 910k IOPS beyond a queue depth of 128.
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Figure 5.2: Threads vs. IOPS; vroom direct random reads to a ZNS drive
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Figure 5.3: Queue Depth vs. IOPS; vroom direct reads to a ZNS drive (1 reader)

5.2.2 Latency

In Figure 5.4, we present the tail distributions of I/O latencies for random read,
sequential write, and zone append operations on a ZNS drive using various I/O
engines. Note that we can only compare vroom’s append latency with SPDK, as fio
currently lacks support for zone append benchmarks across other storage engines.

Our driver, vroom, and SPDK generally outperform the competition, demonstrating
lower latencies than all other I/O engines in all operations. For sequential writes,
the latency patterns are similar across all engines, with Linux I/O APIs having a
higher offset of about 10 µs due to system call and interrupt overhead, which is
eliminated entirely by SPDK and vroom. Overall, SPDK and vroom deliver comparable
performance, though vroom occasionally has a slight advantage, which may be due
to fio’s small inherent overhead when used for SPDK benchmarking. These results
are consistent with vroom’s performance compared to other I/O engines when using a
conventional SSD [17]. The plots also align with our observations from subsection 5.2.1.
On average, zone append latency is 25% higher than sequential write latency.
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Figure 5.4: Tail Latencies; direct operations to a ZNS drive
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Figure 5.5: Threads vs. IOPS for different host-side FTL write implementations

5.3 Random Write Support

We now evaluate read and write performance through our host-side FTL and compare
it with direct reads and writes to the ZNS drive. One side-effect of evaluating write
performance on empty drives is that we do not get to evaluate our garbage collection
implementation. However, we have decided not to do this for a couple of reasons. First,
our ZNS drive does not support the copy command, which causes garbage collection to
be much slower and also interfere significantly more with concurrent reads and writes,
as they share device resources. Another reason is that performance would depend
on the specific victim selection strategy that is used, as these tend to seek a balance
between write amplification, memory overhead, and speed. For these reasons, we felt
that including garbage collection would potentially cause write performance metrics to
be misleading.

5.3.1 Throughput

In Figure 5.5, we compare the throughput of two different implementations of the
write_concurrent function from Table 4.1: one utilizing the write command, the other
using the zone append command. As expected, the results align with those shown
in Figure 5.1, where we discussed the throughput of the zone append and write com-
mands for a standard ZNS drive. Note that our host-side FTL is restricted to inter-zone
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Figure 5.6: Random write throughput for different thread counts; Queue Depth 1

concurrency, as mentioned in subsection 4.2.3. We therefore summarize that a random
write function implementation is most efficient when using the regular write command,
despite the restriction on queue depth. We also confirm the hypothesis stated in sub-
section 4.2.3 that the Maximum Open Resources field does not restrict our random write
performance. We also notice that our interface’s overhead on write throughput is fairly
minimal, regardless of the method used. We confirm this by comparing the throughput
of direct writes to a ZNS SSD to the throughput of writes that go through our host-side
FTL in Figure 5.6. Although we are technically comparing sequential write throughput
for the ZNS SSD against random write throughput for our host-side FTL, it actually
does not make any difference. Sequential writes usually perform better than random
writes because they simplify garbage collection, as data that is grouped together is
more likely to be invalidated together. Since we do not include garbage collection in
our benchmarks, it does not make any difference for our host-side FTL whether we use
random or sequential writes.

We now direct our attention to read performance. As we did in subsection 5.2.1, we
consider how queue depth and concurrent readers affect random read IOPS. We plot
the throughput for different queue depths in Figure 5.7 and for different thread counts
under QD1 and QD32 in Figure 5.8. We also visualize the plots from Figure 5.2 and
Figure 5.3 again to compare random reads through our interface with direct reads to
the drive.
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Figure 5.7: Queue Depth vs IOPS; vroom random read (1 reader)

We note the following observations:

• Read performance is barely affected by a host-side FTL, especially compared to
write performance. Writes via the host-side FTL update zone metadata and need
constant synchronized access to mapping data, as they both read it at the start
and update it at the end. On the other hand, reads only access mapping data
once at the beginning and don’t interfere with each other otherwise.

• Similarly to direct reads, reads through a host-side FTL benefit much more from
a higher queue depth than a higher thread count. This is especially evident when
looking at Figure 5.7.

• As concurrency levels (both queue depth and thread count) increase, there is a
brief time when host-side FTL reads outperform direct reads under the same
conditions. This is particularly noticeable in Figure 5.8b. It is hard to determine
the exact cause, but we surmise that synchronized access to mapping data may
pace requests to the controller in a way that better minimizes resource contention
within the SSD.
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Figure 5.9: Tail Latencies

5.3.2 Latency

We now investigate our observations from the previous subsection by plotting tail laten-
cies for random reads and writes via the host-side FTL in Figure 5.9. We additionally
plot in the respective vroom I/O tail latencies from Figure 5.4.

For writes, we notice that both plots are largely similar up to the 90th percentile,
after which writes via the host-side FTL start to slow down significantly in comparison.
Overwriting previously written blocks has a slightly higher overhead than writes to
unwritten LBAs, which explains the higher tail latencies. Synchronization overhead is
another factor.

Host-side FTL reads, on the other hand, generally perform the same as direct reads
up to the 99.9th percentile. Similarly, the higher tail latencies can be explained by the
synchronization overhead. This aligns with our observations from subsection 5.3.1.
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6 Conclusion

In this thesis, we examined zoned namespace SSDs and extended vroom, a user-space
NVMe driver, to support the zoned namespace command set. Additionally, we built
our own host-side flash translation layer to support non-sequential write patterns. We
evaluated vroom’s performance with a ZNS drive, both to characterize ZNS perfor-
mance and to ensure that vroom’s performance improvements over other I/O engines
persisted when using zoned storage. We then evaluated the ZNS drive’s performance
when using our host-side FTL and compared it against regular ZNS performance. In
the process, we also considered different host-side FTL implementations and used our
findings to improve them.

We found our ZNS performance characterization to be consistent with the latest
research. Write performance was consistently better than zone append performance
despite being limited to a queue depth of one. We also concluded that it is better for
host-side FTLs to be implemented using the write command. Furthermore, we found
that our host-side FTL had acceptable overheads, although our evaluation could not
consider garbage collection due to the copy command not being supported.

Future Work Our host-side FTL implementation is still a prototype and has several
shortcomings that should be fixed. Mapping data is not persisted and is kept in
memory, representing a significant memory overhead when using large drives. It
also cannot be reconstructed in the case of a sudden crash or power outrage. Future
work should ensure that metadata is properly persisted in a conventional drive and
that only a partial copy of the mapping data is kept in memory. Additionally, victim
selection during garbage collection is quite basic, and there are several more advanced
algorithms that should be implemented and evaluated to minimize write amplification.
Finally, we believe that a comprehensive study of the interface’s performance during
garbage collection is needed to properly evaluate its potential.
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